Устройство фотоэлектрического преобразования и система формирования изображений

Иллюстрации

Показать все

В устройстве фотоэлектрического преобразования, содержащем множество блоков фотоэлектрического преобразования, каждый из которых имеет множество элементов фотоэлектрического преобразования, на которые падает свет, сконцентрированный посредством одной микролинзы, каждый из множества элементов фотоэлектрического преобразования включает в себя первую полупроводниковую область первого типа проводимости для сбора сигнального заряда, высота потенциального барьера относительно сигнального заряда, по меньшей мере, участка области между первыми полупроводниковыми областями элементов фотоэлектрического преобразования, размещенных рядом друг с другом и включенных в один блок фотоэлектрического преобразования, ниже, чем высота потенциального барьера, расположенного между первыми полупроводниковыми областями элементов фотоэлектрического преобразования, размещенных рядом друг с другом, и каждый из которых включен в разные блоки фотоэлектрического преобразования, размещенные рядом друг с другом, и каждая микролинза расположена с наложением на множество первых полупроводниковых областей, содержащихся в одном пикселе, относительно вида сверху блока фотоэлектрического преобразования и концентрирует свет на множестве первых полупроводниковых областей. Изобретение направлено на получение требуемого сигнала, когда сигналы множества элементов фотоэлектрического преобразования используются в качестве одного сигнала посредством использования надлежащей изоляционной структуры между элементами фотоэлектрического преобразования. 12 н. и 36 з.п. ф-лы, 31 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к устройству фотоэлектрического преобразования. Более конкретно, настоящее изобретение относится к изоляционной структуре между элементами фотоэлектрического преобразования.

Описание предшествующего уровня техники

[0002] Традиционно, существует способ, чтобы обрабатывать сигналы, сформированные посредством множества элементов фотоэлектрического преобразования устройства фотоэлектрического преобразования, в качестве сигнала одного пикселя. Например, существует способ, чтобы определять фокусировку на основе способа разности фаз посредством предоставления множества элементов фотоэлектрического преобразования, соответствующих одной микролинзе. Согласно способу, поясненному в выложенной заявке на патент Японии номер 2001-250931, по отдельности считывается каждый сигнал множества элементов фотоэлектрического преобразования, которые соответствуют одной микролинзе, и определяется фокусировка. Сигнал, получаемый посредством суммирования сигналов множества элементов фотоэлектрического преобразования, соответствующих одной микролинзе, рассматривается в качестве сигнала одного пикселя.

[0003] Когда сигналы множества элементов фотоэлектрического преобразования рассматриваются в качестве сигнала одного пикселя, надлежащий сигнал может быть не получен, когда существует разность в чувствительности множества элементов фотоэлектрического преобразования или в количестве света, падающего на множество элементов фотоэлектрического преобразования. Дополнительно, поскольку элементы фотоэлектрического преобразования размещаются рядом с различными элементами, надлежащий сигнал может быть не получен в зависимости от изоляционной структуры между смежными элементами.

Сущность изобретения

[0004] Настоящее изобретение направлено на получение требуемого сигнала, когда сигналы множества элементов фотоэлектрического преобразования используются в качестве одного сигнала посредством использования надлежащей изоляционной структуры между элементами фотоэлектрического преобразования.

[0005] Согласно аспекту настоящего изобретения, устройство фотоэлектрического преобразования включает в себя множество блоков фотоэлектрического преобразования, включающих в себя множество элементов фотоэлектрического преобразования, и суммирует сигналы множества элементов фотоэлектрического преобразования, включенных в блоки фотоэлектрического преобразования. В устройстве фотоэлектрического преобразования, каждый из множества элементов фотоэлектрического преобразования включает в себя первую полупроводниковую область первого типа удельной проводимости для сбора сигнального заряда, вторая полупроводниковая область второго типа удельной проводимости размещена между первыми полупроводниковыми областями элементов фотоэлектрического преобразования, размещенных рядом друг с другом и включенных в блок фотоэлектрического преобразования, третья полупроводниковая область второго типа удельной проводимости размещена между первыми полупроводниковыми областями элементов фотоэлектрического преобразования, размещенных рядом друг с другом среди множества элементов фотоэлектрического преобразования, включенных в различные блоки фотоэлектрического преобразования, размещенные рядом друг с другом, и концентрация примеси второго типа удельной проводимости, по меньшей мере, участка второй полупроводниковой области ниже концентрации примеси второго типа удельной проводимости третьей полупроводниковой области.

[0006] Дополнительные признаки и аспекты настоящего изобретения станут очевидными из последующего подробного описания примерных вариантов осуществления со ссылкой на прилагаемые чертежи.

Краткое описание чертежей

[0007] Прилагаемые чертежи, которые содержатся и составляют часть описания изобретения, иллюстрируют примерные варианты осуществления, признаки и аспекты изобретения и вместе с описанием служат для того, чтобы пояснять принципы изобретения.

[0008] Фиг. 1 является блок-схемой всей конфигурации устройства формирования изображений согласно примерному варианту осуществления настоящего изобретения.

[0009] Фиг. 2 является видом сверху устройства фотоэлектрического преобразования согласно примерному варианту осуществления.

[0010] Фиг. 3A-3C являются видами в разрезе и диаграммой распределения потенциала устройства фотоэлектрического преобразования согласно примерному варианту осуществления.

[0011] Фиг. 4 схематично иллюстрирует выход устройства фотоэлектрического преобразования согласно примерному варианту осуществления.

[0012] Фиг. 5A-5D иллюстрирует заряды, накопленные в устройстве фотоэлектрического преобразования согласно примерному варианту осуществления.

[0013] Фиг. 6A-6C являются видом в разрезе и диаграммами распределения потенциала устройства фотоэлектрического преобразования согласно примерному варианту осуществления.

[0014] Фиг. 7A-7C являются видом сверху и диаграммами распределения потенциала устройства фотоэлектрического преобразования согласно примерному варианту осуществления.

[0015] Фиг. 8A-8C являются видом в разрезе и диаграммами распределения потенциала устройства фотоэлектрического преобразования согласно примерному варианту осуществления.

[0016] Фиг. 9 схематично иллюстрирует соотношение между объектом и изображением объекта, которое формируется.

[0017] Фиг. 10A и 10B схематично иллюстрируют определение фокусировки на основе способа разности фаз.

[0018] Фиг. 11 является блок-схемой системы формирования изображений.

[0019] Фиг. 12A и 12B являются видом в разрезе и диаграммой распределения потенциала устройства фотоэлектрического преобразования в качестве сравнительного примера.

[0020] Фиг. 13 схематично иллюстрирует выход устройства фотоэлектрического преобразования в качестве сравнительного примера.

[0021] Фиг. 14A и 14B являются эквивалентными принципиальными схемами блока фотоэлектрического преобразования, который является применимым к настоящему изобретению.

[0022] Фиг. 15A-15C являются видом в разрезе и диаграммами распределения потенциала устройства фотоэлектрического преобразования согласно примерному варианту осуществления.

Подробное описание вариантов осуществления

[0023] Различные примерные варианты осуществления, признаки и аспекты изобретения описаны подробно ниже со ссылкой на чертежи.

[0024] Сравнительный пример описан для простоты понимания примерных вариантов осуществления.

[0025] Фиг. 12A является видом в разрезе элемента фотоэлектрического преобразования устройства фотоэлектрического преобразования в качестве сравнительного примера. Фиг. 12B является диаграммой распределения потенциала сигнальных зарядов и соответствует виду в разрезе на фиг. 12A. В нижеприведенных описаниях электроны используются в качестве сигнальных зарядов. Дополнительно, касательно типа полупроводника, полупроводник n-типа упоминается как первого типа удельной проводимости, а полупроводник p-типа упоминается как второго типа удельной проводимости. Если дырки используются в качестве сигнальных зарядов, то первый тип удельной проводимости задается для полупроводника p-типа, а второй тип удельной проводимости задается для полупроводника n-типа. На чертежах разные блоки фотоэлектрического преобразования обозначаются посредством разных наборов символов после числовых значений. Например, микролинзы 1201a и 1201b соответствуют разным блокам фотоэлектрического преобразования. Если необязательно различать блоки фотоэлектрического преобразования в описании, наборы символов могут не использоваться. То же применимо к примерным вариантам осуществления, описанным ниже.

[0026] Когда свет собирается посредством микролинзы 1201, он проходит через цветной светофильтр 1202. Затем, свет падает на множество элементов фотоэлектрического преобразования. Множество слоев соединений 1203 предоставляется, главным образом, в целях получения сигналов из элементов фотоэлектрического преобразования.

[0027] Полупроводниковая область 1205 p-типа и множество полупроводниковых областей 1206 и 1207 n-типа формируют p-n-переход. Полупроводниковая область 1205 p-типа размещена на полупроводниковой области 1204. Полупроводниковая область 1204 может быть либо полупроводниковой подложкой p-типа, либо полупроводниковой подложкой n-типа.

[0028] Элемент фотоэлектрического преобразования включает в себя полупроводниковые области 1206 и 1207 n-типа и полупроводниковую область 1205 p-типа. Более конкретно, полупроводниковая область 1205 p-типа и полупроводниковые области 1206a и 1206b n-типа составляют элементы PD1 и PD2 фотоэлектрического преобразования (в дальнейшем называемые PD1 и PD2). Полупроводниковая область 1205 p-типа и полупроводниковые области 1207a и 1207b n-типа составляют элементы PD3 и PD4 фотоэлектрического преобразования (в дальнейшем называемые PD3 и PD4).

[0029] Поскольку потенциал каждой из полупроводниковых областей 1206a, 1206b, 1207a и 1207b n-типа ниже потенциала электрона, сигнальные заряды накапливаются в каждой из областей. Полупроводниковая область p-типа может быть размещена на стороне падающего света каждой из полупроводниковых областей 1206a, 1206b, 1207a и 1207b n-типа, чтобы формировать встроенный фотодиод. Хотя свет, сконцентрированный посредством микролинзы 1201a, падает на PD1 и PD2, свет, сконцентрированный посредством микролинзы 1201b, падает на PD3 и PD4. Один блок фотоэлектрического преобразования включает в себя множество элементов фотоэлектрического преобразования, на которые сконцентрированный свет падает посредством одной микролинзы.

[0030] Как описано выше, свет, сконцентрированный посредством одной микролинзы 1201a, падает на PD1 и PD2. PD1 и PD2 являются смежными друг с другом в одном направлении (горизонтальном направлении на фиг. 12A). Полупроводниковая область 1209 p-типа размещена между полупроводниковой областью 1206a n-типа в PD1 и полупроводниковой областью 1206b n-типа в PD2. Полупроводниковая область 1209 p-типа, размещенная между полупроводниковыми областями 1206a и 1206b n-типа, может выступать в качестве потенциального барьера для электрона.

[0031] Сконцентрированный свет падает на PD2 и PD3 посредством разных микролинз (микролинзы 1201a для PD2 и микролинзы 1201b для PD3). PD2 и PD3 являются смежными друг с другом в одном направлении (горизонтальном направлении на фиг. 12A). Другими словами, PD2 и PD3 размещены рядом друг с другом, но включены в разные блоки фотоэлектрического преобразования. Полупроводниковая область 1208 p-типа размещена между полупроводниковой областью 1206b n-типа в PD2 и полупроводниковой областью 1207a n-типа в PD3. Полупроводниковая область 1208 p-типа, размещенная между полупроводниковыми областями 1206b и 1207a n-типа, может выступать в качестве потенциального барьера для электрона.

[0032] Фиг. 12B иллюстрирует потенциальные барьеры 1210 и 1211, которые, соответственно, соответствуют полупроводниковым областям 1209 и 1208 p-типа. Высота потенциального барьера 1210 практически равна высоте потенциального барьера 1211.

[0033] Когда элемент фотоэлектрического преобразования включает в себя вышеописанную структуру, предполагается случай, в котором, по меньшей мере, элемент PD2 фотоэлектрического преобразования, включенный в один блок фотоэлектрического преобразования, насыщается вследствие разности в чувствительности или яркости между элементами фотоэлектрического преобразования, смежными друг с другом. В таком случае, некоторые заряды, сформированные посредством PD2, могут перетекать через потенциальный барьер 1210 и перемещаться в смежный элемент PD1 фотоэлектрического преобразования. Дополнительно, заряды, сформированные посредством PD2, могут перемещаться в элемент PD3 фотоэлектрического преобразования, который включен в другой блок фотоэлектрического преобразования. Дополнительно, заряды могут перемещаться в область размещения транзисторов (не проиллюстрирована), смежную с PD2.

[0034] Фиг. 13 иллюстрирует входные/выходные характеристики двух элементов PD1 и PD2 фотоэлектрического преобразования, включенных в один блок фотоэлектрического преобразования, и синтезированные входные/выходные характеристики, полученные посредством синтезирования выхода PD1 и PD2. Синтезированный выход может быть получен, по меньшей мере, посредством суммирования сигналов элементов фотоэлектрического преобразования. Чтобы получать синтезированный выход, сигналы могут быть усреднены или усилены.

[0035] На фиг. 13, чувствительность PD2 задается равной более высокому уровню по сравнению с чувствительностью PD1, или больше света вводится в PD2 по сравнению с PD1 в качестве иллюстрации. Если свет, падающий на элемент фотоэлектрического преобразования, находится в диапазоне 1301, больше зарядов формируется посредством PD2, чем PD1. Поскольку PD2 не насыщается, надлежащий выход может быть получен посредством синтезирования выходных сигналов PD1 и PD2. Тем не менее, если PD2 насыщается, а PD1 не насыщается, только PD1 выводит линейные выходные сигналы относительно падающего света. Таким образом, синтезированный выход определяется согласно выходу PD1 от точки, в которой PD2 насыщается. Как результат, синтезированный выход демонстрирует изгиб характеристики от точки, в которой PD2 насыщается. Это явление становится очевидным, когда заряды, которые сформированы после насыщения PD2, протекают в область, отличную от PD1. Согласно такому явлению, не может быть получен требуемый синтезированный сигнал.

[0036] Цель настоящего примерного варианта осуществления заключается в том, чтобы решать вышеописанную проблему. В частности, настоящий примерный вариант осуществления является характеристикой в структуре участка между множеством элементов фотоэлектрического преобразования в блоке фотоэлектрического преобразования, а также участка между множеством элементов фотоэлектрического преобразования, смежных друг с другом и включенных в разные блоки фотоэлектрического преобразования. Концентрация примеси полупроводниковой области p-типа между элементами фотоэлектрического преобразования, которые являются смежными друг с другом и включены в один блок фотоэлектрического преобразования, задается равной более низкому уровню по сравнению с концентрацией примеси полупроводниковой области p-типа между элементами фотоэлектрического преобразования, которые являются смежными друг с другом и включены в разные блоки фотоэлектрического преобразования.

[0037] Далее описывается блок-схема устройства фотоэлектрического преобразования согласно настоящему примерному варианту осуществления. В нижеприведенном описании, устройство формирования изображений используется в качестве примера устройства фотоэлектрического преобразования. Тем не менее, настоящее изобретение также применимо к устройству, отличному от устройства формирования изображений при условии, что устройство использует фотоэлектрическое преобразование. Дополнительно, блок-схема также является применимой к другим примерным вариантам осуществления настоящего изобретения.

[0038] Фиг. 1 является блок-схемой устройства формирования изображений по настоящему примерному варианту осуществления. На фиг. 1, устройство 100 формирования изображений включает в себя пиксельную матрицу 101 и схему 102 выбора по вертикали, используемую для выбора строк в пиксельной матрице 101. Множество блоков фотоэлектрического преобразования размещено в пиксельной матрице. Множество блоков фотоэлектрического преобразования может быть размещено двумерным образом.

[0039] Предварительно определенная строка выбирается посредством схемы 102 выбора по вертикали, и сигнал выводится из блока фотоэлектрического преобразования, включенного в предварительно определенную строку, в вертикальную выходную линию. Вертикальная выходная линия может предоставляться для каждого столбца или множества столбцов. Дополнительно, множество вертикальных выходных линий может предоставляться для каждого столбца пикселей.

[0040] Сигналы, параллельно считываемые посредством множества вертикальных выходных линий, вводятся в схеме 103 столбцов. Схема 103 столбцов может выполнять любое из усиления сигнала, аналого-цифрового преобразования и уменьшения уровня шума, а также комбинацию такой обработки.

[0041] Схема 104 выбора по горизонтали последовательно выбирает сигнал, сохраненный в схеме 103 столбцов, и выводит сигнал в горизонтальную выходную линию (не проиллюстрирована). Последовательный интерфейс 105 обменивается данными с внешним устройством, чтобы определять, например, рабочий режим. В дополнение к проиллюстрированным компонентам, устройство 100 формирования изображений может включать в себя, например, генератор тактовых импульсов или схему управления, которая предоставляет импульс управления и т.п. в схему 102 выбора по вертикали, схему 104 выбора по горизонтали и схему 103 столбцов.

[0042] Блок-схема на фиг. 1 применима ко всем примерным вариантам осуществления, описанным ниже. Дополнительно, термины "вертикальный" и "горизонтальный" используются для удобства и могут быть взаимозаменяемыми.

[0043] Далее описываются примеры эквивалентной схемы блока фотоэлектрического преобразования со ссылкой на фиг. 14A и 14B. Фиг. 14A иллюстрирует пример, в котором транзисторы, каждый из которых имеет другую функцию, отдельно предоставляются для каждого элемента фотоэлектрического преобразования. Фиг. 14B иллюстрирует пример, в котором транзисторы, каждый из которых имеет другую функцию, предоставляются совместно для множества элементов фотоэлектрического преобразования.

[0044] Заряды, сформированные посредством элемента 1401a или 1401b фотоэлектрического преобразования, переносятся во входной узел усилительного транзистора 1403a или 1403b посредством транзистора 1402a или 1402b переноса, соответственно. Входной узел усилительного транзистора может быть сконфигурирован посредством затвора усилительного транзистора и плавающей диффузионной области, электрически соединенной с затвором. Если импульс, который включает транзистор выбора, подается в затвор транзистора 1404a или 1404b выбора, то сигнал, соответствующий входному узлу усилительного транзистора, выводится в вертикальную выходную линию 1406. Затем напряжение входного узла усилительного транзистора 1403a или 1403b задается равным предварительно определенному напряжению посредством транзистора 1405a или 1405b сброса, соответственно. Когда схема включает в себя вышеописанную конфигурацию, посредством только включения транзистора 1404a или 1404b выбора, сигнал элемента 1401a или 1401b фотоэлектрического преобразования может быть считан в схему столбцов. Затем, формирование изображения и определение фокусировки может быть выполнено посредством суммирования сигналов.

[0045] Далее описывается фиг. 14B. Работа на фиг. 14B по существу является аналогичной работе, описанной со ссылкой на фиг. 14A. Заряды, сформированные посредством элемента 1501a или 1501b фотоэлектрического преобразования, переносятся во входной узел усилительного транзистора 1503 посредством транзистора 1502a или 1502b переноса, соответственно. Входной узел усилительного транзистора 1503 может быть сконфигурирован посредством затвора усилительного транзистора и плавающей диффузионной области, электрически соединенной с затвором. Если импульс, который включает транзистор выбора, подается в затвор транзистора 1504 выбора, то сигнал, соответствующий входному узлу усилительного транзистора 1503, выводится в вертикальную выходную линию 1506. Затем, напряжение входного узла усилительного транзистора 1503 задается равным предварительно определенному напряжению посредством транзистора 1505 сброса. На фиг. 14B, поскольку усилительный транзистор 1503 совместно используется элементами 1501a и 1501b фотоэлектрического преобразования, сигналы могут суммироваться во входном узле усилительного транзистора 1503. Таким образом, сигнал, получаемый после обработки суммирования, может выводиться из блока фотоэлектрического преобразования в вертикальную выходную линию 1506.

[0046] Далее описывается конфигурация устройства фотоэлектрического преобразования в отношении конкретных примерных вариантов осуществления. В каждом из нижеприведенных примерных вариантов осуществления, устройство формирования изображений используется в качестве примера устройства фотоэлектрического преобразования. В нижеприведенном подробном описании, в объеме настоящего изобретения и на чертежах, термин "концентрация примеси" обозначает чистую концентрацию примеси, которая является концентрацией примеси, компенсируемой посредством примеси с противоположным типом удельной проводимости. Это представляет собой чистую концентрацию. Область, в которой концентрация легирующей примеси p-типа выше концентрации легирующей примеси n-типа, рассматривается как полупроводниковая область p-типа. Напротив, область, в которой концентрация легирующей примеси n-типа выше концентрации легирующей примеси p-типа, рассматривается как полупроводниковая область n-типа.

[0047] Фиг. 2 схематично иллюстрирует вид сверху блока 201 фотоэлектрического преобразования устройства формирования изображений по первому примерному варианту осуществления. Фиг. 2 включает в себя четыре блока 201 фотоэлектрического преобразования, размещенные в две строки и два столбца.

[0048] Одна микролинза 202 предоставляется для каждого из блоков фотоэлектрического преобразования. Один блок 201 фотоэлектрического преобразования включает в себя множество элементов фотоэлектрического преобразования. На фиг. 2, один блок 201 фотоэлектрического преобразования включает в себя два элемента фотоэлектрического преобразования, например, PD1 и PD2. Альтернативно, один блок фотоэлектрического преобразования может включать в себя четыре или девять элементов фотоэлектрического преобразования.

[0049] Заряды, сформированные посредством элементов PD1 и PD2 фотоэлектрического преобразования, переносятся к плавающей диффузионной области 207 через передающие затворы 205 и 206 транзисторов переноса, соответственно. Плавающая диффузионная область 207 совместно используется элементами PD1 и PD2 фотоэлектрического преобразования.

[0050] Хотя четыре блока фотоэлектрического преобразования проиллюстрированы на фиг. 2 в качестве иллюстрации, пиксельная матрица 101 формируется посредством размещения большого числа таких блоков 201 фотоэлектрического преобразования в матрице.

[0051] Фиг. 3A является видом в разрезе блока фотоэлектрического преобразования по настоящему примерному варианту осуществления. Фиг. 3B схематично иллюстрирует структуру распределения потенциала сигнальных зарядов полупроводниковой области на фиг. 3A. Фиг. 3A является видом в разрезе блока фотоэлектрического преобразования вдоль пунктирной линии A-B на фиг. 2. Фиг. 3C является видом в разрезе блока фотоэлектрического преобразования вдоль пунктирной линии C-D на фиг. 2.

[0052] Блок фотоэлектрического преобразования включает в себя цветной светофильтр 301 и слой 302 соединений. Три слоя соединений, предоставляемые на разных высотах, проиллюстрированы на фиг. 3A.

[0053] Полупроводниковая область 304 p-типа и множество полупроводниковых областей 203 и 204 n-типа формируют p-n-переход. Полупроводниковая область 304 p-типа размещена на полупроводниковой области 303. Полупроводниковая область 303 является либо полупроводниковой подложкой p-типа, либо полупроводниковой подложкой n-типа.

[0054] Элемент фотоэлектрического преобразования включает в себя полупроводниковую область 203 или 204 n-типа и полупроводниковую область 304 p-типа. Более конкретно, полупроводниковая область 304 p-типа и полупроводниковые области 203a и 203b n-типа составляют элементы PD1 и PD2 фотоэлектрического преобразования. Полупроводниковая область 304 p-типа и полупроводниковые области 204a и 204b n-типа составляют элементы PD3 и PD4 фотоэлектрического преобразования. Поскольку потенциал каждой из полупроводниковых областей 203a, 203b, 204a и 204b n-типа ниже потенциала электронов, сигнальные заряды накапливаются в каждой из областей. Полупроводниковая область p-типа может быть размещена на стороне падающего света каждой из полупроводниковых областей 203a, 203b, 204a и 204b n-типа, чтобы формировать встроенный фотодиод. Когда свет, сконцентрированный посредством микролинзы 202a, падает на PD1 и PD2, свет, сконцентрированный посредством микролинзы 202b, падает на PD3 и PD4. Эти полупроводниковые области размещаются на полупроводниковой подложке 300.

[0055] Свет, сконцентрированный посредством одной микролинзы 202a, падает на PD1 и PD2. PD1 и PD2 включены в один тот же блок фотоэлектрического преобразования. PD2 и PD3 являются смежными друг с другом в одном направлении (горизонтальном направлении на фиг. 3A). Блок фотоэлектрического преобразования, который включает в себя PD1 и PD2, упоминается как первый блок фотоэлектрического преобразования. Блок фотоэлектрического преобразования, который является смежным с первым блоком фотоэлектрического преобразования справа на фиг. 3A, упоминается как второй блок фотоэлектрического преобразования.

[0056] Полупроводниковая область 306 p-типа размещена между полупроводниковыми областями 203a и 203b n-типа, соответственно, включенными в PD1 и PD2. Полупроводниковая область 306 p-типа, размещенная между полупроводниковыми областями 203a и 203b n-типа, может выступать в качестве потенциального барьера для электрона.

[0057] Сконцентрированный свет падает на PD2 и PD3 посредством разных микролинз (микролинзы 202a для PD2 и микролинзы 202b для PD3). PD2 и PD3 включены в разные блоки фотоэлектрического преобразования, но размещены рядом друг с другом. PD2 и PD3 являются смежными друг с другом в одном направлении (горизонтальном направлении на фиг. 3A). Полупроводниковая область 305 p-типа размещена между полупроводниковыми областями 203b n-типа в PD2 и полупроводниковыми областями 204a n-типа в PD3. Полупроводниковая область 305 p-типа, размещенная между полупроводниковыми областями 203b и 204a n-типа, может выступать в качестве потенциального барьера для электрона.

[0058] Согласно настоящему примерному варианту осуществления, концентрация примеси полупроводниковой области 305 p-типа отличается от концентрации примеси полупроводниковой области 306 p-типа. Более конкретно, концентрация примеси p-типа полупроводниковой области 306 p-типа ниже концентрации примеси p-типа полупроводниковой области 305 p-типа. Согласно такой концентрации, высота потенциального барьера между PD1 и PD2 в одном блоке фотоэлектрического преобразования может быть уменьшена по сравнению с высотой потенциального барьера между PD2 и PD3 в разных блоках фотоэлектрического преобразования, смежных друг с другом.

[0059] Как проиллюстрировано на фиг. 3B, потенциальный барьер 308 между PD1 и PD2 в первом блоке фотоэлектрического преобразования имеет высоту h1. Потенциальный барьер 307 между PD2 и PD3, смежными друг с другом и включенными в разные блоки фотоэлектрического преобразования, имеет высоту h2. Высота h1 потенциального барьера между PD1 и PD2 ниже высоты h2 потенциального барьера между PD2 и PD3.

[0060] Согласно такой структуре, сигнал, получаемый посредством суммирования сигналов элементов фотоэлектрического преобразования, включенных в один блок фотоэлектрического преобразования, должен демонстрировать линейность, соответствующую количеству падающего света. Такая конфигурация применима не только к настоящему примерному варианту осуществления, но и к различным элементам фотоэлектрического преобразования. В частности, полезно, когда множество элементов фотоэлектрического преобразования, выход которых должен суммироваться, имеет разность в чувствительности или величине насыщения, или количестве падающего света. Разность в количестве падающего света возникает в случае, если, например, равномерный свет падает на все устройство фотоэлектрического преобразования, но количество света, фактически падающего на каждый элемент фотоэлектрического преобразования, отличается. Это возникает с большой вероятностью, в частности, когда свет, сконцентрированный посредством одной микролинзы, падает на множество элементов фотоэлектрического преобразования, которые планарно размещены в разных позициях.

[0061] Далее описывается требуемый пример концентрации примеси полупроводниковой области p-типа. Желательно, чтобы концентрация примеси p-типа полупроводниковой области 305 p-типа, которая конфигурирует потенциальный барьер 307, задавалась в три раза или более превышающей концентрацию примеси p-типа полупроводниковой области 306 p-типа, которая конфигурирует потенциальный барьер 308. Это обусловлено тем, что задание концентрации в три раза или более превышающей может формировать разность между высотами барьеров, сравнимую с потенциалом зарядов (приблизительно 26 мВ при температуре окружающей среды 27°C). Посредством рассмотрения диапазона рабочей температуры устройства фотоэлектрического преобразования, более желательно, чтобы концентрация примеси p-типа полупроводниковой области 305 p-типа могла задаваться в десять раз или более превышающей концентрацию примеси p-типа полупроводниковой области 306 p-типа.

[0062] Далее описывается фиг. 3C. Фиг. 3C является видом в разрезе блока фотоэлектрического преобразования вдоль линии C-D на фиг. 2. На фиг. 3C проиллюстрированы элементы фотоэлектрического преобразования третьего блока фотоэлектрического преобразования, которые являются смежными с первым блоком фотоэлектрического преобразования в направлении вниз на фиг. 2. Диэлектрическая изоляция 309, которая включает в себя изолятор, размещена между плавающей диффузионной областью 207 первого блока фотоэлектрического преобразования и элементом PD5 фотоэлектрического преобразования третьего блока фотоэлектрического преобразования. Известные способ и структура, такие как локальное оксидирование кремния (LOCOS) и мелкощелевая изоляция (STI), могут быть использованы при образовании диэлектрической изоляции 309.

[0063] Хотя высота потенциального барьера не иллюстрируется, высота потенциального барьера, образованного посредством диэлектрической изоляции 309, выше высоты потенциального барьера, образованного посредством полупроводниковой области 306 p-типа. Высоты потенциальных барьеров, сформированных посредством диэлектрической изоляции 309 и полупроводниковой области 305 p-типа, являются произвольными и могут быть произвольно заданы согласно схеме размещения элементов. В примере, проиллюстрированном на фиг. 3C, диэлектрическая изоляция размещена между плавающей диффузионной областью и элементом фотоэлектрического преобразования. Помимо этого, диэлектрическая изоляция может предоставляться между транзистором и элементом фотоэлектрического преобразования пиксельного блока.

[0064] Далее описывается выход каждого PD и синтезированный выход после суммирования со ссылкой на фиг. 4 и 5. Фиг. 4 иллюстрирует входные/выходные характеристики PD1 и PD2 и синтезированные входные/выходные характеристики, полученные посредством синтезирования выхода PD1 и PD2. Горизонтальная ось представляет количество падающего света, а вертикальная ось представляет выход из элемента фотоэлектрического преобразования.

[0065] Фиг. 5A-5D схематично иллюстрируют структуру распределения потенциала блоков фотоэлектрического преобразования, проиллюстрированных на фиг. 3B, и образованных электронов. На фиг. 4, предполагается, что чувствительность PD1 задается равной более высокому уровню по сравнению с чувствительностью PD2, или больше света вводится в PD1 по сравнению с PD2 в качестве иллюстрации. Когда количество света, падающего на элемент фотоэлектрического преобразования, находится в диапазоне 401, больше электронов образуется посредством PD1, чем PD2. Фиг. 5A иллюстрирует структуру распределения потенциала в этом состоянии. Синтезированный выход PD1 и PD2 указывает соответствующее значение. Затем, когда PD1 и PD2 находятся в диапазоне 402, PD1 насыщается, но PD2 не насыщается. В этом состоянии, как проиллюстрировано на фиг. 5B, электроны, сформированные в PD1, могут перетекать через потенциальный барьер 308 и перемещаться в PD2. Таким образом, относительно диапазона 402, выход PD2 основан на величине заряда, полученной посредством синтезирования электронов, сформированных в PD2, и некоторых электронов, сформированных в PD1. Таким образом, высота h1 потенциального барьера 308 задается ниже высоты h2 потенциального барьера 307. Согласно такой структуре, некоторые электроны, сформированные в PD1, могут перемещаться в PD2. Таким образом, даже если количество падающего света находится в диапазоне 402, синтезированный выход PD1 и PD2 демонстрирует линейность.

[0066] Касательно диапазона 403, как проиллюстрировано на фиг. 5C, выход PD1 и PD2 превышает уровень насыщения, заданный посредством потенциального барьера 308, и достигает уровня насыщения, заданного посредством потенциального барьера 307.

[0067] Касательно диапазона 404, как проиллюстрировано на фиг. 5D, поскольку PD1 и PD2 достигают уровня насыщения, заданного посредством потенциального барьера 307, синтезированный выход также насыщен.

[0068] Как описано выше, настоящий примерный вариант осуществления является применимым к устройству фотоэлектрического преобразования, включающему в себя множество блоков фотоэлектрического преобразования, дополнительно включающих в себя множество элементов фотоэлектрического преобразования. Относительно такого устройства фотоэлектрического преобразования вторая полупроводниковая область 306 второго типа удельной проводимости размещена между первыми полупроводниковыми областями 203a и 203b элементов фотоэлектрического преобразования, которые включены в один блок фотоэлектрического преобразования и размещены рядом друг с другом. Дополнительно, третья полупроводниковая область 305 второго типа удельной проводимости размещена между первыми полупроводниковыми областями 203b и 204a элементов фотоэлектрического преобразования, которые размещены рядом друг с другом и включены в разные блоки фотоэлектрического преобразования. Концентрация примеси второго типа удельной проводимости второй полупроводниковой области 306 задается ниже концентрации примеси второго типа удельной проводимости третьей полупроводниковой области 305. Согласно настоящему примерному варианту осуществления, вторая полупроводниковая область 306 имеет равномерную концентрацию примеси. Тем не менее, концентрация примеси не должна быть равномерной при условии, что, по меньшей мере, участок второй полупроводниковой области 306 включает в себя область низкой концентрации.

[0069] Согласно такой конфигурации, заряды между элементами фотоэлектрического преобразования в одном блоке фотоэлектрического преобразования могут перемещаться более легко по сравнению с зарядами, которые перемещаются между элементом фотоэлектрического преобразования и другой областью. Таким образом, например, когда один элемент фотоэлектрического преобразования в одном блоке фотоэлектрического преобразования насыщается, может предотвращаться возникновение изгиба характеристик синтезированного выхода, и может быть получен выход с более высокой линейностью.

[0070] Второй примерный вариант осуществления настоящего изобретения описывается со ссылкой на чертежи. Фиг. 6A является видом в разрезе блоков фотоэлектрического преобразования по настоящему примерному варианту осуществления. Компоненты, аналогичные компонентам первого примерного варианта осуществления, обозначаются посредством тех же ссылочных позиций и их описания не повторяются. Фиг. 6A является видом в разрезе вдоль пунктирной линии A-B на фиг. 2. Что касается вида в разрезе вдоль пунктирной линии C-D на фиг. 2, он является аналогичным конфигурации, проиллюстрированной на фиг. 3C. То же может быть применимо к следующим примерным вариантам осуществления.

[0071] Второй примерный вариант осуществления отличается от первого примерного варианта осуществления тем, что полупроводниковая область p-типа, размещенная между элементами фотоэлектрического преобразования в одном блоке фотоэлектрического преобразования, включает в себя первый участок, имеющий низкую концентрацию, и второй участок, имеющий более высокую концентрацию, чем первый участок. Более конкретно, полупроводниковая область p-типа, размещенная между PD, на которую падает свет, сконцентрированный посредством одной микролинзы, включает в себя первый участок 601