Способ и система обработки воды, используемой для промышленных целей
Изобретение относится к способу и системе для обработки воды, предназначенной для использования в промышленных процессах, при низких затратах. Система для обработки воды включает: линию подачи воды, контейнер, включающий средство приема осевших частиц, которое прикреплено к дну указанного контейнера, средство согласования, которое периодически активирует операции, необходимые для регулирования параметров воды в пределах, определяемых оператором или средством согласования, средство введения химических веществ, которое активируют с помощью указанного средства согласования, подвижное средство всасывания, которое перемещается по дну указанного контейнера, всасывая поток воды, содержащий осевшие частицы, движущее средство, которое сообщает движение подвижному средству всасывания, чтобы оно могло перемещаться по дну контейнера, фильтрующее средство, которое обеспечивает фильтрацию потока воды, содержащего осевшие частицы, коллекторную линию, соединяющую подвижное средство всасывания и фильтрующее средство, возвратную линию от указанного фильтрующего средства к контейнеру, и линию отвода воды из указанного контейнера в процесс ниже по потоку. Технический результат - повышение качества очистки воды. 6 з.п. ф-лы, 2 ил., 3 табл.
Реферат
Данная заявка подана 12 сентября 2011 г. в качестве международной заявки на патент PCT. Заявителем для всех государств, за исключением США, является Crystal Lagoons Corporation LLC, национальная корпорация США, и только для США заявителем является Fernando Fischmann Т., гражданин Чили. В заявке испрашивается приоритет по дате предварительной заявки US 61/469537, поданной 30 марта 2011 г., и по дате полезной модели US 13/136474, поданной 1 августа 2011 г., которые включены в данную заявку по упоминанию.
Область техники
Настоящее изобретение относится к способу и системе для обработки воды, предназначенной для использования в промышленных процессах, при низких затратах. Способ и система по изобретению обеспечивают очистку воды и удаление взвешенных твердых веществ без необходимости фильтрации всего объема воды, но посредством фильтрования только небольшой части, которая до 200 раз меньше, чем поток, фильтруемый традиционными системами фильтрации для очистки воды.
Уровень техники
Вода высокого микробиологического качества с высокой прозрачностью является ограниченным ресурсом, который постоянно требуется для процессов многих отраслей промышленности. Обработка для получения такой воды влечет за собой большие капиталовложения и эксплуатационные затраты, а осуществляемые для этого способы являются сложными и доставляют ряд проблем, которые в настоящее время не решены эффективно. Также такие способы потребляют большое количество энергии и химических веществ и таким образом, наносят значительный вред окружающей среде. Более конкретно, удаление примесей, содержащихся в воде, таких как взвешенные твердые вещества, металлы, водоросли и бактерии, помимо прочего, требует установки дорогостоящих и сложных систем фильтрации, которые обеспечивают фильтрацию всего объема воды и таким образом приводят к большому потреблению энергии, высоким потребностям в химических веществах и материалах, и других ресурсов, связанных с таким процессом.
Вода высокого микробиологического качества требуется для ряда важных процессов, таких как водоподготовка для процессов опреснения с обратным осмосом; очистка воды, используемой в рыбоводных хозяйствах; обработка и содержание воды при производстве питьевой воды; обработка жидких отходов производства, или для горнодобывающей промышленности, помимо прочего. Вода высокого микробиологического качества и прозрачности, получаемая при очень низких затратах по настоящему изобретению, также может быть использована в других промышленных процессах, которые требуют высокого физико-химического и микробиологического качества воды.
Опреснение
Существует ряд причин обращения к проблеме улучшения существующих способов опреснения, поскольку данное производство растет по экспоненте и приобретет большое значение в будущем. Из всей имеющейся в мире воды 97% составляет морская вода. Из оставшихся 3% имеющейся пресной воды 2,1% находится в замороженном состоянии на полюсах и только 0,9% доступно для потребления человеком - это вода, которая находится в реках, озерах или грунтовых водах. Ограниченная доступность пресной воды для потребления человеком является проблемой, которая возрастет вместе с глобальным ростом населения и культурными изменениями. Приблизительно 40% мирового населения уже страдает от проблем, вызванных отсутствием доступа к источникам пресной воды.
Таким образом, по прогнозам программы Организации объединенных наций по окружающей среде (ЮНЕП), приблизительно 3 миллиона человек будут испытывать острую нехватку воды в ближайшие 50 лет. Также в 1999 г. ЮНЕП определило нехватку воды как основную проблему нового тысячелетия, наряду с глобальным потеплением. Ресурсы пресной воды расходуют с большей скоростью, чем они пополняются в окружающей среде, и кроме того, загрязнение и эксплуатация грунтовых вод и поверхностной воды приводит к снижению количества и/или качества доступных природных источников. Сочетание увеличения населения, недостатка новых источников пресной воды и увеличения потребления воды на душу населения вызывает обострение региональной напряженности среди стран, расположенных вблизи водных источников. Все это обязывает к поиску решения проблемы доступности воды, не только для удовлетворения потребностей человечества в будущем, а также чтобы избежать конфликтов, к которым может привести недостаток воды.
Традиционно, морская вода является наиболее обильным ресурсом на земле, фактически неисчерпаемым источником соленой воды, всегда доступным для использования. Таким образом, для решения глобальных проблем, связанных с недостаточным запасом пресной воды, наилучшим решением является обработка морской воды с целью обеспечения пресной воды для общего потребления. Безграничная доступность морской воды, содержащейся в океанах, привела к исследованиям и созданию технологий по удалению соли из воды различными способами и получению пресной воды. Наилучшей в мире существующей технологией для достижения данной цели является процесс опреснения. В настоящее время приблизительно 130 стран по всему миру реализуют некоторые виды процесса опреснения, и ожидается, что установленная мощность будет удвоена к 2015 году.
Наиболее используемыми способами опреснения являются два следующих способа.
Использование испарения воды, в виде процесса дистилляции, таким образом, чтобы испарять только молекулы воды, оставляя все соли и растворенные минералы. Этот способ называют термическим опреснением.
Использование специальных мембран, которые позволяют осуществлять процесс обратного осмоса, при котором воду отделяют от солей посредством приложения давления к полупроницаемой мембране. Этот способ называют обратным осмосом.
При выборе используемого способа потребление энергии является важным фактором для принятия решения. По оценке, потребление энергии для получения 1 м3 воды при использовании термического опреснения составляет от 10 до 15 кВтч/м3, тогда как способ с использованием технологии обратного осмоса потребляет приблизительно 5 кВтч/м3. Это происходит из-за того, что при термическом опреснении требуется испарение, поэтому необходимо больше энергии для процесса фазового перехода; таким образом, термическое опреснение является менее эффективным в отношении потребления энергии. Существующие ограничения требуют повышения общей эффективности способов, с использованием технологий, которые удовлетворяют экологическим требованиям общественности, при минимизации выбросов парниковых газов в атмосферу и влияния на окружающую среду.
Что касается оценки вышеуказанных технологий, с 2005 года мировая установленная мощность установок опреснения обратным осмосом превзошла установленную мощность термических установок. По прогнозам, в 2015 году мировая установленная мощность будет распределена следующим образом: 62% - установки обратного осмоса и 38% - установки термического опреснения. Фактически, мировая мощность для получения пресной воды на установках опреснения при использовании технологий обратного осмоса возросла свыше чем на 300% за 6 лет.
Обратный осмос представляет собой способ, при котором давление прикладывают к потоку воды с высокой концентрацией солей, через полупроницаемую мембрану, которая пропускает только молекулы воды. Благодаря этому, фильтрат, выходящий с другой стороны мембраны, соответствует воде высокого микробиологического качества с низким содержанием солей. При работе установок опреснения с использованием технологии обратного осмоса, осуществляют 2 основные стадии:
1. Предварительная обработка воды.
2. Стадия опреснения.
Вторая стадия, соответствующая процессу обратного осмоса как таковому, широко изучена и достигнута эффективность до 98% (General Electric HERO Systems).
Первая стадия способа получения пресной воды с использованием обратного осмоса относится к подготовке соленой воды перед пропусканием ее через полупроницаемую мембрану, также называемой предварительной обработкой воды. На практике, основные проблемы этой стадии предварительной обработки связаны с качеством воды, необходимым для эффективной работы мембран обратного осмоса. Фактически, по приблизительным подсчетам, 51% мембран обратного осмоса выходит из строя вследствие недостаточной предварительной обработки, либо из-за плохой конструкции или плохой работы, тогда как 30% выходит из строя вследствие не надлежащего дозирования химических веществ. Существующие способы, помимо неэффективности из-за высокой интенсивности отказов, имеют очень высокую стоимость, тем самым стимулируя исследования для поиска новых способов решения данных проблем.
Проблемы, возникающие в мембранах, зависят от свойств подаваемой воды, которая засоряет фильтры и мембраны, расположенные перед предварительной обработкой, а также мембраны обратного осмоса. Эти проблемы проявляются в снижении ресурса и более частом техническом обслуживании и очистке мембран, приводя к более высоким затратам на эксплуатацию и техническое обслуживание. Общие проблемы, возникающие вследствие недостаточной предварительной обработки воды, разделяют на 2 типа: повреждение мембран и забивка мембран.
Повреждение мембран обратного осмоса в основном вызвано окислением и гидролизом материала мембран под действием различных соединений в подаваемой воде. Большинство мембран обратного осмоса не могут выдерживать существующие концентрации остаточного хлора, которые обычно добавляют в способах опреснения для предотвращения биологического обрастания. Мембраны имеют высокую стоимость, так что необходимо принимать все возможные меры предосторожности для поддержания непрерывной работы и достижения наилучших возможных характеристик; поэтому часто необходимо дехлорировать воду пред ее пропусканием через мембраны. В конечном счете, также следует регулировать pH подаваемой воды для оптимальной работы мембран. Кроме того, растворенный кислород и другие окисляющие вещества должны быть удалены для предотвращения повреждения мембран. Газы также влияют на надлежащее функционирование мембран, так что для оптимальной работы необходимо избегать их высоких концентраций. Существующие способы регулирования концентраций газов и окисляющих веществ являются очень дорогими и неэффективными.
С другой стороны, забивка мембран обратного осмоса большей частью приводит к существенному снижению эффективности, которое возникает по различным причинам, например, из-за повышения давления, которое необходимо приложить к подаваемой воде для пропускания ее через мембрану; увеличения времени простоя из-за постоянного технического обслуживания и промывки, которые необходимо осуществлять, и высокой стоимости замены расходуемых материалов, используемых в способе. Забивка мембран обусловлена тремя главными проблемами: биологическое обрастание, солеотложение и образование коллоидных отложений.
Биологическое обрастание является следствием роста колоний бактерий или водорослей на поверхности мембраны. Поскольку нельзя использовать хлор, существует опасность развития пленки биомассы, перекрывающей прохождение подаваемой воды, что снижает эффективность системы.
Другой важной проблемой, которая вызывает забивку мембраны, является солеотложение, которое в конечном счете вызывает ее закупорку. Солеотложением называют выпадение в осадок и образование отложений умеренно растворимой соли на мембранах. Фактически, при определенных рабочих условиях, пределы растворимости некоторых компонентов, присутствующих в подаваемой воде, могут быть превышены, вызывая выпадение в осадок. Такие компоненты включают карбонат кальция, карбонат магния, сульфат кальция, диоксид кремния, сульфат бария, сульфат стронция и фторид кальция, помимо прочего. В установках обратного осмоса на конечной стадии растворенные соли присутствуют в наиболее высокой концентрации, и на ней появляются первые признаки солеотложения. Солеотложение вследствие выпадения в осадок усиливается из-за градиента концентрации на поверхности мембран.
Закупорка частицами или образование коллоидных отложений происходит, когда подаваемая вода содержит большое количество взвешенных частиц и коллоидного вещества, и это требует постоянной промывки для очистки мембран. Концентрация частиц в воде может быть измерена и выражена различными способами. Наиболее используемым параметром является мутность, которую необходимо поддерживать на низком уровне для надлежащей работы. Накопление частиц на поверхности мембраны может отрицательно влиять как на поток подаваемой воды, так и на частоту отказов мембран обратного осмоса. Образование коллоидных отложений обусловлено накоплением коллоидных частиц на поверхности мембраны и образованием слоя в форме корки. Снижение потока фильтрата вызвано, с одной стороны, образованием слоя корки, а с другой стороны, высокой концентрацией соли на поверхности мембраны, причиной чего является затрудненная диффузия ионов соли, что приводит к повышенному осмотическому давлению и снижению импульса результирующей силы. Отслеживаемым параметром для предотвращения образования коллоидных отложений является индекс плотности осадка (ИПО), и производители мембран рекомендуют поддерживать ИПО до 4. Забивка мембран также может происходить вследствие обрастания природным органическим веществом (ПОВ). Природное органическое вещество засоряет мембрану либо вследствие сужения пор, связанного с адсорбцией природного органического вещества на стенках пор, либо наличия коллоидного органического вещества, которое действует как пробка на входах в поры, либо образования непрерывного слоя геля, который покрывает поверхность мембраны. Такой слой вызывает существенное снижение эффективности, и следовательно, необходимо избегать загрязнения таким слоем любой ценой.
В настоящее время предварительная обработка воды перед поступлением в способ опреснения в основном включает следующие стадии:
1. Хлорирование для снижения органической бактериологической загрузки в исходной воде.
2. Фильтрация через песчаный фильтр для снижения мутности.
3. Подкисление для снижения pH и замедления процессов известкования.
4. Ингибирование отложения кальция и бария с использованием ингибиторов отложений.
5. Дехлорирование для удаления остаточного хлора.
6. Обеспечение фильтрующих элементов для частиц, требуемое изготовителями мембран.
7. Микрофильтрация (МФ), ультрафильтрация (УФ) и нанофильтрация (НФ).
Среди указанных выше стадий предварительной обработки, стоимость стадий фильтрации, с помощью песчаного фильтра или посредством более сложных стадий фильтрации, таких как микрофильтрация, ультрафильтрация или нанофильтрация, приводит к высоким затратам, помимо других недостатков. В частности, если предварительная обработка не соответствует требованиям, фильтры забиваются органическим веществом, коллоидными веществами, водорослями, микроорганизмами и/или личинками. Кроме того, требования для фильтра, предназначенного для обработки всего объема воды в установке, чтобы снизить мутность и удалить частицы, налагают жесткие ограничения в показателях энергии, затрат на внедрение и ввод в эксплуатацию, а также, в течение эксплуатации, в показателях технического обслуживания и замены фильтров. Кроме того, системы предварительной обработки сегодня являются очень неэффективными и имеют высокую стоимость из-за устанавливаемых устройств и задач непрерывной эксплуатации и технического обслуживания, которые являются дорогостоящими и трудноосуществимыми.
В заключение следует отметить, что возрастающая нехватка источников пресной воды создала мировую проблему поставки воды, что привело к разработке и внедрению различных технологий опреснения. Опреснение обратным осмосом является перспективной технологией, направленной на решение проблемы нехватки источников пресной воды, и такая технология по прогнозам будет иметь значительное развитие в будущем. Однако обеспечение эффективных по затратам и энергетически эффективных средств предварительной обработки подаваемой воды является значительной проблемой для установок опреснения с обратным осмосом. Существует потребность в эффективной технологии, которая может быть реализована при низких затратах и обеспечит получение воды удовлетворительного качества для применения в качестве исходного материала в способах опреснения.
Промышленная аквакультура
Промышленная аквакультура предусматривает выращивание водных организмов, растений и животных, из которых получают исходные материалы, в частности, для пищевой, химической и фармацевтической промышленности. Водные организмы выращивают в пресной или морской воде, в которой в основном культивируют рыб, моллюсков, ракообразных, макроводоросли и микроводоросли. Вследствие роста промышленности, развития новых технологий и нормативов по охране окружающей среды, устанавливаемых международным сообществом, существует потребность в минимизации влияния на окружающую среду промышленной аквакультуры, в то же время поддерживая адекватное регулирование рабочих условий. Для выполнения этого, выращивание водных организмов, локализованное in situ в природных водных источниках, таких как моря, переместили на предприятия, специально построенные для таких целей.
Помимо традиционного разведения таких организмов в качестве исходного материала для пищевой, фармацевтической промышленности и общего производства, водные организмы также используют в энергетическом секторе для генерирования энергии из возобновляемых нетрадиционных источников, в частности, для получения биотоплива, такого как биодизельное топливо из водорослей.
Что касается биотоплива, следует отметить, что основой мирового производства энергии является ископаемое топливо (нефть, газ и уголь), которое обеспечивает приблизительно 80% мирового потребления энергии. Биомасса, гидроэлектроэнергия и другие «нетрадиционные» источники энергии, такие как солнечная энергии, являются возобновляемыми источниками энергии. В последнюю группу, составляя только 2,1% основы мирового производства, входит энергия ветра, солнечная энергия и биотопливо, которое, в свою очередь, в основном включает биогаз, биодизельное топливо и этанол.
Вследствие того, что источники ископаемой и ядерной энергии являются почерпаемыми, в будущем потребность в них может не обеспечиваться. Соответственно, энергетической политикой в развитых странах является рассмотрение возможности введения альтернативных видов энергии. Кроме того, неправильное обращение с традиционными источниками энергии, подобными нефти и углю, помимо прочего, приводит к таким проблемам, как загрязнение окружающей среды, увеличение количества парниковых газов и истощение озонового слоя. Следовательно, получение чистых, возобновляемых и альтернативных видов энергии является необходимым с экономической и экологической точки зрения. В некоторых странах применение биотоплива, смешанного с нефтяным топливом, ускорило массовое и эффективное производство биодизельного топлива, которое может быть получено из растительного масла, животных жиров и водорослей.
Производство биодизельного топлива из водорослей не требует широкого применения сельскохозяйственных земель. Таким образом, оно не влияет на мировое производство пищевых продуктов, поскольку водоросли могут расти на небольшом пространстве и обладают очень высокими скоростями роста, при увеличении биомассы вдвое за 24 часа. Следовательно, водоросли являются источником непрерывного и неисчерпаемого производства энергии, а также поглощают диоксид углерода для своего роста, который можно отбирать из различных источников, таких как теплоэлектростанции.
К основным системам для выращивания микроводорослей относятся:
- озера: поскольку водоросли требуют солнечного света, диоксида углерода и воды, они могут быть выращены в озерах и открытых прудах;
- фотобиореакторы: фотобиореактор является регулируемой и замкнутой системой, включающей источник света, который будучи закрытым требует добавления диоксида углерода, воды и света.
Что касается озер, разведение водорослей в открытых прудах было широко изучено. Эта категория прудов представляет собой природные водные объекты (озера, лагуны, пруды, море) и искусственные пруды или контейнеры. Наиболее широко используемыми системами являются большие пруды, резервуары, пруды с циркуляцией и неглубокие пруды с водоводами. Одно из основных преимуществ открытых прудов состоит в том, что их легче сооружать и обслуживать, чем большинство замкнутых систем. Однако основными ограничениями природных открытых прудов являются потери при испарении, потребность в больших участках земли, загрязнение пруда хищниками и другими конкурентами и неэффективность механизмов перемешивания, что приводит к низкой производительности по биомассе.
Поэтому были созданы «пруды с водоводами», которые работают непрерывно. В таких прудах водоросли, вода и питательные вещества циркулируют по конвейеру кольцевого типа, и их перемешивают с помощью лопастных колес для повторного суспендирования водорослей в воде, так что они находятся в постоянном движении и всегда получают доступ к солнечному свету. Пруды являются неглубокими из-за потребности водорослей в свете, а солнечный свет проникает на ограниченную глубину.
Фотобиореакторы позволяют выращивать одну разновидность водорослей в течение длительного времени и являются идеальными для производства большого количества водорослевой биомассы. Фотобиореакторы обычно имеют диаметр, меньше или равный 0,1 м, поскольку более крупные размеры препятствуют поступлению света в более глубокие зоны, так как плотность посева очень высока, чтобы достичь высокого выхода продукции. Фотобиореакторы требуют охлаждения в течение светлого времени суток, а также регулирования температуры ночью. Например, потери биомассы, вырабатываемой ночью, могут быть снижены посредством понижения температуры в течение этих часов.
Способ производства биодизельного топлива зависит от типа выращиваемых водорослей, которые выбирают на основе рабочих характеристик и адаптации к условиям окружающей среды. Получение биомассы микроводорослей начинают в фотобиореакторах, в которые подают CO2, в основном поступающий от энергетических установок. Затем, перед поступлением на стационарную фазу роста, микроводоросли перемещают из фотобиореакторов в резервуары большего объема, в которых они продолжают развиваться и размножаться, до тех пор пока не достигают максимальной плотности биомассы. Затем водоросли собирают посредством различных процессов разделения с получением водорослевой биомассы, которую в конечном счете обрабатывают для извлечения биотопливных продуктов.
Для выращивания микроводорослей требуется фактически стерильно очищенная вода, поскольку на производительность влияет загрязнение другими нежелательными видами водорослей или микроорганизмов. Воду подготавливают в соответствии со специальной питательной средой, также в зависимости от требований системы.
Ключевыми факторами для регулирования скорости роста водорослей являются:
- свет: требуется для процесса фотосинтеза;
- температура: идеальный диапазон температуры для каждого типа водорослей;
- среда: состав воды является важным фактором, например, соленость;
- pH: обычно водоросли требуют значения от 7 до 9, для получения оптимальной скорости роста;
- штамм: каждая разновидность водорослей имеет различную скорость роста;
- газы: водорослям требуется CO2 для осуществления фотосинтеза;
- перемешивание: чтобы избежать оседания водорослей и гарантировать однородное облучения светом;
- фотопериод: циклы света и темноты.
Водоросли очень малочувствительны к солености, большинство видов растут лучше при солености, которая немного ниже по сравнению с соленостью, встречающейся в естественной среде обитания водорослей, и ее получают разбавлением морской воды пресной водой.
Производство питьевой воды
Водные хозяйства обеспечивают питьевой водой жилищные, коммерческие и промышленные секторы экономики. Чтобы обеспечить питьевой водой, водные хозяйства в основном начинают свою деятельность со сбора воды из природных источников с высоким микробиологическим качеством и прозрачностью, и эту воду затем хранят в резервуарах для дальнейшего использования. Вода может храниться в течение длительного периода времени в резервуаре без использования. Качество воды, сохраняемой в течение длительного периода времени, начинает ухудшаться, поскольку в воде размножаются микроорганизмы и водоросли, что делает ее непригодной для употребления человеком.
Поскольку вода становится непригодной для употребления, ее необходимо обрабатывать на станции очистки питьевой воды, где она проходит через различные стадии очистки. На станциях водоочистки добавляют хлор и другие химические вещества, чтобы получить воду высокого качества. Взаимодействие хлора с органическими соединениями, присутствующими в воде, может приводить к образованию ряда побочных продуктов или побочных продуктов дезинфекции (ППД). Например, при реакции хлора с аммиаком, хлорамины являются нежелательными побочными продуктами. Кроме того, при реакции хлора или хлораминов с органическим веществом образуются тригалометаны, которые признаны канцерогенными соединениями. Также, в зависимости от способа дезинфекции, могут быть обнаружены новые ППД, такие как йодированные тригалометаны, галоацетонитрилы, галонитрометаны, галоацетальдегиды и нитрозамины. Кроме того, воздействие на человека хлора и органического вещества было отмечено как фактор, вносящий вклад в возможные проблемы с органами дыхания, включая астму.
Очистка сточных вод
Сточные воды обрабатывают каждый день для получения чистой воды, используемой для различных целей. Существует потребность в обеспечении обработки сточных вод с получением небольшого количества ила и отходов, а также с применением меньшего количества химических веществ и энергии.
Добывающая промышленность
Добыча полезных ископаемых является очень важной отраслью промышленности во всем мире и тесно связана с экономикой каждой страны. В добывающей промышленности требуется вода для большинства процессов, ресурсы которой ограничены и с каждым днем уменьшаются. В некоторых отраслях добывающей промышленности разработаны технологии использования морской воды в большинстве своих процессов, которые работоспособны только с этим ресурсом.
Месторождения сами по себе обычно расположены на большом расстоянии и высоте от береговой линии, поэтому необходимо транспортировать воду на много километров для доставки на месторождение. Для перемещения большого количества воды сооружают насосные станции, помимо очень длинных трубопроводов, чтобы перекачивать воду из моря к месторождениям.
Насосные станции представляют собой конструкции, которые включают высокомощные насосы, подающие собранную морскую воду к следующей насосной станции и т.д. Насосные станции также включают вмещающие конструкции для хранения морской воды в случае каких-либо проблем, которые могут возникнуть на предшествующих насосных станциях. Такие вмещающие конструкции рано или поздно могут создавать различные проблемы, которые негативно влияют на процесс перекачки, такие как биологическое обрастание стенок и внутренних поверхностей труб. Биологическое обрастание приводит к разрушению материалов, а также к снижению поперечной площади труб, что повышает затраты на эксплуатацию и обслуживание. Также качество воды внутри вмещающих конструкций начинает ухудшаться вследствие роста микроводорослей, что негативно влияет на работу станции и приводит к возникновению различных и серьезных проблем, таких как биологическое обрастание.
Промышленная обработка жидких отходов
В некоторых отраслях промышленности образуются жидкие отходы, которые могут не соответствовать требованиям орошения, инфильтрации или сброса, устанавливаемым местным правительством. Также в некоторых отраслях промышленности используют отстойные резервуары или другие средства хранения, допуская протекание естественных процессов в воде, таких как выделение газов или других веществ, которые придают воде неприятный запах или цвет.
Как описано выше, существующие способы и системы обработки воды для промышленного применения имеют высокую стоимость эксплуатации, требуют использования больших количеств химических веществ, допускают биологическое обрастание, получение нежелательных побочных продуктов, таких как газы и другие вещества, вызывающие неприятный запах или цвет, и требуют фильтрации всего объема воды. Существует потребность в улучшенных способах и системах обработки воды для промышленного применения, которые имеют низкую стоимость и более эффективны, чем традиционные системы фильтрации для очистки воды.
В JP 2011005463 A представлена система регулирования введения коагулянтов и флокулянтов на установках очистки воды. Указанная система основана на применении датчиков мутности, которые измеряют количество и качество воды перед добавлением коагулянтов и флокулянтов. В системе используют классификатор, который измеряет размер флокулянта после оседания и классифицирует обработанную воду в соответствии с этими измерениями. Согласно измерениям мутности, система регулирования рассчитывает темп введения коагулянтов и флокулянтов, которые вводят с помощью устройств, предназначенных для этих целей. Расчеты дозированного количества соединений корректируют согласно функции, которая определяет поправочный коэффициент в соответствии с мутностью, измеренной до и после обработки. После оседания частиц осуществляют стадию фильтрации, на которой фильтруют весь объем обрабатываемой воды.
Недостатки JP 2011005463 A состоят в том, что в нем не обеспечивают регулирование содержания органических веществ или микроорганизмов, присутствующих в воде, поскольку система не включает применение дезинфицирующего вещества или окисляющих веществ. Также система по JP 2011005463 A не обеспечивает снижения содержания металлов в воде и основана на постоянном измерении параметров, поэтому имеет высокую потребность в отношении датчиков и других измерительных устройств. Кроме того, в JP 2011005463 A необходима фильтрация полного объема обрабатываемой воды, что приводит к высокой потребности в энергии и высоким затратам на ввод в эксплуатацию и техническое обслуживание системы, требующейся для такой фильтрации.
Краткое описание изобретения
В этом кратком описании изложены основные принципы изобретения в упрощенной форме, которые также описаны ниже в подробном описании. Не предполагается, что данное краткое описание определяет необходимые или существенные признаки заявленного объекта изобретения. Данное краткое описание не ограничивает область защиты заявленного объекта изобретения.
Способ и система, созданные согласно принципам настоящего изобретения, обеспечивают очистку воды и удаление взвешенных твердых веществ, металлов, водорослей, бактерий и других компонентов из воды при очень низких затратах и без необходимости фильтрации всего объема воды. Фильтруют только небольшую часть от общего объема воды, до 200 раз меньшую, чем поток, фильтруемый с помощью традиционных систем фильтрации для очистки воды. Обработку воды можно использовать в промышленных целях, например, для очистки воды, предназначенной в качестве исходного материала для промышленных процессов, или для очистки промышленных жидких отходов для инфильтрации, орошения, сброса и других целей.
Что касается опреснения обратным осмосом, в настоящем изобретении обеспечивают способ и систему для предварительной обработки и содержания подаваемой воды, в которых используют меньше химических веществ и потребляют меньше энергии, чем в случае традиционных способов предварительной обработки.
Что касается промышленной аквакультуры, вода, полученная с помощью настоящего изобретения, достигает свойств, требующихся для посева водорослей, с использованием фильтрующего средства, предусматривающего фильтрацию только части от общего объема воды. В настоящем изобретении обеспечивают воду высокого микробиологического качества, которую используют для посева микроводорослей и других микроорганизмов. Применение обработанной воды, например, в прудах с водоводами, обеспечит большое снижение затрат, поскольку одной из основных проблем данной промышленности является получение воды для посева. Также, настоящее изобретение обеспечивает возможность очистки воды после выращивания водорослей и их сбора. Таким образом, воду можно повторно использовать, что обеспечивает экологически рациональный способ для промышленной аквакультуры.
При использовании способа и системы по настоящему изобретению для производства питьевой воды, содержащуюся в резервуарах воду можно хранить при очень низких затратах, не допуская размножения микроорганизмов и водорослей, которые могут ухудшать качество воды. Таким образом, питьевую воду, обработанную в соответствии со способом и системой настоящего изобретения, нет необходимости обрабатывать на установке очистки питьевой воды. Поэтому настоящее изобретение позволяет минимизировать образование токсичных побочных продуктов и побочных продуктов дезинфекции (ППД), образующихся на установке очистки питьевой воды, и снизить стоимость капитальных вложений, количество используемых химических веществ, стоимость эксплуатации и влияние на окружающую среду эксплуатации установки очистки питьевой воды. Настоящее изобретение позволяет поддерживать воду из очень чистых природных источников в состоянии высокого микробиологического качества при низких затратах экологически безопасным способом, без ухудшения ее качества или образования токсичных ППД.
Настоящее изобретение может быть использовано для обработки воды, поступающей из очистных сооружений для сточных вод, при очень низких затратах, с удалением запаха и получением очень прозрачной воды с низкими показателями мутности. Количество отходов и ила значительно снижают по сравнению с традиционными видами обработки сточных вод, тем самым обеспечивая рациональный способ, который является безопасным для окружающей среды.
Что касается добывающей промышленности, настоящее изобретение относится к способу и системе для обработки воды, предотвращающим биологическое обрастание на насосных станциях, и таким образом, снижает затраты на эксплуатацию и техническое обслуживание. Настоящее изобретение также может быть использовано для обработки жидких промышленных отходов, поступающих из различных отраслей промышленности, чтобы привести их в соответствие требованиям орошения, инфильтрации или сброса, устанавливаемым местным правительством.
Способ и система по изобретению обеспечивают недорогой процесс обработки воды для применения в промышленных процессах, который, в отличие от традиционных систем фильтрации для обработки воды, обеспечивает очистку воды и удаление взвешенных в воде твердых веществ посредством фильтрации небольшой части всего объема воды. В одном воплощении способ по настоящему изобретению включает:
а) сбор воды с концентрацией общего количества растворенных твердых веществ (ОКРТВ) до 60000 ppm (частей на млн);
б) хранение указанной воды по меньшей мере в одном контейнере, где указанный контейнер имеет дно, выполненное с возможностью его тщательной очистки с помощью подвижного средства всасывания;
в) в течение периодов продолжительностью 7 суток:
1) для температуры воды вплоть до 35°C, поддержание указанного окислительно-восстановительного потенциала (ОВП) указанной воды по меньшей мере 500 мВ в течение минимального периода 1 ч на каждый градус Цельсия температуры воды, путем добавления дезинфицирующих веществ в воду;
2) для температуры воды более 35°C и вплоть до 69°C, поддержание ОВП указанной воды по меньшей мере 500 мВ в течение минимального количества часов, путем добавлени