Способ и устройство для удаления азота из криогенной углеводородной композиции
Иллюстрации
Показать всеИзобретение относится к способу и устройству для удаления азота из криогенной углеводородной композиции. По меньшей мере первую часть криогенной углеводородной композиции подают в колонну десорбции азота. Колонна десорбции азота работает при давлении десорбции. В колонну десорбции азота подают десорбирующий пар, содержащий по меньшей мере десорбирующую часть сжатого технологического пара, который был получен из обедненной азотом жидкости, в которой было сброшено давление после отведения ее из колонны десорбции азота. Обратное орошение образуется с участием частично сконденсированного пара головного погона колонны десорбции азота с помощью передачи тепла от пара головного погона к потоку вспомогательного хладагента в количестве производительности по холоду. Отходящий газ, состоящий из несконденсированной паровой фракции из пара головного погона, отводится. Производительность по холоду корректируется для регулирования теплотворной способности отводимой паровой фракции. Техническим результатом является обеспечение возможности регулирования теплотворной способности отводимой паровой фракции. 2 н. и 18 з.п. ф-лы, 2 ил., 3 табл.
Реферат
Настоящее изобретение относится к способу и устройству для удаления азота из криогенной углеводородной композиции.
Сжиженный природный газ (СПГ) является экономически важным примером такой криогенной углеводородной композиции. Природный газ является полезным источником топлива, а также источником различных углеводородных соединений. Сжижение природного газа в установке для сжижения природного газа у источника потока природного газа или рядом с ним часто желательно по ряду причин. Например, природный газ можно легче хранить и транспортировать на большие расстояния в виде жидкости, а не в газообразном виде, поскольку он будет занимать меньший объем и не потребует хранения под высоким давлением.
В WO 2011/009832 описан способ обработки многофазного потока углеводородов, полученного из природного газа, в котором более низкокипящие компоненты, такие как азот, отделяют от многофазного углеводородного потока для получения потока сжиженного природного газа с более низким содержанием таких более низкокипящих компонентов. Применяется два последовательных газожидкостных сепаратора, работающих при различных давлениях. Многофазный углеводородный поток подают в первый газожидкостный сепаратор при первом давлении. Кубовый поток из первого газожидкостного сепаратора поступает во второй газожидкостный сепаратор, который обеспечивает пар при втором давлении, которое ниже, чем первое давление. Пар сжимают в компрессоре головного потока, и возвращают к первому газожидкостному сепаратору в качестве потока десорбирующего пара.
На фигуре 2 указанной выше публикации WO 2011/009832 описан вариант осуществления, в котором первый газожидкостный сепаратор предусмотрен в виде колонны, имеющей две зоны со средствами усиления контакта, например, состоящими из тарелок и/или насадки, а также конденсатор обратного орошения. Конденсатор обратного орошения охлаждается отводимым потоком от того же самого потока, из которого получен многофазный углеводородный поток. Поток топливного газа низкого давления получают из потока пара головного погона, отводимого из колонны, который подается в устройство сжигания.
Недостаток способа и устройства, описанного в WO 2011/009832, заключается в том, что теплотворная способность топливного газа может не соответствовать потребности в теплотворной способности.
Настоящее изобретение предлагает способ удаления азота из криогенной углеводородной композиции, содержащей азот- и метансодержащую жидкую фазу, причем данный способ включает:
- обеспечение криогенной углеводородной композиции, содержащей азот- и метансодержащую жидкую фазу;
- подачу первого потока сырья десорбера азота при давлении десорбции в колонну десорбции азота, содержащую по меньшей мере одну внутреннюю ректификационную секцию и по меньшей мере одну внутреннюю десорбционную секцию, расположенную внутри колонны десорбции азота, ниже по вертикали, чем указанная ректификационная секция, причем указанный первый поток сырья десорбера азота содержит первую часть указанной криогенной углеводородной композиции;
- отведение обедненной азотом жидкости из области сборника колонны десорбции азота, расположенной под десорбционной секцией;
- получение по меньшей мере потока жидкого углеводородного продукта и технологического пара из обедненной азотом жидкости, включающее по меньшей мере стадию сброса давления обедненной азотом жидкости до давления мгновенного испарения;
- сжатие указанного технологического пара до по меньшей мере давления десорбции, тем самым получая сжатый пар;
- пропускание потока десорбирующего пара в колонну десорбции азота на уровне, находящемся ниже по вертикали от указанной десорбционной секции, причем указанный поток десорбирующего пара содержит по меньшей мере десорбирующую часть указанного сжатого пара;
- образование частично сконденсированного промежуточного потока из пара головного погона, полученного из головной части колонны десорбции азота, расположенной над ректификационной секцией, причем указанный частично сконденсированный промежуточный поток содержит сконденсированную фракцию и паровую фракцию, причем указанное образование включает частичную конденсацию пара головного погона за счет теплообмена пара головного погона с потоком вспомогательного хладагента и, тем самым, поступление тепла от пара головного погона к потоку вспомогательного хладагента в количестве производительности по холоду;
- отделение сконденсированной фракции от паровой фракции при давлении разделения;
- отведение паровой фракции в виде отходящего газа, причем указанная паровая фракция обладает теплотворной способностью;
- пропускание по меньшей мере части обратного орошения указанной сконденсированной фракции в колонну десорбции азота, начиная с уровня над указанной ректификационной секцией;
- корректировку указанной производительности по холоду для регулирования теплотворной способности отводимой паровой фракции.
В другом аспекте настоящее изобретение предлагает устройство для удаления азота из криогенной углеводородной композиции, содержащей азот- и метансодержащую жидкую фазу, которое содержит:
- линию подачи криогенного сырья для обеспечения криогенной углеводородной композиции, содержащей азот- и метансодержащую жидкую фазу при начальном давлении;
- колонну десорбции азота, находящуюся в сообщении по текучей среде с линией подачи криогенного сырья, содержащую по меньшей мере одну внутреннюю ректификационную секцию и по меньшей мере одну внутреннюю десорбционную секцию, расположенную внутри колонны десорбции азота ниже по вертикали, чем указанная ректификационная секция;
- промежуточное устройство сброса давления, находящееся в сообщении по текучей среде с колонной десорбции азота, выполненное с возможностью принимать обедненную азотом жидкость из области сборника колонны десорбции азота, расположенной ниже по вертикали от десорбционной секции, и сбрасывать давление обедненной азотом жидкости, причем указанное промежуточное устройство сброса давления находится на границе раздела между стороной давления десорбции, включающей в себя колонну десорбции азота, и стороной давления мгновенного испарения;
- линию жидкого углеводородного продукта, расположенную на стороне давления мгновенного испарения, для отведения потока жидкого углеводородного продукта, полученного из обедненной азотом жидкости;
- линию технологического пара, расположенную на стороне давления мгновенного испарения, для приема технологического пара, полученного из обедненной азотом жидкости;
- технологический компрессор, расположенный в линии технологического пара, выполненный с возможностью приема технологического пара и сжатия технологического пара для создания сжатого пара на выпускном отверстии технологического компрессора, причем указанный технологический компрессор находится на указанной границе раздела между стороной давления десорбции и стороной давления мгновенного испарения;
- линию десорбирующего пара, находящуюся в сообщении по текучей среде с колонной десорбции азота на уровне, расположенном ниже по вертикали от десорбционной секции, и выполненную с возможностью приема по меньшей мере десорбирующей части указанного сжатого пара из технологического компрессора;
- конденсатор головного погона, выполненный с возможностью приводить пар головного погона, полученный из головной части колонны десорбции азота над ректификационной секцией, в косвенный теплообменный контакт с потоком вспомогательного хладагента, тем самым получая частично сконденсированный промежуточный поток, содержащий сконденсированную фракцию и паровую фракцию, в ходе работы которого тепло передается от пара головного погона к потоку вспомогательного хладагента в количестве производительности по холоду;
- линию отведения, выполненную с возможностью отведения паровой фракции, обладающей теплотворной способностью;
- систему обратного орошения, выполненную с возможностью пропускать по меньшей мере часть обратного орошения сконденсированной фракции в колонну десорбции азота на уровне над указанной ректификационной секцией;
- регулятор производительности по холоду, выполненный с возможностью корректировать указанную производительность по холоду для регулирования теплотворной способности отводимой паровой фракции.
В дальнейшем в этом документе изобретение будет дополнительно проиллюстрировано с помощью примеров и со ссылкой на чертежи, в которых:
на фиг. 1 схематически представлена принципиальная схема технологического процесса, представляющая способ и устройство, включающие вариант осуществления изобретения; и
на фиг. 2 схематически представлена принципиальная схема технологического процесса, представляющая способ и устройство, включающие другой вариант осуществления изобретения.
На этих фигурах одинаковые ссылочные позиции будут использоваться для обозначения тех же самых или аналогичных частей. Кроме того, одна ссылочная позиция будет использоваться для обозначения канала или линии, а также потока, транспортируемого по этой линии.
Настоящее изобретение относится к удалению азота из криогенной углеводородной композиции, содержащей азот- и метансодержащую жидкую фазу. По меньшей мере первая часть криогенной углеводородной композиции подается в колонну десорбции азота в виде первого потока сырья десорбера азота. Колонна десорбции азота работает при давлении десорбции. В колонну десорбции азота подается десорбирующий пар, содержащий по меньшей мере десорбирующую часть сжатого технологического пара, который был получен из обедненной азотом жидкости, в которой было сброшено давление после отведения ее из колонны десорбции азота. Обратное орошение образуется с участием частично сконденсированного пара головного погона колонны десорбции азота с помощью передачи тепла от пара головного погона к потоку вспомогательного хладагента в количестве производительности по холоду. Отходящий газ, состоящий из несконденсированной паровой фракции пара головного погона, отводится. Производительность по холоду корректируется для регулирования теплотворной способности отводимой паровой фракции.
С помощью корректировки производительности по холоду, при которой тепло передается от пара головного погона к потоку вспомогательного хладагента, можно регулировать относительное содержание метана в отходящем газе. В результате, можно регулировать теплотворную способность отводимой паровой фракции для соответствия определенной потребности в тепловой мощности. Это делает отходящий газ подходящим для использования в качестве потока топливного газа даже в обстоятельствах, в которых потребность в теплотворной способности оказывается переменной.
Когда паровая фракция подается к устройству сжигания и потребляется им в качестве топлива, теплотворную способность можно регулировать в соответствии с фактической потребностью устройства сжигания в тепловой мощности.
Предпочтительно отходящий газ потребляется при давлении топливного газа, не превышающем давления десорбции. При этом можно избежать необходимости в специальном компрессоре топливного газа. Кроме того, с помощью выбора давления десорбции, при давлении, превышающем давление топливного газа, любое примененное сжатие имеет дополнительное связанное преимущество, такое как добавление энтальпии технологическому пару, что позволяет использовать его в качестве десорбирующего пара.
В контексте настоящего описания производительность по холоду отражает степень, с которой происходит теплообмен в конденсаторе, которая может быть выражена в единицах мощности (например, в ваттах или мегаваттах). Производительность по холоду связана с расходом вспомогательного хладагента, направляемого для теплообмена с паром головного погона.
Регулируемая теплотворная способность может быть выбрана в соответствии с возможными обстоятельствами предполагаемого использования отходящего газа в качестве топливного газа. Теплотворная способность может быть определена в соответствии со стандартами DIN 51857. Для многих случаев применения регулируемая теплотворная способность может быть пропорциональна низшей теплотворной способности (LHV; иногда называется калорийностью), которая может определяться как количество тепла, выделяющееся при сжигании определенного количества топлива (первоначально при 25°C) и приводящее температуру продуктов сгорания к 150°C. Это предполагает, что скрытая теплота парообразования воды в продуктах реакции не учитывается.
Однако для регулирования теплотворной способности в контексте настоящего изобретения фактическую теплотворную способность отводимой паровой фракции не нужно определять на абсолютной основе. Как правило, достаточно регулировать теплотворную способность по отношению к фактической потребности в тепловой мощности, с целью привести к минимуму любой недостаток и избыток обеспечиваемой тепловой мощности.
Предпочтительно, производительность по холоду корректируется автоматически в ответ на сигнал, который связан причинно-следственной связью с регулируемой теплотворной способностью.
Предполагается, что предлагаемые в настоящем изобретении способ и устройство являются наиболее полезными, когда неочищенный сжиженный продукт или криогенная углеводородная композиция содержит от 1,5 мол.%, предпочтительно от 1,8 мол.% до 5 мол.% азота. Существующие альтернативные подходы также могут адекватно работать, когда содержание азота ниже примерно 1,8 мол.% и/или ниже примерно 1,5 мол.%.
Предлагаемый способ и устройство создают возможность для повторной конденсации парообразного метана, который ранее входил в состав неочищенного сжиженного продукта, при условии, что он превышает целевое содержание метана в отводимой паровой фракции, с помощью добавления любого такого парообразного метансодержащего потока к потоку (сжатого) технологического пара. Ранее образующий часть (сжатого) технологического пара, парообразный метан может найти свой путь к теплообмену со вспомогательным хладагентом, с помощью которого он избирательно конденсируется из пара головного погона колонны десорбции азота, одновременно позволяя большей части азота отводиться с отходящим газом. При этом становится возможным удалить достаточное количество азота из криогенной углеводородной композиции для получения потока жидкого углеводородного продукта в пределах желаемого максимального норматива по содержанию азота, одновременно не создавая большей тепловой мощности в отходящем газе, чем необходимо.
Парообразный метан, который ранее являлся частью неочищенного сжиженного продукта, может образовываться в установке для получения СПГ в силу различных причин. В нормальном режиме работы установки по сжижению природного газа метансодержащий пар образуется из (неочищенного) сжиженного продукта в виде:
- пара мгновенного испарения, образующегося в результате мгновенного испарения неочищенного сжиженного продукта во время сброса давления; и
- отпарного газа, образующегося в результате термического испарения, вызванного теплом, подводимым к сжиженному продукту, например, в виде утечки тепла в резервуары для хранения, трубопроводы СПГ, и поступления тепла от насосов установки СПГ. В данном режиме работы, известном как режим хранения, резервуары для хранения наполняются сжиженным углеводородным продуктом, в том виде, как он выходит из установки, без каких-либо загрузочно-транспортировочных операций, проводимых в это же время. В режиме хранения метансодержащие пары образуются на стороне установки резервуаров для хранения.
Режим работы установки СПГ при одновременном проведении загрузочно-транспортировочных операций (обычно операций по загрузке судна) известен как работа в режиме загрузки. Во время работы в режиме загрузки отпарной газ дополнительно образуется в резервуарах для хранения на стороне судна, например, из-за первоначального охлаждения резервуаров судна; вытеснения пара из резервуаров судна; утечки тепла через трубопровод и емкости, соединяющие резервуары для хранения и суда, и поступления тепла от погрузочных насосов СПГ.
Предлагаемое решение может облегчить обращение с этими парами во время операций как режима хранения, так и режима загрузки. Оно совмещает удаление азота из криогенной углеводородной композиции с повторной конденсацией избыточного парообразного метана. Это создает элегантное решение в ситуациях, когда требуется немного топлива для собственных нужд установки, как это может быть в случае установки с электрическим приводом, использующей электроэнергию из внешней электросети.
Предлагаемый способ и устройство особенно подходят для применения в сочетании с системой сжижения углеводородов, такой как система сжижения природного газа, для того, чтобы удалять азот из неочищенного сжиженного продукта. Обнаружено, что даже когда неочищенный сжиженный продукт (или криогенная углеводородная композиция) содержит достаточно высокое количество азота, от 1 мол.% (или от примерно 1 мол.%) до 5 мол.% (или до примерно 5 мол.%), образующийся в результате жидкий углеводородный продукт может соответствовать содержанию азота, находящемуся в пределах нормативов от 0,5 до 1 мол.% азота. Остальная часть азота отводится как часть паровой фракции в отходящем газе, вместе с регулируемым количеством метана.
На фигуре 1 представлено устройство, включающее вариант осуществления изобретения. Линия 8 подачи криогенного сырья находится в сообщении по текучей среде с колонной 20 десорбции азота через первую впускную систему 21. Первая линия 10 подачи сырья соединяет линию 8 подачи криогенного сырья с первой впускной системой 21 колонны 20 десорбции азота необязательно через делитель 9 исходного потока, расположенный между линией 8 подачи криогенного сырья и первой линией 10 подачи сырья.
Выше по потоку от линии 8 подачи криогенного сырья может быть предусмотрена система 100 сжижения. Система 100 сжижения функционирует в качестве источника криогенной углеводородной композиции. Система 100 сжижения находится в сообщении по текучей среде с линией 8 подачи криогенного сырья через основную систему 5 сброса давления, которая сообщается с системой 100 сжижения через линию 1 неочищенного сжиженного продукта. В показанном варианте осуществления основная система 5 сброса давления состоит из динамического устройства, такого как турбодетандер 6, и статического устройства, такого как клапан 7 Джоуля-Томсона, но возможны и другие варианты. Предпочтительно, но не обязательно, любой компрессор, являющийся частью процесса сжижения углеводородов в системе сжижения, в частности любой компрессор хладагента, приводится в действие с помощью одного или нескольких электродвигателей, без механического приведения в действие любой паровой и/или газовой турбиной. Такой компрессор может приводиться в действие исключительно одним или несколькими электродвигателями.
Колонна 20 десорбции азота содержит внутреннюю ректификационную секцию 22 и внутреннюю десорбционную секцию 24. Внутренняя десорбционная секция 24 расположена внутри колонны 20 десорбции азота ниже по вертикали, чем ректификационная секция 22. Первая впускная система 21 предусмотрена по вертикали между внутренней ректификационной секцией 22 и внутренней десорбционной секцией 24.
Линия 30 отведения пара головного погона сообщается с колонной 20 десорбции азота через головную часть 26, образованную областью внутри колонны 20 десорбции азота выше по вертикали от ректификационной секции 22. Линия 40 отведения обедненной азотом жидкости сообщается с колонной 20 десорбции азота через область 28 сборника внутри колонны 20 десорбции азота, расположенную ниже по вертикали от десорбционной секции 24.
Каждая из внутренней ректификационной секции 22 и внутренней десорбционной секции 24 может содержать средство усиления контакта пар/жидкость для усиления разделения компонентов и отвода азота. Такое средство усиления контакта может быть предусмотрено в виде тарелок и/или насадки, в виде или структурированной или неструктурированной насадки. В зависимости от допустимого количества азота в обедненной азотом жидкости и количества азота в линии 8 подачи криогенного сырья, в общей сложности может быть необходимо от 2 до 8 теоретических ступеней. В одном конкретном варианте осуществления требовалось 4 теоретические ступени.
Промежуточное устройство 45 сброса давления расположено в линии 40 отведения обедненной азотом жидкости, и в связи с этим сообщается по текучей среде с колонной 20 десорбции азота. Промежуточное устройство 45 сброса давления функционально соединено с регулятором LC уровня, который взаимодействует с областью 28 сборника колонны 20 десорбции азота.
Промежуточное устройство 45 сброса давления находится на границе раздела между стороной давления десорбции, включающей колонну 20 десорбции азота, и стороной давления мгновенного испарения. Сторона давления мгновенного испарения включает в себя линию 90 жидкого углеводородного продукта, выполненную с возможностью отведения потока жидкого углеводородного продукта, полученного из обедненной азотом жидкости 40, и линию 60 технологического пара, выполненную с возможностью приема технологического пара, полученного из обедненной азотом жидкости 40. В показанном варианте осуществления сторона давления мгновенного испарения дополнительно содержит криогенный резервуар 210 для хранения, соединенный с линией 90 жидкого углеводородного продукта, для хранения потока жидкого углеводородного продукта, необязательную линию 230 подачи отпарного газа и необязательный конечный сепаратор 50 мгновенного испарения.
Если предусмотрен такой конечный сепаратор 50 мгновенного испарения, как, например, в варианте осуществления фигуры 1, он может находиться в сообщении по текучей среде с колонной 20 десорбции азота через промежуточное устройство 45 сброса давления и линию 40 отведения обедненной азотом жидкости. Конечный сепаратор 50 мгновенного испарения может быть кроме того соединен с криогенным резервуаром 210 для хранения через линию 90 жидкого углеводородного продукта. Криогенный насос 95 может присутствовать в линии 90 жидкого углеводородного продукта, чтобы способствовать транспортировке жидкого углеводородного продукта к криогенному резервуару 210 для хранения.
Линия 60 технологического пара, как показано в варианте осуществления фиг. 1, может быть соединена с необязательным конечным сепаратором 50 мгновенного испарения через линию 64 пара мгновенного испарения и регулирующий клапан 65 потока пара мгновенного испарения, а также с криогенным резервуаром 210 для хранения через необязательную линию 230 подачи отпарного газа. Преимущество последнего соединения заключается в том, что оно позволяет осуществлять повторную конденсацию по меньшей мере части отпарного газа из криогенного резервуара 210 для хранения с помощью конденсатора 35 головного потока, который будет обсуждаться ниже в данном описании.
В обычной установке СПГ образование отпарного газа может превышать расход пара мгновенного испарения в несколько раз, особенно во время эксплуатации установки в так называемом режиме загрузки, и, следовательно, важное преимущество заключается не только в повторной конденсации пара мгновенного испарения, но и в повторной конденсации отпарного газа, а также, если не хватает местной потребности в тепловой мощности для использования всего метана, содержащегося в отпарном газе.
Кроме того, технологический компрессор 260 предусмотрен на границе раздела между стороной давления десорбции и стороной давления мгновенного испарения. Предпочтительно, технологический компрессор 260 приводится в действие электрическим двигателем. Технологический компрессор 260 расположен в линии 60 технологического пара для приема технологического пара и для сжатия технологического пара. Линия 70 отведения сжатого пара сообщается по текучей среде с выпускным отверстием 261 технологического компрессора 260. Подходящим образом, технологический компрессор 260 может быть снабжен антипомпажным регулятором и охладителем рециркулята, которые используются, когда технологический компрессор находится в режиме рецикла и во время пуска (не показаны на чертеже).
Линия 71 десорбирующего пара находится в сообщении по текучей среде с колонной 20 десорбции азота через вторую впускную систему 23, расположенную на уровне ниже по вертикали от десорбционной секции 24 и предпочтительно над областью 28 сборника. Линия 71 десорбирующего пара соединена с линией 70 отведения сжатого пара через необязательный перепускной делитель 79. Клапан 75 десорбирующего пара предусмотрен в линии 71 десорбирующего пара.
Необязательно, линия 74 подачи внешнего десорбирующего пара предусмотрена в сообщении по текучей среде со второй впускной системой 23 колонны 20 десорбции азота. В одном варианте осуществления, как показано на фиг. 1, необязательная линия 74 подачи внешнего десорбирующего пара соединена с линией 70 отведения сжатого пара. Регулирующий клапан 73 потока внешнего десорбирующего пара предусмотрен в необязательной линии 74 подачи внешнего десорбирующего пара. В одном варианте осуществления необязательная линия 74 подачи внешнего десорбирующего пара подходящим образом соединена с линией углеводородного пара в системе 100 сжижения или выше от нее по потоку.
Конденсатор 35 головного погона расположен в линии 30 отведения пара головного погона. Внутри конденсатора 35 головного погона пар головного погона может приводиться в косвенный теплообменный контакт с потоком 132 вспомогательного хладагента, в результате чего тепло передается от пара головного погона к потоку вспомогательного хладагента в количестве производительности по холоду. Рециркулирующий клапан 135 потока вспомогательного хладагента предусмотрен в линии 132 вспомогательного хладагента.
Регулятор 34 производительности по холоду регулирует производительность по холоду, определяя степень, с которой тепло передается от пара головного погона к потоку вспомогательного хладагента, в соответствии с показателем теплотворной способности отходящего газа применительно к потребности в тепловой мощности. В показанном варианте осуществления регулятор 34 производительности по холоду выполнен в виде регулятора PC давления и рециркулирующего клапана 135 потока вспомогательного хладагента, которые функционально связаны друг с другом.
Снова обращаясь к фиг. 1, сепаратор 33 головного погона расположен на расположенной ниже по ходу потока стороне линии 30 отведения пара головного погона. Линия 30 отведения пара головного погона разгружается в сепаратор 33 головного погона. Сепаратор 33 головного погона выполнен с возможностью отделения любой несконденсированной паровой фракции от любой сконденсированной фракции пара головного погона. Линия 80 отведения паровой фракции выполнена с возможностью отведения паровой фракции.
Система обратного орошения выполнена с возможностью допускать по меньшей мере часть 36 обратного орошения указанной сконденсированной фракции в колонну 20 десорбции азота на уровне над ректификационной секцией 22. В варианте осуществления фигуры 1 система обратного орошения включает в себя линию 37 отведения сконденсированной фракции, связанную по текучей среде с нижней частью сепаратора 33 головного погона, необязательный насос 38 обратного орошения, предусмотренный в линии 37 отведения сконденсированной фракции, и необязательный делитель 39 сконденсированной фракции. Необязательный делитель 39 сконденсированной фракции связывает по текучей среде линию 37 отведения сконденсированной фракции с колонной 20 десорбции азота через линию 36 части обратного орошения и систему 25 впуска обратного орошения, и с необязательной линией 13 рециркуляции жидкости. Линия 13 рециркуляции жидкости находится в сообщении по жидкой среде с линией 90 жидкого углеводородного продукта. Сообщение по жидкой среде означает, что линия 13 рециркуляции жидкости соединена с любом подходящим местом, из которого по меньшей мере часть рециркулируемой жидкости может поступать в линию 90 жидкого углеводородного продукта, при этом оставаясь в жидкой фазе. Таким образом, линия 13 рециркуляции жидкости может, например, быть непосредственно соединена с одним или несколькими элементами, выбранными из группы, состоящей из: колонны 20 десорбции азота, линии 8 подачи криогенного сырья, первой линии 10 подачи сырья, необязательной второй линии 11 подачи сырья, которая будет описана ниже, линии 40 отведения обедненной азотом жидкости, необязательного конечного сепаратора 50 мгновенного испарения и линии 90 жидкого углеводородного продукта. Рециркуляционный клапан 14 предусмотрен в необязательной линии 13 рециркуляции жидкости. Необязательный рециркулирующий клапан 32 потока обратного орошения, функционально регулируемый регулятором потока обратного орошения (не показан), предпочтительно может быть предусмотрен в линии 36 части обратного орошения.
Линия 13 рециркуляции жидкости находится в сообщении по жидкой среде с линией 90 жидкого углеводородного продукта, предпочтительно через путь рециркуляции, который не проходит через ректификационную секцию 22. Таким образом линия 13 рециркуляции жидкости помогает избежать подачи слишком большого количества жидкости в ректификационную секцию 22 и избежать прохождения рециркулируемой жидкости через ректификационную секцию 22. Это целесообразно, чтобы избежать нарушения равновесия в колонне 20 десорбции азота.
Необязательный перепускной делитель 79 находится в сообщении по текучей среде с линией 30 отведения пара головного погона на стороне выше по ходу потока от конденсатора 35 головного погона. Для этого может быть предусмотрена необязательная перепускная линия 76 пара между необязательным перепускным делителем 79 и линией 30 отведения пара головного погона. Перепускной регулирующий клапан 77 пара предпочтительно предусмотрен в перепускной линии 76 пара. Преимущество такой перепускной линии 76 пара состоит в том, что когда имеется избыток технологического пара, он может быть обработан вместе с отходящим газом в линии 80 отведения паровой фракции, не нарушая материальный баланс в колонне 20 десорбции азота. Перепускная линия 76 пара соответственно проходит вдоль обходного пути между перепускным делителем 79 и линией 30 отведения пара головного погона на стороне выше по ходу потока от конденсатора 35 головного погона. Обходной путь проходит между перепускным делителем 79 и линией 30 отведения пара головного погона и/или линией 80 отведения паровой фракции. Обходной путь не проходит через внутреннюю десорбционную секцию 24 в колонне 20 десорбции азота. Таким образом можно избежать прохождения недесорбирующей части через внутреннюю десорбционную секцию 24, что помогает избежать нарушения равновесия в колонне 20 десорбции азота.
Если предусмотрен делитель 9 исходного потока, линия 8 подачи криогенного сырья также соединена с по меньшей мере одной линией из группы, состоящей из: линии 40 отведения обедненной азотом жидкости, линии 90 жидкого углеводородного продукта и линии 60 технологического пара. Для этого вторая линия 11 подачи сырья соединена с ее расположенной выше по ходу потока стороны с необязательным делителем 9 исходного потока. Данная вторая линия 11 подачи сырья обходит колонну 20 десорбции азота. Регулирующий клапан 15 обходящего потока расположен во второй линии 11 подачи сырья. Регулирующий клапан обходящего потока функционально связан с регулятором FC потока, предусмотренным в первой линии 10 подачи сырья. Подходящим образом, вторая линия 11 подачи сырья обеспечивает подачу в необязательный конечный сепаратор 50 мгновенного испарения.
Преимущество необязательной второй линии 11 подачи сырья и необязательного делителя 9 исходного потока заключается в том, что колонна 20 десорбции азота может быть меньше по размерам, чем в случае, когда линия 8 подачи криогенного сырья и первая линия 10 подачи сырья непосредственно соединены без делителя, так что криогенная углеводородная композиция поступает в колонну десорбции азота 20 через первую впускную систему 21.
Устройство 220 сжигания предусмотрено на расположенном ниже по ходу потока конце линии 80 отведения паровой фракции для приема по меньшей мере топливной части из паровой фракции в линии 80 отведения паровой фракции. Устройство сжигания может содержать множество блоков сжигания и/или оно может включать в себя, например, одно или несколько из следующих устройств: печи, бойлера, инсинератора, двухтопливного дизельного двигателя или их сочетаний. Бойлер и двухтопливный дизельный двигатель могут быть соединены с электрогенератором.
Теплообменник 85 рекуперации холода может быть предусмотрен в линии 80 отведения паровой фракции для сохранения холода, присутствующего в паровой фракции 80, с помощью теплообмена с потоком 86 рекуперации холода перед подачей паровой фракции 80 к любому устройству сжигания.
В одном варианте осуществления поток 86 рекуперации холода может содержать или состоять из побочного потока, происходящего из потока углеводородного сырья в линии 110 подачи углеводородного сырья системы 100 сжижения. Образующийся в результате охлажденный побочный поток может, например, быть объединен с криогенной углеводородной композицией в линии 8 подачи криогенного сырья. Таким образом, теплообмен для рекуперации холода в теплообменнике 85 для рекуперации холода прибавляет скорость образования криогенной углеводородной композиции. В другом варианте осуществления поток 86 рекуперации холода может содержать или состоять из пара головного погона из линии 30 отведения пара головного погона, предпочтительно участка линии 30 отведения пара головного погона, через который пар головного погона поступает из колонны 20 десорбции азота в конденсатор 35 головного погона. При этом производительность, требуемая от потока 132 вспомогательного хладагента в конденсаторе 35 головного погона, может быть снижена.
Необязательный делитель 89 паровой фракции может быть предусмотрен в линии 80 паровой фракции, обеспечивая регулируемое сообщение по текучей среде между линией 80 паровой фракции и линией 87 рециркуляции пара. Линия 87 рециркуляции пара обходит колонну 20 десорбции азота, и обеспечивает обратную подачу по меньшей мере в одну из линий группы, состоящий из: линии 90 жидкого углеводородного продукта и линии 60 технологического пара. Регулирующий клапан 88 потока рециркулирующего пара предпочтительно предусмотрен в линии 87 рециркуляции пара. Преимущество предложенной линии 87 рециркуляции пара заключается в том, что она позволяет селективно повышать содержание азота в потоке 90 жидкого углеводородного продукта.
Одна или обе из второй линии 11 подачи сырья и линии 87 рециркуляции пара могут подходящим образом обеспечивать подачу в необязательный конечный сепаратор 50 мгновенного испарения.
Система сжижения 100 в настоящем описании до сих пор была представлена очень схематично. Она может представлять любую подходящую систему сжижения углеводородов и/или процесс, в частности, любой процесс сжижения природного газа, дающий сжиженный природный газ, и изобретение не ограничено конкретным выбором системы сжижения. Примеры подходящих систем сжижения применяют процессы одноконтурного охлаждения хладагентом (обычно одноконтурное охлаждение смешанным хладагентом - SMR-процессы, такие как PRICO, описанный в работе K.R. Johnsen и P. Christiansen «LNG Production on floating platforms», представленной на конференции Gastech 1998 (Дубай), но также возможно применение процесса однокомпонентного хладагента, как, например, процесс BHP-cLNG, также описанный в вышеупомянутой работе K.R. Johnsen и P. Christiansen); процессы двухконтурного охлаждения хладагентом (например, часто используемый процесс со смешанным хладагентом и пропаном с частой аббревиатурой C3MR, описанный, например, в патенте US 4404008, или, например, процессы двухконтурного охлаждения со смешанным хладагентом - DMR, пример которых описан в патенте US 6658891, или, например, процессы с двумя контурами, в к