Высокоскоростная турбина

Иллюстрации

Показать все

Изобретение относится к области электротехники, в частности к высокоскоростным электромагнитным турбинам. Технический результат – повышение эффективности турбины. Турбина содержит по меньшей мере один ротор, установленный на ведущем валу и выполненный с возможностью протекания по нему тока в радиальном направлении; по меньшей мере одну электромагнитную катушку, расположенную с каждой стороны каждого из указанного по меньшей мере одного ротора. Катушка выполнена с возможностью генерации магнитного поля, ориентированного по существу в осевом направлении через указанный по меньшей мере один ротор, и одной или более областей нулевого магнитного поля между ними. Турбина содержит также по меньшей мере одно токопроводящее средство, электрически соединенное с указанным по меньшей мере одним ротором. По меньшей мере часть указанного токопроводящего средства размещена в одной или более областях нулевого магнитного поля. 15 з.п. ф-лы, 90 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение в общем относится к устройству для совершения электромеханической работы. В частности, помимо прочего настоящее изобретение относится к высокоскоростным электромагнитным турбинам.

УРОВЕНЬ ТЕХНИКИ

[0002] Одним из фундаментальных принципов физики является связь между электроэнергией и магнетизмом. Эта связь впервые была открыта в середине 1800-ых годов, когда заметили, что электрический ток, проходящий по обычному электропроводящему стержню, размещенному во внешнем магнитном поле, перпендикулярном направлению протекания электрического тока, индуцирует вращающий момент. Т.е., на каждую из перемещающихся заряженных частиц действует сила в результате индуцированного магнитного поля. Сила, приложенная к каждой из перемещающихся заряженных частиц, генерирует на проводнике вращающий момент, пропорциональный магнитному полю.

[0003] Описанные выше основные взаимодействия между электрическим и магнитным полями отражают основные научные принципы, которые подтверждены практическим созданием электродвигателей и генераторов. Одну из самых простых форм электрогенератора впервые показал Майкл Фарадей на примере своего устройства, которое теперь известно как диск Фарадея. Устройство Фарадея состояло из медного диска, вращающегося между полюсами постоянного магнита. Оно генерирует электрический ток, пропорциональный частоте вращения и силе магнитного поля. Диск Фарадея в основном стал первым униполярным генератором. Однако, генератор Фарадея является чрезвычайно неэффективным из-за встречных потоков электрического тока, которые ограничивают выходную мощность пропускной способностью токосъемных проводов и эффектами паразитного нагрева медного диска.

[0004] Несмотря на различные достижения в развитии конструкции и выборе материалов после первоначальной демонстрации Фарадея, униполярные генераторы в целом долго считались чрезвычайно неэффективными. Тем не менее, униполярные генераторы имеют некоторые уникальные физические свойства, которые делают их подходящими для некоторых случаев применения. Во-первых, униполярные генераторы являются единственными генераторами, которые вырабатывают истинный постоянный ток. В большей части многополюсных генераторов необходимо коммутировать или выборочно переключать обмотки переменного тока, чтобы на выходе получить постоянный ток. В дополнение к этому, униполярные генераторы обычно вырабатывают энергию с низкими напряжениями и большими токами.

[0005] Также, униполярные двигатели могут развивать большую мощность при сравнительно низком напряжении питания. Именно этот факт вызывает большой интерес к униполярным двигателям для случаев применения, например, в электрических транспортных средствах. Одним примером такого двигателя является двигатель, разработанный в Техасском Университете, в котором использован четырехполюсный якорь и который работает с пиковым током 5000 А от комплекта батарей с напряжением 48 В. Полная отдача мощности примерно составляет 87%, причем большая часть потерь приходится на щетки. Фактически, одним из основных ограничений униполярной конструкции двигателя являются потери, связанные с передачей мощности посредством традиционных щеток. Износ щеток также является фактором, в частности влияющим в высокоскоростных случаях применения, в которых щетки контактируют с якорем, имеющим большую скорость вращения.

[0006] Другим фактором, влияющим на эффективность униполярных двигателей, является торможение, вызванное вихревыми токами, созданными внутри роторов. Вихревые токи возникают вследствие временных изменений внешнего магнитного поля, изменения магнитного поля в проводнике или изменения, вызванного взаимным перемещением источника магнитного поля и проводящего материала. Вихревые токи становятся серьезной проблемой в случаях применения, в которых используются высокоскоростные роторы и сильные магнитные поля.

[0007] Для типичных униполярных двигателей требуются относительно сильные магнитные поля или множество магнитных полей для формирования необходимого поля, причем размер и количество магнитов опять же увеличивают габаритные размеры и вес системы. Таким образом, размер и вес двигателя являются важными параметрами конструкции в случаях применения, таких как электрические двигательные системы.

[0008] С учетом преимуществ униполярных систем (т.е., систем, в которых используется одиночное однонаправленное поле), предпочтительным является создание униполярной системы, которая позволяет устранить по меньшей мере некоторые из вышеуказанных недостатков уровня техники.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

[0009] В настоящем описании термин "турбина" использован для обозначения конструкции, которая содержит один или большее количество роторов, вырабатывающих механическую энергию в ответ на контакт по существу с однородным полем.

[0010] Соответственно, согласно одному аспекту настоящего изобретения предложена турбина, содержащая:

по меньшей мере одну сверхпроводящую катушку для возбуждения магнитного поля;

по меньшей мере один ротор, установленный на валу, расположенном внутри сверхпроводящей катушки;

причем подача электрического тока в турбину принуждает вал и ротор выполнять механическую работу.

[0011] Согласно другому аспекту настоящего изобретения предложена турбина, содержащая:

корпус, содержащий множество сверхпроводящих катушек для возбуждения магнитного поля;

первый вал, расположенный внутри корпуса, содержащий установленный на нем по меньшей мере один ротор;

второй вал, расположенный рядом с множеством сверхпроводящих катушек и электрически связанный по меньшей мере с одним ротором для формирования схемы последовательного соединения в указанной турбине;

причем магнитное поле, возбуждаемое сверхпроводящими катушками, по существу ограничено корпусом и ориентировано в осевом направлении корпуса, при этом подача электрического тока в указанную схему последовательного соединения принуждает первый вал и ротор выполнять механическую работу.

[0012] Согласно другому аспекту настоящего изобретения предложена турбина, содержащая:

первый набор сверхпроводящих катушек для возбуждения первого магнитного поля;

первый вал, расположенный внутри набора сверхпроводящих катушек и содержащий установленный на нем первый набор роторов;

второй набор сверхпроводящих катушек для возбуждения второго магнитного поля, причем указанный второй набор катушек расположен рядом с первым набором катушек;

второй вал, расположенный внутри набора сверхпроводящих катушек и содержащий установленный на нем второй набор роторов, электрически связанных с первым набором роторов для формирования схемы последовательного соединения в указанной турбине;

причем подача электрического тока в указанную схему последовательного соединения принуждает валы и соответствующие им наборы роторов выполнять механическую работу.

[0013] Согласно другому аспекту настоящего изобретения предложена турбина, содержащая:

первый набор сверхпроводящих катушек для возбуждения магнитного поля;

первый вал, расположенный внутри первого набора катушек, причем указанный первый вал содержит установленный на нем первый набор роторов;

второй вал, расположенный внутри набора сверхпроводящих катушек, причем указанный второй вал содержит установленные на нем второй набор роторов, электрически связанных с первым набором роторов с формированием схемы последовательного соединения в указанной турбине;

причем подача электрического тока в указанную схему последовательного соединения принуждает валы и соответствующие им наборы роторов выполнять механическую работу.

[0014] Согласно другому аспекту настоящего изобретения предложен двигатель, содержащий:

корпус;

узел возбуждения, установленный внутри корпуса и содержащий криогенный корпус, имеющий криогенную оболочку, расположенную в нем;

роторный узел, расположенный внутри криогенного корпуса и снаружи криогенной оболочки, содержащий один или большее количество роторов, расположенных на ведущем валу, причем указанные один или большее количество роторов расположено с возможностью формирования схемы последовательного соединения в роторном узле;

сверхпроводящую катушку для возбуждения магнитного поля, заключенную внутри указанной криогенной оболочки;

при этом подача электрического тока в указанную схему последовательного соединения принуждает указанные один или большее количество роторов и вал выполнять механическую работу.

[0015] Соответственно, каждый ротор содержит втулку, соединенную с ободом посредством набора спиц, разнесенных друг от друга радиально вокруг втулки. Согласно одному варианту реализации роторы выполнены из меди, на которую затем гальваническим способом нанесен слой металла с никелем, серебром или другими высокопроводящими металлами. Согласно другому варианту реализации ротор выполнен из титана, волокнитов или других высокорезистивных или непроводящих материалов.

[0016] Предпочтительно электрическое соединение роторов со вторым валом или роторами в смежном наборе роторов осуществлено посредством использования токопроводящей полосы, сформированной на наружной периферийной области обода, который совмещен с токопроводящим кольцом, расположенным на втором валу или рядом с ротором в зависимости от обстоятельств. Токопроводящая полоса может иметь форму одиночной непрерывной полосы, выполненной из непрерывной металловолоконной щетки. Согласно другому варианту реализации токопроводящая полоса сформирована из последовательности перекрывающихся лепестков, причем каждый лепесток сформирован из непрерывной металловолоконной щетки.

[0017] В случае, если турбина содержит вторичный вал и/или вторичный набор роторов, каждый ротор, расположенный на первом валу, может быть механически связан со вторым валом или смежным ротором, расположенном на втором валу. В таких случаях роторы могут содержать зубчатое колесо, которое взаимодействует с зубчатым колесом, расположенным на втором валу или смежном роторе. В случаях, в которых роторы выполнены из меди или других подобных проводящих материалов, зубчатое колесо также действует в качестве токопроводящей конструкции и электрически связывает ротор со вторым валом или смежным ротором. Если ротор выполнен из титана, волокнитов или других высокорезистивных или непроводящих материалов, сверхпроводящий материал должен быть нанесен на наружную поверхность ротора для облегчения электрического соединения ротора со вторым валом или смежным ротором. Сверхпроводящий материал может быть лентой из высокотемпературного сверхпроводника, нанесенной на наружную поверхность ротора. Согласно другому варианту реализации сверхпроводящий материал может быть сверхпроводящим покрытием, соединенным с наружной поверхностью ротора.

[0018] Предпочтительно схема последовательного соединения сформирована соединением чередующихся роторов, расположенных на первом и втором валах, посредством последовательности собирающих шин и щеток. В случае, если второй вал не содержит роторов, токопроводящая полоса и/или зубчатое устройство могут быть связаны назад со следующим ротором в наборе роторов на первом валу посредством набора собирающих шин и щеток.

[0019] Соответственно, катушки выполнены из высокотемпературной сверхпроводимой ленты шириной 12 мм и содержат 100 витков с внутренним радиусом 50 мм. Согласно другому варианту реализации используются 3 пакета ленты шириной 4 мм. Катушки могут быть связаны с формированием длинного соленоида. Соленоид имеет сплошной корпус или может содержать последовательность разрывов. Разрывы могут быть выполнены в форме одного или большего количества промежутков между смежными катушками, формирующими корпус соленоида.

[0020] Катушки возбуждают магнитное поле с индукцией от 1 Тл до 2 Тл при питающем токе от 160 А до 175 А. Соответственно, катушки могут возбуждать магнитное поле с индукцией 2-5,1 Тл при питающем токе от 180 А до 500, в зависимости от конфигурации катушек. Предпочтительно катушки возбуждают пиковое поле с индукцией от 1,3 Тл до 5,1 Тл. Катушки могут возбуждать магнитное поле от 3 Тл до 5 Тл при питающем токе от 300 А до 500 А. Соответственно, катушки выполнены способом, при котором по существу все возбужденное катушками магнитное поле заключено в пределах внутреннего радиуса катушки.

[0021] Соответственно, последовательное соединение между роторами двигателя облегчено последовательностью токопередающих механизмов, расположенных между смежными роторами. Предпочтительно токопередающие механизмы выполнены в форме неподвижных дисков, расположенных между каждым ротором, причем каждый диск содержит первый набор и второй набор токопроводящих щеток, которые расположены парами, при этом щетки первого набора входят в контакт с втулкой ротора, и щетки второго набора входят в контакт с ободом смежного ротора.

[0022] Щетки являются металловолоконными щетками, имеющими сечение 23 мм × 35 мм, с допустимым электрическим током 330 А на щетку. Соответственно, количество используемых пар щеток зависит от необходимого полного электрического тока двигателя, например, семь пар щеток обеспечивают электрический ток 2310 А. Предпочтительно токопередающий механизм и щетки расположены таким образом, что электрический ток направлен от наружного радиуса (обода) предыдущего ротора к внутреннему радиусу (втулке) следующего ротора. Для компенсации постепенного изнашивания щетки могут быть установлены на шунтах, связанных с пружинами, для обеспечения возможности осевого перемещения щеток. Шунты спаренных щеток могут быть соединены гибким проводом, размещенным в раме токопередающего механизма.

[0023] Токопередающие механизмы могут удерживаться неподвижно относительно ведущего вала. Соответственно, токопередающие механизмы удерживаются на месте последовательностью непроводящих распорок, размещенных между парой концевых пластин, расположенных в противоположных концах ведущего вала. Распорки могут содержать профилированный край, содержащий несколько поднятых секций, которые взаимодействуют с выемками, выполненными в наружной периферийной области токопередающих механизмов. Концевые пластины могут содержать подшипники для установки ведущего вала с возможностью вращения. Предпочтительно подшипниками являются керамические подшипники.

[0024] Ведущий вал может содержать по меньшей мере одну непроводящую секцию, расположенную между токопроводящими секциями вала. Соответственно, роторы и токопередающие механизмы расположены на непроводящей секции ведущего вала таким образом, что они соединяют токопроводящие секции ведущего вала в последовательную цепь. Предпочтительно по меньшей мере один ротор и по меньшей мере один токопередающий механизм непосредственно связаны с токопроводящей секцией ведущего вала. Электрический ток может быть применен к токопроводящим секциям ведущего вала посредством набора токопроводящих щеток.

[0025] Соответственно, непроводящая секция ведущего вала сформирована последовательностью непроводящих взаимосвязанных элементов, каждый из которых несет на себе ротор и токопередающий механизм. Ведущий вал может быть полым для размещения усиливающего стержня.

[0026] Криогенный корпус в целом имеет цилиндрическую конструкцию и содержит отверстие для размещения роторного узла. Предпочтительно между наружной и внутренней стенками корпуса расположена криогенная оболочка с отверстием, сформированным между внутренними стенками корпуса. Соответственно, криогенная оболочка соединена с криогенным охлаждающим устройством, установленным на корпусе. Криогенное охлаждающее устройство имеет размер, походящий для криогенного охлаждающего устройства на основе пульсационной трубы, и обеспечивает рабочую температуру узла катушки примерно 20 K (-253°С). Криогенное охлаждающее устройство может быть соединено с медными пальцами, расположенными внутри криогенной оболочки, причем указанные медные пальцы формируют теплопроводящий путь для отвода тепла из сверхпроводящей катушки.

[0027] Корпус содержит концевые крышки для инкапсулирования роторного узла и расположенной в нем криогенной оболочки. Концевые крышки содержат множество пластин, действующих в качестве магнитопроводов. Пластины могут быть выборочно удалены/добавлены для изменения размеров магнитопроводов. Концевые крышки могут содержать проходы для обеспечения возможности прохождения вала за пределы отверстия и указанного корпуса во вторичные корпусы, которые могут быть расположены в противоположных концах указанного корпуса. Во вторичных корпусах могут быть заключены узлы входных и выходных щеток для подачи тока возбуждения в схему последовательного соединения, сформированную в роторном узле. Вторичные корпусы в целом имеют форму воронки. Вторичные корпуса могут содержать охлаждающие средства для направления потока воздуха сквозь проходы и отверстие. Охлаждающиеся средства могут быть реализованы в форме одного или большего количества вентиляторов, соединенных в нагнетательно-вытяжной конфигурации, т.е., противоположно расположенные средства выполнены с возможностью нагнетать воздух в корпус и вытягивать воздух из корпуса.

[0028] Согласно некоторым вариантам реализации турбины может быть использован соленоид с открытым концом без сужения стальных магнитопроводов. В таких случаях спицы роторов также могут иметь конусную форму или могут быть профилированы для создания потока воздуха в центральном отверстии.

[0029] Ведущий вал может быть связан с различными средствами для передачи вращающего момента, включая узлы зубчатой передачи, цепной передачи или тому подобное средство, или может быть соединен непосредственно с ведущим компонентом, таким как колесо, рабочее колесо, цепь и т.п. Соответственно, средства для передачи вращающего момента являются электрически изолированными от вала. Развязка/изоляция средств для передачи вращающего момента может быть осуществлена нанесением изоляционного покрытия на вал, на передающие вращающий момент или приводные механизмы, и т.п.. Средства для передачи вращающего момента могут быть размещены внутри вторичных корпусов или могут быть установлены снаружи вторичных корпусов. Если указанные средства для передачи вращающего момента установлены снаружи, вал может проходить за пределы вторичных корпусов.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0030] Для лучшего понимания настоящего изобретения и достижения целесообразного эффекта ниже кратко описаны сопроводительные чертежи, на которых показаны предпочтительные варианты реализации настоящего изобретения, и на которых:

На фиг. 1 схематически показан вид конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 2 показан в разрезе вид сверху турбины, показанной на фиг.1, показывающий токопередачу вдоль турбины;

На фиг. 3 показано подробное изображение конструкции ротора для использования в турбине согласно одному варианту реализации настоящего изобретения;

На фиг. 4 схематически показан вид конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 5 показан в разрезе вид сверху турбины, показанной на фиг.4, показывающий токопередачу вдоль турбины;

На фиг. 6А и 6В схематически показаны подробные виды, показывающие конструкцию межроторного токопередающего механизма согласно одному варианту реализации настоящего изобретения;

На фиг. 6С и 6D показаны увеличенные виды взаимодействия между роторами и собирающими шинами посредством токопередающего механизма согласно одному варианту реализации настоящего изобретения;

На фиг. 7А схематически показан вид конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 7В показан в разрезе вид турбины, показанной на фиг. 7А, показывающий токопередачу вдоль турбины;

На фиг. 7С схематически показан вид конструкции турбины, обеспечивающей боковое изменение между роторами, согласно одному варианту реализации настоящего изобретения;

На фиг. 8 показана модель профиля поля для соленоида, подходящего для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 9 показан график напряженности поля вдоль внутренней стенки соленоида, показанного на фиг. 8;

На фиг. 10 показана модель профиля поля для соленоида для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 11 показан график напряженности поля вдоль внутренней стенки соленоида, показанного на фиг. 10;

На фиг. 12 показана модель профиля поля для соленоида для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 13 показан график напряженности поля вдоль внутренней стенки соленоида, показанного на фиг. 12;

На фиг. 14 показана модель профиля поля для соленоида для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 15 показан график напряженности поля вдоль внутренней стенки соленоида, показанного на фиг. 14;

На фиг. 16 показана модель профиля поля для соленоида для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 17 показан график напряженности поля вдоль внутренней стенки соленоида, показанного на фиг. 16;

На фиг. 18 показан график различных коэффициентов пересчета при различной температуре для высокотемпературной сверхпроводимой ленты, на которую воздействуют различные параллельно ориентированные магнитные поля;

На фиг. 19 показан график различных коэффициентов пересчета при различной температуре для высокотемпературной сверхпроводимой ленты, на которую воздействуют различные перпендикулярно ориентированные магнитные поля;

На фиг. 20 показана модель профиля поля для соленоида, согласованного с магнитопроводом, для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 21 показан график влияния магнитопровода на напряженность поля внутри соленоида, показанного на фиг. 20;

На фиг. 22 показана модель профиля поля для соленоида, согласованного с магнитопроводом, для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 23 показан график влияния магнитопровода на напряженность поля внутри соленоида, показанного на фиг. 22;

На фиг. 24 показана модель профиля поля для соленоида, согласованного с магнитопроводом, для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 25 показан график влияния магнитопровода на напряженность поля внутри соленоида, показанного на фиг. 24;

На фиг. 26 показана модель профиля поля для соленоида для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 27 показан график напряженности поля вдоль внутренней стенки соленоида, показанного на фиг. 26;

На фиг. 28 показана модель профиля поля для соленоида для использования в конструкции турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 29 показан график напряженности поля вдоль внутренней стенки соленоида, показанного на фиг. 28;

На фиг. 30A-30D показаны графики напряженности пикового поля и вращающего момента в зависимости от тока возбуждения для различных конфигураций турбины;

На фиг. 31A-31D показаны графики зависимости выходного вращающего момента от количества витков, формирующих катушки для различных конфигураций турбины;

На фиг. 32А и 32В показаны графики зависимости силы и вращающего момента от диаметра соленоида;

На фиг. 33 схематически показан вид конструкции роторного узла для использования в турбине согласно одному варианту реализации настоящего изобретения;

На фиг. 34 показан в разрезе вид роторного узла, показанного на фиг. 33;

На фиг. 35 схематически показан вид конструкции статора для использования с роторным узлом согласно одному варианту реализации настоящего изобретения;

На фиг. 36 показан в разрезе вид статора, показывающий протекание электрического тока по ротору, показанному на фиг. 35;

На фиг. 37 схематически показано распределение вращающего момента в роторе, показанном на фиг. 33 и 34;

На фиг. 38 схематически показан вид конструкции межроторного токопередающего механизма для использования в роторном узле согласно одному варианту реализации настоящего изобретения;

На фиг. 39 схематически показан вид обратной стороны межроторного токопередающего механизма, показанного на фиг. 38;

На фиг. 40 показана подробная схема, показывающая взаимное соединение роторов в токопередающем механизме, показанном на фиг. 38 и 39;

На фиг. 41 схематически показано расположение электромагнитов для обеспечения активного экранирования;

На фиг. 42 схематически показан вид электромагнитной турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 43 показан в разрезе вид турбины, показанной на фиг. 42;

На фиг. 44 показан подробный разрез корпус роторов турбины, показанной на фиг.42 и 43;

На фиг. 45 схематически показан вид роторного узла турбины, показанной на фиг. 43;

На фиг. 46 показан в разрезе вид роторного узла, показанного на фиг. 45;

На фиг. 47 схематически показан в разрезе вид электромагнитной турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 48 схематически показан вид роторного узла для использования в турбине, показанной на фиг. 47;

На фиг. 49 схематически показан разрез узла статора для использования в турбине, показанной на фиг. 47;

На фиг. 50 показан в разрезе вид роторного узла, показанного на фиг. 48, установленный на место внутри узла статора, показанного на фиг. 49;

На фиг. 51 схематически показано прохождение тока возбуждения по роторам и статорам турбины, показанной на фиг. 47;

На фиг. 52 схематически в разрезе показан вид конструкции электромагнитной турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 53 схематически показано прохождение тока возбуждения по роторам и статорам турбины, показанной на фиг. 52;

На фиг. 54 схематически в разрезе показан вид конструкции электромагнитной турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 55 схематически показано прохождение тока возбуждения по роторам и статорам турбины, показанной на фиг. 54;

На фиг. 56 схематически в разрезе показан вид конструкции электромагнитной турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 57 схематически показано прохождение тока возбуждения по роторам и статорам турбины, показанной на фиг. 56;

На фиг. 58 схематически в разрезе показан вид конструкции электромагнитной турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 59 схематически показано прохождение тока возбуждения по роторам и статорам турбины, показанной на фиг. 58;

На фиг. 60 схематически в разрезе показан вид конструкции электромагнитной турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 61 схематически показано прохождение тока возбуждения по роторам и статорам турбины, показанной на фиг. 60;

На фиг. 62 схематически в разрезе показан вид конструкции электромагнитной турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 63 схематически показано прохождение тока возбуждения по роторам и статорам турбины, показанной на фиг. 62;

На фиг. 64 схематически в разрезе показан вид конструкции электромагнитной турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 65 показан подробный вид уплотнения для токопередающего механизма турбины, показанной на фиг. 54;

На фиг. 66 схематически показан вид одного возможного механизма для передачи вращающего момента от электромагнитного двигателя согласно одному варианту реализации настоящего изобретения;

На фиг. 67А в частичном разрезе показан вид механизма для передачи вращающего момента для соединения с электромагнитным двигателем согласно одному варианту реализации настоящего изобретения;

На фиг. 67В в разрезе показан вид механизма для передачи вращающего момента, показанного на фиг. 66;

На фиг. 68А схематически показан вид механизма для передачи вращающего момента для соединения с электромагнитным двигателем согласно одному варианту реализации настоящего изобретения;

На фиг. 68В в разрезе показан вид механизма для передачи вращающего момента, показанного на фиг. 68А;

На фиг. 69А-69С показаны графики зависимостей различных характеристик электромагнитных турбин согласно вариантам реализации настоящего изобретения от диаметра ротора;

На фиг. 70 показан в разрезе вид турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 71 показана диаграмма магнитного поля, возбужденного турбиной, показанной на фиг. 70, при использовании компенсирующих катушек;

На фиг. 72 показан в разрезе вид турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 73А показан в разрезе вид механизма для передачи вращающего момента для турбины, показанной на фиг. 72;

На фиг. 73В схематически показан вид механизма для передачи вращающего момента для турбины показанной на фиг. 72;

На фиг. 74 показана диаграмма сил, генерируемых между двумя смежными соленоидами;

На фиг. 75 в разрезе показан вид турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 76 показан в разрезе вид, иллюстрирующий протекание электрического тока в турбине, показанной на фиг. 75;

На фиг. 77 показана диаграмма магнитного поля, возбужденного катушками турбины, показанной на фиг. 75;

На фиг. 78 в разрезе показан вид турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 79 показана диаграмма магнитного поля, возбужденного катушками турбины, показанной на фиг. 78;

На фиг. 80 в разрезе показан вид турбины согласно одному варианту реализации настоящего изобретения;

На фиг. 81 показан в разрезе вид, иллюстрирующий протекание электрического тока в турбине, показанной на фиг. 80;

На фиг. 82 показана диаграмма магнитного поля, возбужденного катушками для использования в турбине, показанной на фиг. 80;

На фиг. 83 показана диаграмма магнитного поля, возбужденного катушками для использования в турбине согласно одному варианту реализации настоящего изобретения;

На фиг. 84 показана диаграмма магнитного поля, возбужденного катушками для использования в турбине согласно одному варианту реализации настоящего изобретения;

На фиг. 85 показана диаграмма магнитного поля, возбужденного катушками для использования в турбине согласно одному варианту реализации настоящего изобретения;

На фиг. 86 показана диаграмма магнитного поля, возбужденного катушками для использования в турбине согласно одному варианту реализации настоящего изобретения;

На фиг. 87 показана диаграмма магнитного поля, возбужденного катушками для использования в турбине согласно одному варианту реализации настоящего изобретения;

На фиг. 88 показана диаграмма магнитного поля, возбужденного катушками для использования в турбине согласно одному варианту реализации настоящего изобретения;

На фиг. 89 в разрезе показан покомпонентный вид турбины согласно одному варианту реализации настоящего изобретения; и

На фиг. 90 показан в разрезе вид, иллюстрирующий протекание электрического тока в турбине, показанной на фиг. 88.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

[0031] На фиг. 1 показан один вариант реализации высокоскоростной электромагнитной турбины 100 согласно одному варианту реализации настоящего изобретения. Как показано на чертеже, турбина 100 содержит корпус 101, сформированный из последовательности проводящих катушек 1021, 1022, 1023, 1024, 1025, 1026, 1027 и последовательности роторов 1031, 1032, 1033, 1034, 1035, 1036. Для специалистов очевидно, что высокоскоростная электромагнитная турбина показанного на фиг. 1 типа может быть выполнена по меньшей мере из одной катушки и одного ротора или любого количества роторов и катушек (т.е., количество катушек и роторов может быть от 1 до n в зависимости от необходимого размера турбины 100). Катушки 1021, 1022, 1023, 1024, 1025, 1026, 1027 соединены последовательно с формированием длинного соленоида для возбуждения необходимого магнитного поля для вызывания вращения роторов внутри турбины 100 при пропускании тока возбуждения через турбину 100.

[0032] Роторы 1031, 1032, 1033, 1034, 1035 и 1036, как показано на чертеже, установлены на валу 104. Вал 104 расположен коаксиально относительно центральной оси катушек 1021, 1022, 1023, 1024, 1025, 1026, 1027. В данном конкретном примере роторы 1031, 1032, 1033, 1034, 1035 и 1036 прикреплены к валу 104, который выполнен с возможностью свободного вращения. Специалистам понятно, что вал может быть фиксированным, в то время как роторы 1031, 1032, 1033, 1034, 1035 и 1036 могут быть выполнены с возможностью свободного вращения вокруг вала 104. В такой конструкции роторы 1031, 1032, 1033, 1034, 1035, 1036 могут быть установлены на валу с использованием подшипников, обеспечивающих возможность вращения каждого ротора независимо от вала 104.

[0033] Каждый ротор 1031, 1032, 1033, 1034, 1035, 1036 соединен с вторичным валом 105 для обеспечения передачи тока между роторами. В этом случае каждый ротор электрически и механически соединен со вторичным валом 105 посредством проводящей полосы 106 и зубчатого колеса 107 (показанных на фиг. 3), расположенных на наружной периферийной области каждого ротора 1031, 1032, 1033, 1034, 1035, 1036. Каждые из проводящих полос 1061, 1062, 1063, 1064, 1065, 1066 и зубчатых колес 1071, 1072, 1073, 1074, 1075, 1076 взаимодействуют с ведущими и токопередающими узлами, разнесенными на некоторое расстояние друг от друга вдоль длины вторичного вала 105.

[0034] Каждый из ведущих и токопередающих узлов, расположенных на вторичном валу, в данном случае содержит проводящее кольцо 108, соединенное с зубчатым колесом 109, которое соединено с электрической щеткой 110, соединенной с одним концом собирающей шины 111. Противоположный конец собирающей шины 111 соединен с основным валом 104 для создания пути обратного тока к следующему ротору внутри последовательности роторов, установленных на основном валу. При подаче электрического тока к ротору 1031 посредством щетки 1121, указанный ток протекает через радиальные спицы ротора 103 к проводящей полосе 106. Затем электрический ток передается проводящему кольцу 108 посредством контакта с проводящей полосой 106, через зубчатое колесо 109 и щетку 110 к собирающей шине 111 (более подробное описание передачи электрического тока внутри роторов и между роторами приведено в отношении фиг. 2 и 3 ниже). Зубчатое колесо 109 в данном случае обеспечивает вращающий момент, выработанный ротором 1031 под действием тока возбуждения, и передает его вторичному валу 105, так что он вращается вместе с роторами 1031, 1032, 1033, 1034, 1035, 1036 и основным валом 104. Благодаря вращению таким образом вторичного вала может быть уменьшен износ проводящих компонентов, а именно, проводящих полос 1061, 1062, 1063, 1064, 1065, 1066 и колец 1081, 1082, 1083, 1084, 1085, 1086.

[0035] На фиг. 2 в частичном разрезе показан вид сверху турбины, показанной на фиг. 1, на котором изображен канал 201 передачи (показанный красным цветом) тока возбуждения в турбине. Поскольку электрический ток приложен к ротору 1031 посредством щетки 1121, он протекает вдоль токопроводящей полосы 1061. Затем, электрический ток протекает по токопроводящему кольцу 1081 через контакт с токопроводящей полосой 1061, кольцо 1081, в свою очередь, передает электрический ток че