Способ оперативного контроля выноса воды и песка с добываемым продуктом из скважины в автоматизированных системах управления технологическими процессами газопромысловых объектов нефтегазоконденсатных месторождений крайнего севера
Изобретение относится к области добычи природного газа и, в частности, к оперативному контролю выноса воды и песка из скважины в автоматизированных системах управления технологическими процессами (АСУ ТП) нефтегазоконденсатных месторождений Крайнего Севера. Способ оперативного контроля включает измерение расхода, давления и температуры газа на устье скважины с параллельным контролем в реальном масштабе времени фактического давления и температуры газа в конце шлейфа-газопровода, по которому газ поступает на вход установки комплексной подготовки газа (УКПГ); использование текущих значений контролируемых параметров для вычисления расчетного значения давления газа в конце шлейфа-газопровода в реальном масштабе времени средствами АСУ ТП; сравнение динамики его изменения во времени с динамикой изменения фактического давления газа в конце шлейфа-газопровода. Начало процесса выноса песка и воды из скважины определяют по появлению разности в динамике поведения давлений расчетного и фактического. В АСУ ТП дополнительно вводят базу знаний (БЗ), в которую регулярно вносят результаты очередных газодинамических испытаний скважин для каждого контура «скважина-газосборный шлейф (ГСШ)», данные о специфических особенностях каждой скважины и каждого ГСШ, а также алгоритмы управления на базе продукционных моделей представления знаний операторов и диагностики работы контура. При выявлении выноса воды и песка с добываемым продуктом, поступающим из какой-либо скважины, АСУ ТП выбирает соответствующие данные о контуре этой скважины и автоматически формирует управляющие решения для ликвидации возникающих нештатных ситуаций в контуре «скважина-ГСШ» с одновременной выдачей соответствующего сообщения на пульт оператора. Технический результат заключается в эффективном управлении режимом работы контура «скважина–ГСШ» и в том числе всем газовым промыслом в целом.
Реферат
Изобретение относится к области добычи природного газа и, в частности, к оперативному контролю выноса воды и песка из скважины в автоматизированных системах управления технологическими процессами (АСУ ТП) нефтегазоконденсатных месторождений Крайнего Севера.
Известен способ контроля выноса песка из газовой скважины (патент РФ №2285909 G01N 15/06 Е21В 47/00), включающий ввод в поток газа стержня, покрытого клееобразным веществом. Стержень выдерживают в потоке некоторое время, затем извлекают, растворителем обильно смывают клееобразное вещество с застрявшими в нем песчинками и полученный раствор фильтруют. По наличию и количеству осадка судят о факте и интенсивности выноса песка.
Существенным недостатком указанного способа является высокая трудоемкость проведения работ и низкая оперативность получения необходимых результатов.
Наиболее близким по технической сущности к заявляемому изобретению является способ оперативного контроля выноса воды и песка с добываемым продуктом из скважины в АСУ ТП газопромысловых объектов нефтегазоконденсатных месторождений Крайнего Севера (РФ №2474685, Е21В 47/00, 05.05.2011). Способ включает измерение давления газа на устье скважины средствами АСУ ТП и телеметрии в реальном масштабе времени с одновременным контролем на устье скважины температуры газа. Параллельно указанным измерениям в реальном масштабе времени осуществляют контроль фактического давления и температуры газа в конце газосборного шлейфа (ГСШ), по которому газ поступает на вход установки комплексной подготовки газа (УКПГ), а также расход газа скважины. Используя текущие значения контролируемых параметров, в реальном масштабе времени средствами АСУ ТП, вычисляют расчетное значение давления газа в конце шлейфа, сравнивают динамику его изменения во времени с динамикой изменения фактического давления газа в конце ГСШ. Появление разности в динамике поведения давлений расчетного и фактического определяет начало процесса выноса песка и воды из скважины, что влечет необходимость регулирования режима ее работы.
Существенным недостатком указанного способа является то, что он только фиксирует начало процесса выноса песка и воды из скважины, но не позволяет АСУ ТП принимать управляющие решения, адекватные возникшей ситуации.
Причинами появления факторов воды и песка в контуре «скважина-ГСШ» с поступающим газом являются:
- интенсивное снижение давлений и отборов газа вследствие истощения месторождения, ухудшения фильтрационных свойств призабойной зоны скважин;
- рост влагосодержания газа в связи с падением рабочего давления в пласте и, как следствие, в скважине и в газосборном шлейфе (ГСШ);
- несоблюдение технологических режимов работы скважин в процессе эксплуатации и т.д.
При обнаружении начала процесса выноса песка и воды из скважины, как правило, принимают решение по изменению режима работы контура «скважина-ГСШ», позволяющего исключить эти факторы. Такое решение, даже при наличии работающей АСУ ТП, как привило, принимает оператор установки комплексной подготовки газа (УКПГ). Однако в случае форс-мажорных обстоятельств, которые характерны для условий Крайнего Севера, и цейтнота, выбор правильного управляющего решения, соответствующего реальной ситуации, затруднен. Действительно, УКПГ - как объект управления, представляет собой достаточно крупное и сложное сооружение с ГСШ и кустами газовых скважин. Их количество, как правило, несколько десятков, и они распределены по территории, превышающей сотни квадратных километров. Именно поэтому, как показывает опыт эксплуатации, оператор установки может принять неадекватное возникшей ситуации управляющее решение по выбору режима работы системы «скважина-ГСШ». А это ведет к нарушению режима эксплуатации скважин, ГСШ, в том числе и газового промысла в целом, с соответствующей потерей извлекаемых объемов сырья из месторождения и значительному увеличению себестоимости добываемого и подготавливаемого к дальнему транспорту газа на УКПГ.
Задачей, на решение которой направлено настоящее изобретение, является реализация в АСУ ТП принятия адекватного возникшей ситуации управляющего решения по выбору технологического режима работ контура «скважина-ГСШ», обеспечивающего эффективную работу УКПГ.
Техническим результатом, достигаемым от реализации изобретения, является эффективное управление режимом работы контура «скважина-ГСШ», в том числе и всего газового промысла в целом.
Указанная задача решается, а технический результат достигается в способе оперативного контроля выноса воды и песка с добываемым продуктом из скважины в АСУ ТП газопромысловых объектов нефтегазоконденсатных месторождений Крайнего Севера, включающем измерение расхода, давления и температуры газа на устье скважины с параллельным контролем в реальном масштабе времени фактического давления и температуры газа в конце шлейфа-газопровода, по которому газ поступает на вход установки комплексной подготовки газа (УКПГ), и использование текущих значений контролируемых параметров для вычисления расчетного значения давления газа в конце шлейфа-газопровода в реальном масштабе времени средствами АСУ ТП, сравнение динамики его изменения во времени с динамикой изменения фактического давления газа в конце шлейфа-газопровода, при этом начало процесса выноса песка и воды из скважины определяют по появлению разности в динамике поведения давлений расчетного и фактического, СОГЛАСНО ИЗОБРЕТЕНИЮ, в АСУ ТП дополнительно вводят базу знаний (БЗ), в которую регулярно вносят результаты очередных газодинамических испытаний скважин для каждого контура «скважина-ГСШ», данные о специфических особенностях каждой скважины и каждого ГСШ, а также алгоритмы управления на базе продукционных моделей представления знаний операторов и диагностики работы контура, из которых при выявлении выноса воды и песка с добываемым продуктом, поступающим из какой-либо скважины, АСУ ТП выбирает соответствующие данные о контуре этой скважины и автоматически формирует управляющие решения для ликвидации возникающих нештатных ситуаций в контуре «скважина-ГСШ» с одновременной выдачей соответствующего сообщения на пульт оператора.
Для реализации способа в АСУ ТП УКПГ вводят БЗ, содержащую алгоритмы управления и диагностики работы контура «скважина-ГСШ», а также информацию об их характеристиках: о рельефе трассы каждого ГСШ, о специфических особенностях каждой скважины, каждого ГСШ и т.д.
В БЗ такой АСУ ТП (интеллектуальной АСУ ТП) хранится информация о свойствах и закономерностях протекания каждого технологического процесса на объекте и правилах использования этой информации для принятия необходимых решений. Наличие БЗ в составе систем управления позволяет учитывать накопленные годами знания высококлассных операторов-профессионалов и компенсировать ими ту часть недостающей информации, которую невозможно строго формализовать и, соответственно, принимать правильные решения для управления технологическим процессом в каждой конкретной ситуации. Содержание БЗ все время дополняется и расширяется в интерактивном режиме с учетом опыта эксплуатации системы.
Алгоритмы БЗ позволяют автоматически формировать управляющие решения для ликвидации возникающих нештатных ситуаций в контуре «скважина-ГСШ».
БЗ интеллектуальной АСУ ТП установки содержит алгоритмы на базе продукционных моделей представления знаний, отличающихся своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.
БЗ для каждого контура «скважина-ГСШ» включает следующую информацию:
- номер скважины и ГСШ;
- топология ГСШ (прямолинейный, количество изгибов, форма изгибов и т.д.);
- тип скважины (вертикальный, наклонный);
- информация о специфических особенностях скважин (степень способности к выносу пластовой воды и механических примесей, длительность эксплуатации);
- информация о предполагаемом оптимальном режиме эксплуатации скважин (возможные границы технологических режимов) и т.д.
В качестве примера ниже приведена информация по ГСШ 1, составляющая основу БЗ интеллектуальной АСУ ТП УКПГ.
ГСШ №1:
1. Рельеф ГСШ - ПРЯМОЛИНЕЙНЫЙ.
2. Длина ГСШ - НЕБОЛЬШОЙ (до 5 км).
3. Наличие изгибов - НЕТ.
4. Наличие спусков-подъемов - НЕТ.
5. Длительность эксплуатации скважины после проведения планово-предупредительных работ - БОЛЬШОЙ (достиг конца предусмотренного срока).
6. Возможность регулировки технологическими режимами скважин куста ЕСТЬ.
7. Возможные границы технологических режимов - Мах=А; Min=B.
8. Степень способности к выносу пластовой воды - НЕ СКЛОНЕН.
9. Тип скважин - НАКЛОННЫЙ.
В указанной информации часть данных по указанным пунктам заносят в БЗ из проектной документации газового промысла, а другую часть заносят по результатам планово-предупредительных работ и газогидродинамических исследований скважин, которые, как правило, проводятся ежегодно. По результатам испытаний и опыта эксплуатации этот перечень регулярно уточняется и дополняется.
Способ осуществляют следующим образом: используя средства АСУ ТП и телеметрию, производят с заданным шагом квантования измерение базовых параметров работы скважины. В том числе, измеряют фактическое давление и температуру газа на устье скважины и в конце ГСШ. И используют текущие значения контролируемых параметров для вычисления расчетного значения давления газа в конце шлейфа-газопровода в реальном масштабе времени средствами АСУ ТП. Сравнивают динамику их изменений во времени, по результатам которого судят о начале процесса выброса песка и воды из скважины с добываемыми продуктами. В случае выявления выноса воды и песка с добываемым продуктом из какой-либо скважины АСУ ТП обращается к своей БЗ и с учетом конкретной ситуации выбирает из нее соответствующие сложившейся ситуации данные о контуре этой скважины и ГСШ, а также правило принятия решения, которое реализует в системе управления газовым промыслом с одновременной выдачей соответствующего сообщения на пульт оператора.
Ниже приведены некоторые продукционные правила, формируемые интеллектуальной АСУ ТП УКПГ, для принятия управляющих решений при выносе воды и песка из скважины.
Допустим, АСУ ТП УКПГ обнаружила начало процесса выноса песка и воды в контуре «скважина-ГСШ 1». Для этого случая последовательность продукционных правил, предназначенных для восстановления режима работы контура «скважина-ГСШ» для ГСШ 1, будет выглядеть следующим образом:
П1. ЕСЛИ обнаружено начало выноса песка и воды в контуре «скважина-ГСШ 1»,
ТО максимально снизить давление газа в ГСШ 1 в рамках технологических ограничений, держать этот режим в течение времени t1 и контролировать рф.к - фактическое (измеряемое) давление газа на выходе ГСШ 1.
П2. ЕСЛИ максимально снижено давление газа в ГСШ 1 в рамках технологических ограничений на время t1 и значение рф.к - фактического (измеряемого) давления газа на выходе ГСШ 1 пришло в норму,
ТО нет необходимости в продувке ГСШ 1 и необходимо установить значение давления на выходе ГСШ 1 согласно текущему технологическому режиму работы установки.
П3. ЕСЛИ максимально снижено давление газа в ГСШ 1 в рамках технологических ограничений на время t1 и значение рф.к - фактического (измеряемого) давления газа на выходе ГСШ 1 продолжает уменьшаться,
ТО необходимо продуть ГСШ 1 за время t2.
Время t1 и t2 определяют индивидуально для каждого контура «скважина-ГСШ» во время газогидродинамических исследований скважин, которые, как правило, проводятся ежегодно.
Очевидно, что в других ситуациях будут другие правила. Например, при появлении фактора выноса песка и воды можно изменить режимы работ и скважины. Для каждого контура «скважина-ГСШ» эти правила формируются экспертом. С учетом эксплуатации эти правила уточняются и дополняются.
Данный способ позволяет оперативно, в режиме «on-line» устранить фактор воды и песка из контура «скважина-ГСШ» во время работы с учетом индивидуальных особенностей каждой скважины и ГСШ в автоматическом режиме с помощью интеллектуальной АСУ ТП.
Применение данного способа позволяет:
- оперативно корректировать технологический режим работы скважины с учетом выявленных нарушений без участия оператора-технолога;
- значительно улучшить качество работ по газогидродинамическому исследованию скважин, так как в этом случае система получает не только информацию о факторе выноса воды и песка со скважин, она через обратную связь, т.е. путем воздействия на контур «скважина-ГСШ», имеет возможность получать более полную информацию об этом контуре. А это позволяет снизить количество проводимых газогидродинамических исследований скважины, а также повысить их качество благодаря собираемой за время эксплуатации истории ее функционирования;
- более эффективно организовать режим работы контура «скважина-ГСШ», что ведет к увеличению жизненного цикла эксплуатации скважины и, соответственно, сказывается на конечной производительности нефтегазоконденсатного месторождения.
Способ оперативного контроля выноса воды и песка с добываемым продуктом из скважины в автоматизированных системах управления технологическими процессами газопромысловых объектов нефтегазоконденсатных месторождений Крайнего Севера, включающий измерение расхода, давления и температуры газа на устье скважины с параллельным контролем в реальном масштабе времени фактического давления и температуры газа в конце шлейфа-газопровода, по которому газ поступает на вход установки комплексной подготовки газа, и использование текущих значений контролируемых параметров для вычисления расчетного значения давления газа в конце шлейфа-газопровода в реальном масштабе времени средствами автоматизированной системы управления технологическими процессами, сравнение динамики его изменения во времени с динамикой изменения фактического давления газа в конце шлейфа-газопровода, при этом начало процесса выноса песка и воды из скважины определяют по появлению разности в динамике поведения давлений расчетного и фактического, отличающийся тем, что в автоматизированную систему управления технологическими процессами дополнительно вводят базу знаний, в которую регулярно вносят результаты очередных газодинамических испытаний скважин для каждого контура «скважина - газосборный шлейф», данные о специфических особенностях каждой скважины и каждого газосборного шлейфа, а также алгоритмы управления на базе продукционных моделей представления знаний операторов и диагностики работы контура, из которых при выявлении выноса воды и песка с добываемым продуктом, поступающим из какой-либо скважины, автоматизированная система управления технологическими процессами выбирает соответствующие данные о контуре этой скважины и автоматически формирует управляющие решения для ликвидации возникающих нештатных ситуаций в контуре «скважина - газосборный шлейф» с одновременной выдачей соответствующего сообщения на пульт оператора.