Способ определения среднегодовой самоочищающей способности водотока в фарватере

Иллюстрации

Показать все

Изобретение относится к инженерной экологии и гидрологии и может быть использовано при моделировании изменения качества воды поверхностных водотоков. Сущность: реку и ее притоки на цифровой топографической карте разбивают на квадраты. Вычисляют количество квадратов, покрывающих реку и каждый ее приток. Вычисляют фрактальную размерность реки. Вычисляют изменение показателя биологического потребления кислорода (БПК) между двумя створами. По увеличению показателя БПК судят о самоочищающей способности водотока в фарватере. Технический результат: определение изменения БПК по длине водотока малоизученных средних и малых рек с учетом гидравлических факторов в реке и фрактальной размерности реки.

Реферат

Изобретение относится к инженерной экологии и гидрологии и может быть использовано при моделировании изменения качества воды поверхностных водотоков.

Самоочищение поверхностных вод - это совокупность взаимосвязанных гидродинамических, физико-химических, микробиологических и гидробиологических процессов, ведущих впоследствии к восстановлению первоначального состояния водного объекта. Преобладающую роль среди этих процессов играет окисление.

Процесс окисления органических веществ зависит от количества кислорода, поступающего из атмосферы в процессе реаэрации, и определяется условиями перемешивания и температурным режимом водных объектов. Количество кислорода, требуемое для протекания процесса окисления, обозначается как биохимическое потребление кислорода (БПК5).

Самоочищение поверхностных вод зависит от температуры, расхода воды, морфометрических параметров водотоков и др. В водоеме одновременно происходит, с одной стороны, потребление кислорода на минерализацию органических веществ, а с другой - пополнение его за счет растворения кислорода, поступающего с поверхности водного зеркала, т.е. так называемая реаэрация (Яковлев С.В., Карелин Я.А., Жуков А.И., Колобанов С.К. Канализация. Учебник для вузов. Изд. 5-е, перераб. и доп. – М.: Стройиздат, 1975. - 632 с., с. 189).

Известен способ гидрографической оценки антропогенно измененных частей речной сети по численности водотоков (патент РФ №2538039, G01C 13/00, 20.06.2013), суть которого сводится к построению гидрографической схемы речной сети на основе фрактальной группировки притоков речной сети или ее выделенной части по единому экспоненциальному закону спада длины притоков и сравнению разветвленности речной сети до и после населенного пункта или другого крупного антропогенного объекта.

К недостаткам способа относятся трудоемкость и необходимость анализа большого количества данных, в частности необходима таблица с длинами притоков разного порядка. Не прослеживается четкая взаимосвязь между сокращением количества притоков и увеличением антропогенной нагрузки (это могут быть и особенности рельефа). Нет возможности проследить изменения гидрохимического состава.

Известен способ определения коэффициента извилистости русла реки (заявка на изобретение №2013156701, G01C 13/00, 27.06.2015), согласно которому предлагаются формулы для определения коэффициента извилистости Kизв и длины реки L с использованием фрактальной размерности D.

Kизв=0.7483(D1/0 0994/0.056)0.1411;

Недостатком способа является отсутствие связи с изменением качественных характеристик водотока.

Наиболее близким к предлагаемому является способ определения коэффициента реаэрации по формуле A=Q⋅(La-Lt)/F (Яковлев С.В., Карелин Я.А., Жуков А.И., Колобанов С.К. Канализация. Учебник для вузов. Изд. 5-е, перераб. и доп. – М.: Стройиздат, 1975. - 632 с., с. 193), применяемый в случаях, когда количество растворенного кислорода в начальном и конечном створах остается одинаковым и, следовательно, все снижение БПК на рассматриваемом участке происходит за счет кислорода, поступающего с поверхности, т.е. реаэрации.

К недостаткам ближайшего аналога относится отсутствие учета гидравлических особенностей потока и морфометрических параметров речных систем.

Задача изобретения - установление зависимости между изменением показателя качества воды малых и средних рек и их гидравлическими и морфологическими характеристиками.

Технический результат: определение изменения биологического потребления кислорода (БПК5) по длине водотока малоизученных средних и малых рек с учетом гидравлических факторов в реке и фрактальной размерности реки.

Поставленная задача решается, а технический результат достигается тем, что в способе определения среднегодовой самоочищающей способности водотока в фарватере реку и ее притоки на цифровой топографической карте разбивают на квадраты размером δ×δ, вычисляют количество квадратов N, покрывающих реку, и каждый ее приток, согласно изобретению определяют фрактальную размерность реки по формуле:

далее вычисляют изменение показателя биологического потребления кислорода ΔL между двумя створами по формуле:

где А - коэффициент реаэрации, г/сут⋅м2,

b - ширина реки, м,

Lф - длина реки по фарватеру, м,

Q - расход воды в реке, м3/с,

ξ - коэффициент, зависящий от расположения впуска загрязняющих веществ в реку,

Нср - средняя глубина реки между двумя створами, м,

и по увеличению показателя ΔL судят о самоочищающей способности водотока.

Фрактальная размерность D рассчитывается по формуле, предложенной Б. Мандельбротом (Мандельброт Б. Фрактальная геометрия природы. - М.: Институт компьютерных исследований, 2002. - 656 с., с. 52).

В настоящее время реки испытывают большую антропогенную нагрузку, и более всего уязвимы малые и средние реки. Несмотря на широкую распространенность, механизм их самоочищения, ввиду недостатка данных наблюдений, остается малоизученным. В этой связи для комплексной оценки изменения качества воды речных систем необходимо проводить исследования их изменений с применением математического моделирования, например с использованием фрактального анализа.

Фрактальный анализ является универсальным математическим методом, позволяющим характеризовать большинство природных объектов и процессов, в том числе и речные сети. Его очевидное достоинство состоит в том, что он дает возможность получать численное описание природных структур различного генезиса и анализировать их изменения, обусловленные физико-географическими особенностями и антропогенным воздействием [Гладков А.С., Лунина О.В., Шишкина Л.П. Фрактальный анализ тектонической трещиноватости и речной сети Прибайкалья // Рельефообразующие процессы: теория, практика, методы исследования: Материалы XXVIII Пленума геоморфол. комис. РАН. - Новосибирск: ИГ СО РАН, 2004. - С. 78-80]. Фрактальную размерность можно рассматривать как меру извилистости водотока.

Определение ΔL производят в следующем порядке:

Сначала в формуле определения коэффициента реаэрации:

где А - коэффициент реаэрации, г/сут⋅м2,

La, Lt - БПК5 в начальном и конечном пунктах, г/м3 (ΔL=La-Lt),

Q - расход воды в реке, м3/сут,

F - площадь поверхности водного зеркала на всем протяжении участка от начального до конечного пункта, м2, значение F выражается как

b - ширина реки, м,

Представленная формула 3 не учитывает гидравлические факторы в реке, поэтому предлагается дополнить ее коэффициентом α:

где α - коэффициент, учитывающий гидравлические факторы в реке,

ξ - коэффициент, зависящий от расположения впуска загрязняющих веществ в реку (в фарватер ξ=1,5),

ϕ - коэффициент извилистости, определяется по формуле:

Lф - длина реки по фарватеру, м,

Lпр - длина реки по прямой, м, при этом , (Мандельброт Б. Фрактальная геометрия природы. - М.: Институт компьютерных исследований, 2002. - 656 с., с. 163), тогда коэффициент извилистости равен:

qm - расход сточных вод, м3/сут,

E - коэффициент турбулентной диффузии, рассчитывается по формуле:

Зная, что

где, Vср - средняя скорость течения реки на участке между контрольными створами, м/с,

ω-πR2/2 - живое сечение реки (принимается, что R=Нср).

Из формул 8 и 9 выводим:

Объединяя формулы 3-10, получаем коэффициент реаэрации:

Из полученного соотношения получаем формулу расчета ΔL:

Пример конкретной реализации способа

На топографической карте Республики Башкортостан был выбран участок малой реки между двумя населенными пунктами. Определена фрактальная размерность участка реки по формуле 1, положенной в основу программы «Автоматизированный расчет фрактальной размерности» (Свидетельство о государственной регистрации программы для ЭВМ №2014618323 от 25.06.2014), которая составила D=1,21.

Известны следующие характеристики реки:

длина участка реки Lф=85 км,

среднегодовой коэффициент реаэрации А=5 г/сут⋅м2,

минимальная ширина реки b=2 м,

расход Q=2,96 м3/с,

ξ - коэффициент, зависящий от расположения впуска загрязняющих веществ в реку (в фарватер = 1,5),

средняя глубина Hср=0,5 м.

Данные подставляются в формулу:

Сверяем полученное значение изменения показателя биологического потребления кислорода ΔL с значениями БПК5, полученных при анализе проб воды, отобранных в контрольных створах.

La=5,1 мг О2/л,

Lt=3,4 мг О2/л,

ΔL=1,7 мг О2/л.

Увеличение показателя ΔL (1,7) позволяет судить о снижении биологического потребления кислорода по течению реки. Таким образом, заявляемое изобретение позволяет оперативно определить среднегодовую самоочищающую способность водотока.

Способ определения среднегодовой самоочищающей способности водотока в фарватере, по которому реку и ее притоки на цифровой топографической карте разбивают на квадраты размером δ×δ, вычисляют количество квадратов N, покрывающих реку и каждый ее приток, отличающийся тем, что определяют фрактальную размерность реки по формуле:

далее вычисляют изменение показателя биологического потребления кислорода ΔL между двумя створами по формуле:

где A - коэффициент реаэрации, г/сут⋅м2,

b - ширина реки, м,

Lф - длина реки по фарватеру, м,

Q - расход воды в реке, м3/с,

ξ - коэффициент, зависящий от расположения впуска загрязняющих веществ в реку,

Нср - средняя глубина реки между двумя створами, м,

и по увеличению показателя ΔL судят о самоочищающей способности водотока.