Устройство фотоэлектрического преобразования и система формирования изображений

Иллюстрации

Показать все

Устройство фотоэлектрического преобразования имеет светопринимающие элементы, расположенные на плоскости формирования изображения. Светопринимающий элемент включает в себя множество участков фотоэлектрического преобразования, выстроенных в первом направлении, параллельном плоскости формирования изображения, через изоляционный участок, и световодный участок, простирающийся по множеству участков фотоэлектрического преобразования. В первой плоскости, которая параллельна плоскости формирования изображения и которая пересекает световодный участок, наибольшая ширина световодного участка в первом направлении больше, чем наибольшая ширина световодного участка во втором направлении, параллельном плоскости формирования изображения и ортогональном первому направлению. В соответствии с настоящим изобретением может быть улучшена точность разделения света на множественные участки фотоэлектрического преобразования. 2 н. и 9 з.п. ф-лы, 10 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к устройству фотоэлектрического преобразования, имеющему блок световода.

ОПИСАНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ

[0002] Существуют известные устройства фотоэлектрического преобразования, которые выполняют обнаружение фокуса посредством обнаружения разности фаз с использованием пикселей, имеющих множественные участки фотоэлектрического преобразования. Конфигурация, в которой единственный пиксель имеет множественные участки фотоэлектрического преобразования, предпочтительна не только относительно обнаружения фокуса, но также предпочтительна и во многих моментах, относящихся к улучшению рабочих показателей системы формирования изображений, таких как увеличенная скорость вследствие улучшенной эффективности переноса, более широкий динамический диапазон и т.д.

[0003] Выложенный патент Японии № 2009-158800 раскрывает форму, в которой промежуток, окружающий эффективную светопринимающую область двух фотодиодов, обеспечен в межслойной пленке. Выложенный патент Японии № 2009-158800 также раскрывает форму, в которой в дополнение к промежутку, окружающему эффективную светопринимающую область двух фотодиодов, промежуток обеспечен в межслойной пленке после промежутка между фотодиодами.

[0004] Форма в выложенном патенте Японии № 2009-158800 имеет проблему в том, что свет не может быть точно разделен между этими двумя фотодиодами.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0005] Обеспечено устройство фотоэлектрического преобразования, имеющее светопринимающий элемент, выстроенный вдоль плоскости формирования изображения, причем светопринимающий элемент включает в себя множество участков фотоэлектрического преобразования, выстроенных в первом направлении, параллельном плоскости формирования изображения, через изоляционный участок, и световодный участок, простирающийся по множеству участков фотоэлектрического преобразования, причем в первой плоскости, которая параллельна плоскости формирования изображения и которая пересекает световодный участок, наибольшая ширина световодного участка в первом направлении больше, чем наибольшая ширина световодного участка во втором направлении, параллельном плоскости формирования изображения и ортогональном первому направлению.

[0006] Дополнительные признаки настоящего изобретения станут понятны из следующего описания иллюстративных вариантов осуществления со ссылкой на приложенные чертежи.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0007] Фиг. 1 является схемой, в качестве примера иллюстрирующей устройство фотоэлектрического преобразования.

[0008] Фиг. 2 является схемой, в качестве примера иллюстрирующей светопринимающие элементы.

[0009] Фиг. 3 является схемой, в качестве примера иллюстрирующей светопринимающие элементы.

[0010] Фиг. 4 является схемой, в качестве примера иллюстрирующей светопринимающие элементы.

[0011] Фиг. 5 является схемой, в качестве примера иллюстрирующей светопринимающие элементы.

[0012] Фиг. 6 является схемой, в качестве примера иллюстрирующей устройство фотоэлектрического преобразования.

[0013] Фиг. 7 является схемой, в качестве примера иллюстрирующей светопринимающие элементы.

[0014] Фиг. 8 является схемой, в качестве примера иллюстрирующей светопринимающие элементы.

[0015] Фиг. 9 является схемой, в качестве примера иллюстрирующей систему формирования изображений.

[0016] Фиг. 10 является схемой для описания максимальной ширины.

ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

ВАРИАНТ ОСУЩЕСТВЛЕНИЯ

[0017] Ниже следует описание варианта осуществления для выполнения настоящего изобретения. Однако следует отметить, последующее описание является всего лишь одним не ограничивающим вариантом осуществления изобретения. Конфигурации, которые являются общими на множественных чертежах, обозначены одинаковыми ссылочными позициями в следующем описании и чертежах. Общие конфигурации будут описаны со ссылкой на множественные чертежи, и описание конфигураций, которые были обозначены одинаковыми ссылочными позициями, будет опущено в соответствующих случаях. Кроме того, любая подходящая технология может быть применена к частям, которые не описаны ниже.

[0018] Фиг. 1A иллюстрирует схематическое изображение устройства 10 фотоэлектрического преобразования как датчик изображений с усилением пикселей. Устройство 10 фотоэлектрического преобразования, проиллюстрированное на фиг. 1A, имеет светопринимающую область 21, которая является областью, окруженной штрихпунктирной линией с одной точкой, и периферийную область 22, которая является областью на периферии светопринимающей области 21 и находится между штрихпунктирной линией с одной точкой и штрихпунктирной линией с двумя точками. Множественные светопринимающие элементы 1 выстроены в форме матрицы или в форме столбца в светопринимающей области 21. Сигналы от светопринимающих элементов во время формирования изображения посредством формирования изображения составляют пиксели, и, таким образом, светопринимающая область может упоминаться как область формирования изображения или пиксельная область. Промежутки между центральными осями смежных светопринимающих элементов (шаг пикселя) обычно равны 10 мкм или меньше, предпочтительно 5,0 мкм или меньше и особенно предпочтительно 2,0 мкм или меньше.

[0019] Периферийная область 22 имеет периферийные схемы, включающие в себя схему 26 вертикального сканирования, две схемы 23 считывания, две схемы 24 горизонтального сканирования и два выходных усилителя 25. Схемы 23 считывания в периферийной области 22 состоят из усилителя столбца, схемы двойной коррелированной выборки (CDS), схемы сложения и т.п. Схемы 23 считывания выполняют усиление, сложение и т.д. сигналов, считанных из пикселей строк, выбранных схемой 26 вертикального сканирования, через вертикальные сигнальные линии. Усилитель столбца, схема CDS, схема сложения и т.п. расположен для каждого пиксельного столбца или каждого из множественных пиксельных столбцов. Схема 24 горизонтального сканирования генерирует сигналы для считывания сигналов от схем 23 считывания по порядку. Выходные усилители 25 усиливают и выдают сигналы столбцов, выбранные схемами 24 горизонтального сканирования. Описанная выше конфигурация является только одним примером конфигурации устройства 10 фотоэлектрического преобразования и не является ограничивающей. Хотя схемы 23 считывания, схемы 24 горизонтального сканирования и выходные усилители 25 составляют систему с двумя выходными путями, и каждый из них расположен выше и ниже светопринимающей области 21, это не является ограничивающим.

[0020] Фиг. 1B является схемой, иллюстрирующей пример светопринимающего элемента 1, и фиг. 1C является схемой сечения светопринимающего элемента 1 по линии IC-IC на фиг. 1B. Единственный светопринимающий элемент 1 имеет множественные участки 101 и 102 фотоэлектрического преобразования, обеспеченные на подложке 100, сделанной из полупроводника. Изоляционный участок 109 расположен между множественными участками 101 и 102 фотоэлектрического преобразования для изоляции его сигнальных зарядов. Изоляционный участок 109 может представлять собой изоляцию посредством изолятора, такого как локальное окисление кремния (LOCOS) или узкощелевая изоляция (STI) и т.п., или может представлять собой изоляцию p-n-перехода посредством полупроводниковой области противоположного типа проводимости по сравнению с областями накопления участков 101 и 102 фотоэлектрического преобразования. В настоящем примере используется изоляция p-n-перехода. Допускается несовершенство изоляционных возможностей изоляционного участка 109, пока имеются изоляционные свойства для определения, какой из сигнальных зарядов, сгенерированных на участках 101 и 102 фотоэлектрического преобразования, больше. В соответствии с этим допустимо, когда часть сигнального заряда, сгенерированного на участке 101 фотоэлектрического преобразования, обнаруживается как сигнальный заряд, сгенерированный на участке 120 фотоэлектрического преобразования.

[0021] Участки 101 и 102 фотоэлектрического преобразования множественных светопринимающих элементов 1 выстроены на общей подложке 100, следуя основной поверхности подложки 100 как плоскости формирования изображения. Направление, в котором два участка 101 и 102 фотоэлектрического преобразования выстраиваются по изоляционному участку 109, параллельное по отношению к плоскости формирования изображения, является направлением X. Направление, в котором выстраиваются два участка 101 и 102 фотоэлектрического преобразования, может быть определено как направление, параллельное по отношению к прямой линии, соединяющей геометрический центр G1 тяжести при наблюдении участка 101 фотоэлектрического преобразования на виде в плане и геометрический центр G2 тяжести при наблюдении участка 102 фотоэлектрического преобразования на виде в плане. Направление, параллельное по отношению к плоскости формирования изображения и ортогональное по отношению к направлению X, является направлением Y. Направление, ортогональное по отношению к плоскости формирования изображения, является направлением Z. Направление Z является ортогональным по отношению к направлению X и направлению Y. Как правило, направление X может быть одним из направления строк светопринимающих элементов 1, выстроенных в форме матрицы в светопринимающей области 21 (направления, в котором простирается одна строка), и направления столбцов (направления, в котором простирается один столбец). Также обычно направление Y может быть другим из направления строк светопринимающих элементов 1, выстроенных в форме матрицы в светопринимающей области 21 (направления вдоль строк) и направления столбцов (направления вдоль столбцов).

[0022] Участки 101 и 102 фотоэлектрического преобразования являются фотодиодами, сформированными посредством внесения примеси в подложку 100, сформированную из полупроводника. Участки 101 и 102 фотоэлектрического преобразования, служащие в качестве фотодиодов, берут большое количество сигнальных зарядов в качестве носителей, и подкрепляются p-n-переходом области полупроводника первого типа проводимости (области накопления) для накопления сигнальных зарядов и области полупроводника второго типа проводимости. Другие примеры участков 101 и 102 фотоэлектрического преобразования включают в себя фотозатворы и полупроводниковую тонкую пленку, имеющую структуру типа металл-изолятор-полупроводник (MIS) или структуру типа положительный-собственный-отрицательный (PIN), сформированную на подложке изолятора, такой как стекло и т.п. Светопринимающая область 21 устройства 10 фотоэлектрического преобразования помимо светопринимающих элементов 1 может включать в себя светопринимающий элемент, который имеет только один участок 101 фотоэлектрического преобразования.

[0023] Сигнальный заряд, извлеченный в участке 101 фотоэлектрического преобразования, переносится в блок 105 обнаружения через затвор 103 переноса, имеющий структуру металл-оксид-полупроводник (МОП; MOS), и сигнальный заряд, извлеченный в участке 102 фотоэлектрического преобразования, переносится в блок 106 обнаружения через затвор 104 переноса, имеющий структуру МОП. Блоки 105 и 106 обнаружения, например, являются участками плавающей диффузионной области, формирующими электростатическую емкость. Каждый из блоков 105 и 106 обнаружения соединен с транзистором 107 усиления и транзистором 108 сброса. Хотя здесь была проиллюстрирована конфигурация, в которой блоки обнаружения обеспечены каждому из участков 101 и 102 фотоэлектрического преобразования, чтобы переносить сигнальные заряды параллельно от отдельных участков фотоэлектрического преобразования, общий блок обнаружения может использоваться в случае последовательного переноса сигнальных зарядов от отдельных участков фотоэлектрического преобразования.

[0024] Выстраивание множественных светопринимающих элементов 1 в светопринимающей области 21 устройства 10 фотоэлектрического преобразования, проиллюстрированного на фиг. 1A, делает возможным выполнение обнаружения фокуса в пределах области формирования изображения посредством обнаружения разности фаз. Это также может быть применено к системе формирования изображений (камере), которая выполняет измерение расстояния с использованием обнаружения разности фаз. Формирование изображения также может быть выполнено с использованием сигналов множественных участков 101 и 102 фотоэлектрического преобразования, выданных от светопринимающего элемента 1 как сигналов формирования изображений. Например, сигналы участков 101 и 102 фотоэлектрического преобразования могут быть объединены для использоваться в качестве сигналов формирования изображения. Таким образом, устройство 10 фотоэлектрического преобразования в соответствии с настоящим вариантом осуществления может реализовать автоматическую фокусировку (AF) с использованием полевой разности фаз.

[0025] Изолирующая пленка 110 расположена на подложке 100. Как правило, изолирующая пленка 110 является прозрачной. Изолирующая пленка 110 может являться однослойной пленкой, сформированной из одного типа материала, но обычно изолирующая пленка 110 является многослойной пленкой, в которой имеются множественные слои из разных материалов. Один слой изолирующей пленки 110 сформирован из оксида кремния (SiO2). Кроме того, один слой может представлять собой силикатное стекло, такое как борофосфатное силикатное стекло(BPSG), фосфатно-силикатное стекло (PSG), боросиликатное стекло (BSG) и т.п. Кроме того, один слой многослойной пленки, составляющей изолирующую пленку 110, может представлять собой нитрид кремния (Si3N4) или карбид кремния (SiC). Разводка 120 может быть обеспечена в пределах изолирующей пленки 110. Разводка 120 может являться многослойной разводкой, в которой множественные слои разводки соединены через разъемы. Хотя на фиг. 1B иллюстрирован пример, в котором разводка 120 является двухслойной, может использоваться многослойная разводка с тремя или более слоям. Для разводки 120 могут использоваться такие проводящие материалы, как медь, алюминий, вольфрам, тантал, титан, поликремний и т.п. Типичная разводка 120 прозрачна и имеет металлический блеск.

[0026] Светопринимающий элемент 1 имеет по меньшей мере один световодный участок 111, который сформирован простирающимся по множественным участкам 101 и 102 фотоэлектрического преобразования. Световодный участок 111 ограничивает свет, падающий на световодный участок 111, таким образом, чтобы он распространялся к участкам 101 и 102 фотоэлектрического преобразования. Сетоводный участок 111 имеет форму сечения, в которой максимальная ширина в направлении X, в котором выстроены участки 101 и 102 фотоэлектрического преобразования, больше максимальной ширины в направлении Y, которое ортогонально по отношению к направлению X, что будет подробно описано позже.

[0027] Световодный участок 111 окружен изолирующей пленкой 110. То есть изолирующая пленка 110 расположена по периметру световодного участка 111 на плоскости X-Y. Если сделать показатель преломления световодного участка 111 и показатель преломления изолирующей пленки 110 разными, можно направить свет, падающий на световодный участок 111, к участкам 101 и 102 фотоэлектрического преобразования благодаря отражению на поверхности раздела между световодным участком 111 и изолирующей пленкой 110. Если сделать показатель преломления световодного участка 111 выше, чем показатель преломления изолирующей пленки 110, получается полное отражение, таким образом, эффективность отражения может быть повышена.

[0028] Окружая световодный участок 111 областью с низким показателем преломления (например, воздушным зазором), имеющей более низкий показатель преломления, чем световодный участок 111 и изолирующая пленка 110, можно направить свет, падающий на световодный участок 111, к участкам 101 и 102 фотоэлектрического преобразования посредством полного отражения на поверхности раздела между световодным участком 111 и областью с низким показателем преломления. Кроме того, окружая боковую поверхность световодного участка 111 отражательным элементом, таким как металл и т.п., можно направить свет, падающий на световодный участок 111, к участкам 101 и 102 фотоэлектрического преобразования посредством металлического отражения. В случае обеспечения области с низким показателем преломления или отражательного элемента показатель преломления световодного участка 111 может отличаться от показателя преломления изолирующей пленки 110 или может быть таким же.

[0029] Материалом световодного участка 111 может являться органический материал (смола) или может являться неорганический материал. Примеры смолы включают в себя силоксановые смолы, полиимидные смолы и т.д. Подходящие примеры неорганических материалов включают в себя нитрид кремния (SixNy), оксинитрид кремния (SixOyNz) и оксид титана (TiO2). Световодный участок 111 может быть выполнен с использованием одного материала или может быть выполнен с использованием множественных материалов.

[0030] Здесь будут перечислены общие значения для показателя преломления для материалов, являющихся примером для световодного участка 111 и изолирующей пленки 110. Показатель преломления для оксида кремния составляет от 1,4 до 1,5, для оксинитрида кремния - от 1,6 до 1,9, для нитрида кремния - от 1,8 до 2,3, для оксида титана от 2,5 до 2,7 и для BSG, PSG и BPSG - от 1,4 до 1,6. Описанные выше значения являются только иллюстративными, и посредством изменения способа формирования пленки один и тот же материал будет иметь разные нестехиометрические составы и разные плотности материала, таким образом, показатель преломления может быть установлен подходящим образом. Следует отметить, что показатель преломления смолы обычно составляет от 1,3 до 1,6, а для смол с высоким показателем преломления даже от 1.6 до 1,8. Однако включение неорганического материала с высоким показателем преломления, такого как оксиды металлов и т.п., дает возможность повысить эффективный показатель преломления. Примеры неорганических материалов с высоким показателем преломления, для включения в смолу включают в себя оксид титана, оксид тантала, оксид ниобия, оксид вольфрама, оксид циркония, оксид цинка, оксид индия, оксид гафния и т.д.

[0031] Хотя будет описана другая конфигурация светопринимающего элемента 1, конфигурация светопринимающего элемента 1 может быть изменена подходящим образом. Пленка 113 с высоким показателем преломления расположена покрывающей световодный участок 111 и изолирующую пленку 110. Пленка 113 с высоким показателем преломления имеет более высокий показатель преломления, чем показатель преломления изолирующей пленки 110. Пленка 113 с высоким показателем преломления может быть сформирована из того же самого материала, как световодный участок 111. В этом случае поверхность раздела между пленкой 113 с высоким показателем преломления и световодным участком 111 может рассматриваться как расположенная на той же самой высоте, как верхняя сторона изолирующей пленки 110.

[0032] Пленка 114 с низким показателем преломления расположена над пленкой 113 с высоким показателем преломления, и внутрислойная линза 115 расположена через пленку 114 с низким показателем преломления от пленки 113 с высоким показателем преломления. Пленка 114 с низким показателем преломления имеет более низкий показатель преломления, чем показатель преломления по меньшей мере одного элемента из группы, состоящей из внутрислойной линзы 115 и пленки 113 с высоким показателем преломления (или световодного участка 111). Пленка 114 с низким показателем преломления может иметь по меньшей мере одну функцию из корректировки расстояния между внутрислойной линзой 115 и световодным участком 111, функции планаризации и функции конденсирования вследствие преломления света. Участок 117 выбора длины волны расположен через выравнивающую пленку 116 от внутрислойной линзы 115. Участок 117 выбора длины волны является цветовым фильтром, дихроическим зеркалом и т.п., и каждый светопринимающий элемент 1 из светопринимающей области 21 имеет различное свойство пропускания длины волны в соответствии с массивом Байера и т.п. Участок 118 конденсирования света сформирован как микролинза на участке 117 выбора длины волны. Единственный световодный участок 111, единственная внутрислойная линза 115, единственный участок 117 выбора длины волны и единственный участок 118 конденсирования света обеспечен и соответствует множественным участкам 101 и 102 фотоэлектрического преобразования.

[0033] Следует отметить, что в последующем описании "показатель преломления изолирующей пленки 110" будет описан как показатель преломления материала, составляющего большую часть изолирующей пленки 110. Кроме того, "показатель преломления световодного участка 111" будет описан как показатель преломления материала, составляющего большую часть световодного участка 111. Показатель преломления световодного участка 111 больше, чем показатель преломления изолирующей пленки 110. Термин "показатель преломления", употребляемый в настоящем изобретении, означает абсолютный показатель преломления. Хотя показатель преломления изменяется в зависимости от длины волны, показателем преломления является по меньшей мере тот показатель преломления, относящийся к длине волны света, который может генерировать сигнальный заряд в участке 101 фотоэлектрического преобразования. Как правило, предпочтительно делается ссылка на длину волны света, относительно которого выполняется наибольшая часть фотоэлектрического преобразования в участках фотоэлектрического преобразования. В случае, когда устройство 10 фотоэлектрического преобразования имеет участок выбора длины волны, такой как цветовой фильтр и т.п., предпочтительно используется длина волны света, который пропускает участок выбора длины волны, и в особенности первичную пропускаемую длину волны. Селективность участка выбора длины волны может являться несовершенной. То есть пропускание длины волны, выбранной участком выбора длины волны, может составлять меньше 100%, и пропускание длин волны, не выбранных в участке выбора длины волны, не обязательно должно составлять 0%.

[0034] Форма световодного участка 111 будет подробно описана со ссылкой на фиг. 2A. На фиг. 2A чертеж, обозначенный [XZ], является сечением светопринимающего элемента 1 в плоскости X-Z, и чертеж, обозначенный [YZ], является сечением светопринимающего элемента 1 в плоскости Y-Z. Чертеж, обозначенный [XY1], является сечением светопринимающего элемента 1 в плоскости X-Y на высоте Z1 в направлении Z (высоты), и чертеж, обозначенный [XY3], является сечением светопринимающего элемента 1 в плоскости X-Y на высоте Z3 в направлении Z (высоты). Следует отметить, что сечения [XY1] и [XY3] в плоскости X-Y были расположены на световодном участке 111 над участками 101 и 102 фотоэлектрического преобразования и изоляционным участком 109 ради удобства. Направление X является направлением, в котором выстроены множественные участки 101 и 102 фотоэлектрического преобразования, как описано ранее. Позиция Z2, например, является позицией на полпути вдоль световодного участка 111 в направлении Z, и позиция Z2, например, является позицией между первым слоем разводки и вторым слоем разводки. Позиция Z1 находится дальше от подложки 100, чем позиция Z2, и позиция Z3 находится ближе к подложке 100, чем позиция Z2.

[0035] Световодный участок 111 в соответствии с настоящим вариантом осуществления имеет форму сечения на плоскости, параллельной по отношению к подложке 100 (плоскости X-Y), где наибольшая ширина в направлении X и наибольшая ширина в направлении Y являются разными. Плоскость (плоскость X-Y), параллельная по отношению к подложке 100, взятая для оценки формы сечения световодного участка 111, может являться плоскостью, взятой в любой позиции (на высоте) в направлении Z, пока плоскость пересекает световодный участок 111. Из трех плоскостей X-Y, пересекающих световодный участок 111, позиция плоскости X-Y, которая более далека от подложки 100, чем позиция Z2, и расположена на стороне, на которой входит свет, является позицией Z1, и позиция плоскости X-Y, которая ближе к подложке 100, чем позиция Z2, и расположена на стороне, на которой выходит свет, является позицией Z3.

[0036] "Наибольшая ширина" световодного участка 111 в определенном направлении будет описана со ссылкой на фиг. 10. "Наибольшая ширина" световодного участка 111 в определенном направлении является наибольшим значением (верхним пределом) длины линейных сегментов, которые параллельны друг другу в предопределенном направлении, и оба из одного конца и другого конца (оба конца) которой расположены на периметре световодного участка 111. Фиг. 10 иллюстрирует предопределенное направление, ортогональное по отношению к направлению Z, на определенной высоте в направлении Z стрелкой P и периметр световодного участка 111 сплошной линией C. Четыре линейных сегмента S1, S2, S3 и S4 проиллюстрированы репрезентативно как линейные сегменты, один конец и другой конец которых расположены на периметре световодного участка 111. Линейный сегмент S1 является линейным сегментом, который имеет наибольшую длину линейных сегментов, которые параллельны по отношению к определенному направлению P, и один конец и другой конец которого расположены на периметре световодного участка 111. В соответствии с этим наибольшая ширина световодного участка 111 в определенном направлении P представлена длиной S1. Линейный сегмент S2 не является линейным сегментом, который имеет наибольшую длину линейных сегментов, один конец и другой конец которого расположены на периметре световодного участка 111, и не соответствует наибольшей ширине световодного участка 111 в определенном направлении. Линейный сегмент S3 является линейным сегментом, который имеет наибольшую длину линейных сегментов, и один конец и другой конец которого расположены на периметре световодного участка 111, но не параллелен по отношению к определенному направлению P и не соответствует наибольшей ширине световодного участка 111 в определенном направлении P. Длина D не является длиной линейного сегмента, один конец и другой конец которого расположены на периметре световодного участка 111, и не соответствует самой большой ширине световодного участка 111 в определенном направлении P. Согласно тому же ходу мысли длина линейного сегмента S4, который ортогонален по отношению к линейному сегменту S1 и имеет наибольшую длину линейных сегментов, оба конца которого расположены на периметре C, соответствует наибольшей ширине световодного участка 111 в направлении, ортогональном определенному направлению P.

[0037] Наибольшая ширина световодного участка 111 в направлении X на фиг. 2A составляет WX1 в позиции Z1, составляет WX2 в позиции Z2 и составляет WX3 в позиции Z3. Наибольшая ширина световодного участка 111 в направлении Y составляет WY1 в позиции Z1, составляет WY2 в позиции Z2 и составляет WY3 в позиции Z3. Световодный участок 111 имеет такую форму сечения, что наибольшая ширина на плоскости, параллельной по отношению к подложке 100 (плоскости X-Y), в направлении X больше, чем наибольшая ширина в направлении Y. Например, в позиции Z1 наибольшая ширина WX1 больше, чем наибольшая ширина WY1 (WX1 > WY1). Таким же образом, в позиции Z2 наибольшая ширина WX2 больше, чем наибольшая ширина WY2 (WX2>WY2), и в позиции Z3 наибольшая ширина WX3 больше, чем наибольшая ширина WY3 (WX3>WY3).

[0038] Форма сечения световодного участка 111 на плоскости X-Y может отличаться в зависимости от расстояния от подложки 100. Световодный участок 111 в соответствии с этим примером имеет форму сечения, в которой наибольшая ширина в направлении X и наибольшая ширина в направлении Y отличаются на плоскости, параллельной по отношению к подложке 100 (плоскости X-Y). Например, что касается наибольшей ширины световодного участка 111 в направлении X, и наибольшая ширина WX3 в позиции Z3 меньше, чем наибольшая ширина WX2 в позиции Z2 (WX2>WX3), и наибольшая ширина WX1 в позиции Z1 больше, чем наибольшая ширина WX2 в позиции Z2 (WX1>WX2). Кроме того, что касается наибольшей ширины световодного участка 111 в направлении Y, наибольшая ширина WY1 в позиции Z1 больше, чем наибольшая ширина WY2 в позиции Z2 (WY1>WY2), и наибольшая ширина WY3 в позиции Z3 больше, чем наибольшая ширина WY2 в позиции Z2 (WY2>WY3). Можно сказать, что наибольшие ширины отличаются, если наибольшая ширина световодного участка 111 в направлении X больше, чем наибольшая ширина световодного участка 111 в направлении Y, на ±1% в определенной позиции в направлении Z. Чтобы получить достаточные преимущества, наибольшая ширина световодного участка 111 в направлении X предпочтительно в 1,05 или более раза больше наибольшей ширины световодного участка 111 в направлении Y в каждой позиции в направлении Z, и более предпочтительно в 1,10 или более раза. Наибольшая ширина световодного участка 111 в направлении X может быть в 1,50 или менее раза больше набольшей ширины световодного участка 111 в направлении Y в каждой позиции в направлении Z и может быть в 1,20 или менее раза больше.

[0039] Как можно понять из сравнения [XY1] и [XY2] и [XZ] и [YZ], на фиг. 2A площадь сечения плоскости X-Y световодного участка 111 постепенно становится меньше к участкам 101 и 102 фотоэлектрического преобразования от направления входа света. То есть световодный участок 111 сужается по направлению к подложке 100. Кроме того, в каждом сечении световодного участка 111 в позиции Z1, позиции Z2 и позиции Z3 каждая наибольшая ширина WX1, WX2 и WX3 в направлении больше, чем наибольшая ширина WY1, WY2 и WY3 в направлении Y для данной формы.

[0040] Например, в позиции Z1 наибольшая ширина WX1 световодного участка 111 в направлении X составляет приблизительно от 0,30 мкм до 10 мкм, и наибольшая ширина WY1 световодного участка 111 в направлении Y составляет приблизительно от 0,25 мкм до 9 мкм. Наибольшая ширина WX3 световодного участка 111 в направлении X в позиции Z3 составляет приблизительно от 0,25 мкм до 9 мкм, и наибольшая ширина WY3 световодного участка 111 в направлении Y составляет приблизительно от 0,20 мкм до 8 мкм. Значение между наибольшей шириной в позиции Z1 и наибольшей шириной в позиции Z3 может быть взято для позиции Z2.

[0041] Показатель преломления световодного участка 111 для длины волны λ света, подвергнутого фотоэлектрическому преобразованию в участках 101 и 102 фотоэлектрического преобразования, будет представлен как n1, и показатель преломления изолирующей пленки 110, которая является элементом, расположенным по периметру световодного участка 111, будет представлен как n0. Эффективный показатель преломления структуры волновода, в которой световодный участок 111 является ядром и изолирующая пленка 110 является оболочкой, будет представлен как ne. Следует отметить, что эффективный показатель преломления ne выражен в уравнении (1) и составляет от 0,5 до 1,5 в общей структуре волновода.

[0042] Наибольшие ширины WY1, WY2 и WY3 в направлении Y в позициях Z1, Z2 и Z3 световодного участка 111 предпочтительно составляют 3×λ/ne или меньше и более предпочтительно 2×λ/ne или меньше. В частности, наибольшая ширина WY в направлении Y световодного участка 111 предпочтительно составляет 3×λ/ne или меньше и более предпочтительно 2×λ/ne или меньше. Наибольшая ширина WY обычно реализуется на верхней стороне световодного участка 111 в направлении Y. Ограничение наибольшей ширины световодного участка 111 в направлении Y описанным выше диапазоном ограничивает количество волноводных мод в направлении Y, которое является эффективным при ограничении распространения света в направлении Y в пределах световодного участка 111. Если наибольшая ширина световодного участка 111 в направлении Y установлена равной 800 нм или меньше, 3×λ/ne или меньше может быть реализовано практически почти для всех длин волн видимого света (400 нм - 800 нм). Причина этого состоит в том, что 3×λ/ne или меньше реализуется, даже когда эффективный показатель преломления ne является чрезвычайно низким, на уровне 0,5, или даже когда эффективный показатель преломления ne является чрезвычайно высоким, на уровне 1,5.

[0043] Фиг. 2А и 2B иллюстрируют средний участок 119, который накладывается на изоляционный участок 109 в направлении Z световодного участка 111. Длина (ширина) среднего участка 119 в направлении Y в плоскости в определенной позиции в направлении Z предпочтительно меньше, чем наибольшая ширина световодного участка 111 в направлении X. Ширина среднего участка 119 в направлении Y является определяющим фактором при принятии решения, на каком из множественных участков 101 и 102 фотоэлектрического преобразования должен разделяться свет, падающий на световодный участок 111. Достаточное сокращение ширины среднего участка 119 в направлении Y является эффективным при улучшении точности разделения света.

[0044] Кроме того, наибольшая ширина WX3 в позиции Z3 световодного участка 111 в направлении X размещена как более короткая, чем сумма наибольших ширин двух выстроенных участков 101 и 102 фотоэлектрического преобразования в направлении X. Таким образом, свет, падающий на световодный участок 111, может входить в участок 101 фотоэлектрического преобразования или участок 102у фотоэлектрического преобразования с небольшой потерей.

[0045] Фиг. 2B иллюстрирует метод, посредством которого свет L, входящий в световодный участок 111 под косым углом (стрелка) в форме на фиг. 2A, распространяется через световодный участок 111. [XZ] и [YZ] на фиг. 2B иллюстрируют распределение интенсивности электрического поля в позициях Z1, Z2 и Z3 пунктирными линиями. [XY1] и [XY3] на фиг. 2B иллюстрируют контуры интенсивности электрического поля в позициях Z1 и Z3. Структура волновода, служащая моделью для распределения интенсивности электрического поля на фиг. 2B, имеет показатель преломления световодного участка 111, составляющий 1,82, показатель преломления изолирующей пленки 110, составляющий 1,46, наибольшую ширину в направлении Y в позиции Z1, составляющую 1,0 мкм, и наибольшую ширину в направлении X, составляющую 1,6 мкм. Кроме того, наибольшая ширина в направлении Y в позиции Z3 составляет 0,95 мкм, и наибольшая ширина в направлении X составляет 1,55 мкм. Однако следует отметить, что подобное распределение интенсивности электрического поля может быть получено без ограничения этими условиями, посредством удовлетворения описанных выше отношений между наибольшей шириной в направлении X и в направлении Y.

[0046] В волновой оптике свет, падающий на световодный участок 111, распространяется в форме волн, таким образом, распределение интенсивности электрического поля происходит в световодном участке 111. Места, где интенсивность электрического поля сильная, представляют места, где высока вероятность, что имеется большое количество света. При этом форма распространения света через световодный участок 111 (форма распределения интенсивности электрического поля) зависит от формы световодного участка 111. Чем больше наибольшая ширина световодного участка 111, тем больше становится вероятность существующего света, таким образом, увеличивается количество света, распространяющегося в направлении, в котором наибольшая ширина является большей. Сечения световодного участка 111 в позициях Z1, Z2 и Z3 являются формами, у которых наибольшая ширина в направлении X больше, чем наибольшая ширина в направлении Y, и, таким образом, направление X распространяет относительно больше света, чем направление Y.

[0047] В соответствии с этим, в случае, когда падающий свет L, имеющий вектор компонента +X и компонента -Z, входит под наклоном, как проиллюстрировано на фиг. 2B, свет отклоняется к стороне +X в плоскости X-Y около позиции Z1, которая находится вокруг входа световодного участка 111. Согласно волновой оптике свет, который вошел под наклоном, взаимодействует с нечетными модами, такими как первичная и третичная, в дополнение к четным модам, таким как нулевого порядка и вторичная, и таким образом распространяется. При этом нечетная мода является волноводной модой, имеющей амплитуду электрического поля, описываемую нечетной функцией относительно оси, проходящей через центр световодного участка 111, параллельной оси Z в плоскости X-Z. В случае четной функции это называется четной модой. Чем больше наибольшая ширина световодного участка 111, тем больше количество взаимодействующих мод. В соответствии с этим падающий свет, имеющий компонент в направлении X, имеет тенденцию отклоняться в направлении X. Свет, который отклонился в направлении +X на входе световодного участка 111, распространяется, оставаясь откл