Способ обработки сжиженного газа для судна

Иллюстрации

Показать все

Изобретение может быть использовано в системах топливоподачи судовых двигателей внутреннего сгорания (ДВС). Предложен способ обработки сжиженного газа для судна, осуществляемый посредством системы обработки сжиженного газа для судна, которое содержит грузовую цистерну 11, содержащую сжиженный природный газ (LNG), основной и вспомогательный двигатели, использующие указанный LNG. Система по способу обработки сжиженного газа содержит линию компрессора L1, выполненную с возможностью сжимать BOG, образуемый в грузовой цистерне, посредством компрессора 13 и подавать сжатый BOG в основной и вспомогательный двигатели в качестве топлива, и насосную линию L23, выполненную с возможностью сжимать LNG из грузовой цистерны 11, посредством насоса 43 и подавать сжатый LNG в основной и вспомогательный двигатели в качестве топлива. В загруженном состоянии, в котором количество LNG в грузовой цистерне, больше, чем в балластном состоянии, BOG, образуемый в грузовой цистерне, подают в качестве топлива в основной и/или вспомогательный двигатель через линию компрессора. 8 з.п. ф-лы, 13 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к способу обработки сжиженного газа для судна.

УРОВЕНЬ ТЕХНИКИ

В последнее время потребление сжиженного газа, такого как сжиженный природный газ (LNG) или сжиженный нефтяной газ (LPG), быстро растет по всему миру. Сжиженный газ транспортируют в газообразном состоянии через береговые или морские газовые трубопроводы или транспортируют к удаленному месту потребления и при этом хранят его в сжиженном состоянии внутри газовоза для сжиженного газа. Сжиженный газ, такой как LNG или LPG, получают посредством охлаждения природного газа или нефтяного газа до криогенной температуры (в случае LNG, приблизительно -163°C). Поскольку происходит значительное уменьшение объема сжиженного газа по сравнению с газообразным состоянием, сжиженный газ очень хорошо подходит для морской транспортировки на большие расстояния.

Газовоз для сжиженного газа, такой как LNG газовоз, разрабатывают для того, чтобы загружать сжиженный газ, плавать по морю и выгружать сжиженный газ в месте потребления на берегу. С этой целью, газовоз для сжиженного газа содержит цистерну для хранения (также называемую «грузовая цистерна»), которая может выдерживать криогенную температуру сжиженного газа.

Примеры морской конструкции обеспечивают грузовой цистерной, которая способна хранить криогенный сжиженный газ, могут включать суда, такие как газовоз для сжиженного газа и судно регазификации LNG (LNG RV), или структуры, такие как плавучая установка для регазификации и хранения LNG (LNG FSRU) и плавучая установка для добычи, хранения и отгрузки LNG (LNG FPSO) и установленная на барже электростанция (BMPP).

LNG RV представляет собой самодвижущийся плавучий газовоз для сжиженного газа, оборудованный установкой для регазификации LNG, а LNG FSRU представляет собой морскую структуру, которая хранит LNG, загруженный с LNG газовоза на море далеко от земли и, в случае необходимости, доставляет LNG к месту потребления на берегу посредством газификации LNG. LNG FPSO представляет собой морскую структуру, которая очищает извлеченный LNG на море, хранит LNG в цистерне для хранения после прямого сжижения и, в случае необходимости, перегружает LNG в LNG газовоз. BMPP представляет собой структуру, которая оборудована электрогенерирующей установкой для того, чтобы получать электричество на море.

Термин «судно», как используют в настоящем документе, представляет собой понятие, которое включает газовоз для сжиженного газа, такой как LNG газовоз, LNG RV и структуры, такие как LNG FPSO, LNG FSRU и BMPP.

Поскольку температура сжижения природного газа представляет собой криогенную температуру -163°C при давлении окружающей среды, LNG вероятно будет испаряться, даже когда температура LNG слегка превышает -163°C при давлении окружающей среды. В случае стандартного LNG газовоза, даже несмотря на то, что грузовая цистерна для LNG имеет тепловую изоляцию, непрерывно происходит перенос внешнего тепла в LNG. Следовательно, во время транспортировки LNG посредством LNG газовоза, непрерывно происходит испарение LNG внутри грузовой цистерны для LNG и образование испаряющегося газа (далее в настоящем документе обозначаемого как BOG) внутри грузовой цистерны для LNG.

Образуемый природный газ может повышать внутреннее давление в грузовой цистерне и ускорять поток природного газа из-за качки судна, что вызывает структурные проблемы. Следовательно, необходимо подавлять образование BOG.

Стандартно для того, чтобы подавлять образование BOG внутри грузовой цистерны газовоза для сжиженного газа по отдельности или в комбинации использовали способ отвода BOG из грузовой цистерны и сжигания BOG, способ отвода BOG из грузовой цистерны, повторного сжижения BOG через аппарат повторного сжижения и возврата BOG в грузовую цистерну, способ использования BOG в качестве топлива для гребного двигателя судна и способ подавления образования BOG посредством поддержания внутреннего давления грузовой цистерны на высоком уровне.

В случае стандартного судна, оборудованного аппаратом повторного сжижения BOG, BOG внутри грузовой цистерны отводят из грузовой цистерны и затем повторно сжижают через аппарат повторного сжижения для того, чтобы поддерживать давление в грузовой цистерне на подходящем уровне. В этом случае, отводимый BOG повторно сжижают через теплообмен с охлаждающим средством (например, азот, смешанное охлаждающее средство или тому подобное), охлажденным до криогенной температуры, в аппарате повторного сжижения, который содержит цикл охлаждения, и повторно сжиженный BOG возвращают в грузовую цистерну.

В случае стандартного LNG газовоза, оборудованного пропульсивной системой DFDE, BOG потребляют таким образом, чтобы подавать его в качестве топлива в DFDE после обработки BOG только посредством компрессора BOG и нагрева, без монтажа установки повторного сжижения. Следовательно, когда количество топлива, необходимое для двигателя, меньше, чем образующееся количество BOG, возникает такая проблема, что BOG сжигают в камере сгорания газа (GCU) или выбрасывают в атмосферу.

Даже несмотря на то, что стандартный LNG газовоз, оборудованный установкой повторного сжижения и низкоскоростным дизельным двигателем, может обрабатывать BOG через установку повторного сжижения, управление всей системой осложняется из-за сложности эксплуатации установки повторного сжижения с использованием газообразного азота и потребления существенного количества энергии.

Следовательно, существует необходимость в непрерывных исследованиях и разработке систем и способов эффективной обработки сжиженного газа, включая BOG, образуемый естественным путем в грузовой цистерне.

РАСКРЫТИЕ

ТЕХНИЧЕСКАЯ ПРОБЛЕМА

Настоящее изобретение выполнено с целью решить вышеописанные проблемы и относится к системе и способу обработки сжиженного газа для судна, которое содержит грузовую цистерну, в которой хранят LNG, и двигатель, в который подают LNG, который хранят в грузовой цистерне, и который использует LNG в качестве топлива, где BOG, образуемый в грузовой цистерне, и LNG, который хранят в грузовой цистерне, используют в двигателе в качестве топлива, тем самым достигая эффективного использования сжиженного газа.

ТЕХНИЧЕСКОЕ РЕШЕНИЕ

В соответствии с одним из аспектов по настоящему изобретению, предоставлен способ обработки сжиженного газа для судна, который осуществляют с помощью системы обработки сжиженного газа для судна, которое содержит грузовую цистерну, в которой хранят сжиженный природный газ (LNG), и основной двигатель и вспомогательный двигатель с использованием LNG, который хранят в грузовой цистерне, в качестве топлива, система по способу обработки сжиженного газа содержит линию компрессора, выполненную с возможностью сжимать BOG, образуемый в грузовой цистерне, посредством компрессора и подавать сжатый BOG в основной двигатель и вспомогательный двигатель в качестве топлива, и насосную линию, выполненную с возможностью сжимать LNG, который хранят в грузовой цистерне, посредством насоса и подавать сжатый LNG в основной двигатель и вспомогательный двигатель в качестве топлива, способ обработки сжиженного газа включает: подачу BOG, образуемого в грузовой цистерне, по меньшей мере в один из основного двигателя и вспомогательного двигателя в качестве топлива через линию компрессора в загруженном состоянии, в котором количество LNG, который хранят в грузовой цистерне, больше, чем в балластном состоянии.

В балластном состоянии, LNG, который хранят в грузовой цистерне, можно подавать в качестве топлива в основной двигатель и вспомогательный двигатель через насосную линию.

В балластном состоянии, BOG, образуемый в грузовой цистерне, можно подавать в качестве топлива в один из основного двигателя и вспомогательного двигателя через линию компрессора.

В балластном состоянии, BOG, образуемый в грузовой цистерне, можно подавать в качестве топлива во вспомогательный двигатель через линию компрессора, и LNG, который хранят в грузовой цистерне, можно подавать в качестве топлива в основной двигатель через насосную линию.

В балластном состоянии, BOG, образуемый в грузовой цистерне, можно периодически подавать в качестве топлива по меньшей мере в один из основного двигателя и вспомогательного двигателя через линию компрессора, и когда BOG не подают по меньшей мере в один из основного двигателя и вспомогательного двигателя, LNG, который хранят в грузовой цистерне, можно подавать в качестве топлива по меньшей мере в один из основного двигателя и вспомогательного двигателя через насосную линию.

В балластном состоянии, BOG, образуемый в грузовой цистерне, и LNG, который хранят в грузовой цистерне, можно одновременно подавать в качестве топлива в основной двигатель и вспомогательный двигатель.

Компрессор может содержать множество цилиндров сжатия, и BOG, образуемый в грузовой цистерне, можно сжимать посредством части из множества цилиндров сжатия и подавать в качестве топлива во вспомогательный двигатель.

BOG, образуемый в грузовой цистерне, и принудительно испаряемый LNG можно подавать в компрессор и сжимать с его помощью, и их подают в качестве топлива по меньшей мере в один из основного двигателя и вспомогательного двигателя.

Когда LNG, который хранят в грузовой цистерне, подают во вспомогательный двигатель, тяжелый углеводородный компонент можно отделять от LNG с тем, чтобы регулировать метановое число LNG до значения, необходимого для вспомогательного двигателя.

BOG, который не подают в качестве топлива в основной двигатель и вспомогательный двигатель наряду с BOG, сжимаемым посредством компрессора, можно сжижать посредством обмена теплом с BOG, который отводят из грузовой цистерны и переносят компрессор.

ПОЛЕЗНЫЕ ЭФФЕКТЫ

В соответствии с настоящим изобретением, весь BOG, образуемый во время транспортировки груза (то есть LNG) в LNG газовозе, можно использовать в качестве топлива двигателя, или можно повторно сжижать, возвращать в грузовую цистерну и хранить в ней. Следовательно, определенное количество BOG, потребляемого в GCU или тому подобном, можно снижать или устранять. Кроме того, BOG можно обрабатывать посредством повторного сжижения, без использования отдельных охлаждающих средств, таких как азот.

Следовательно, в соответствии с системой и способом обработки сжиженного газа по настоящему изобретению, BOG, образуемый в грузовой цистерне, можно повторно сжижать без монтажа аппарата повторного сжижения, потребляющего большое количество энергии и требующего чрезмерных начальных затрат на монтаж, тем самым экономя энергию, потребляемую в аппарате повторного сжижения.

Кроме того, в соответствии с системой и способом обработки сжиженного газа по настоящему изобретению, часть сжатого BOG после повышения давления BOG, отводимого из грузовой цистерны, можно подавать в двигатель с впрыском газа высокого давления (то есть пропульсивная система) в качестве топлива. Остальной сжатый BOG можно охлаждать с использованием энергии холода BOG после отвода из груза и перед сжатием и возвращать в грузовую цистерну.

Кроме того, в системе и способе обработки сжиженного газа в соответствии с настоящим изобретением, поскольку нет необходимости монтировать аппараты повторного сжижения с использованием отдельных охлаждающих средств (то есть цикл охлаждения с азотным охлаждающим средством, цикл охлаждения со смешанным охлаждающим средством или тому подобное), установки для подачи и хранения охлаждающих средств не нужно монтировать отдельно. Следовательно, возможно сокращать начальные затраты на монтаж и затраты на эксплуатацию для конфигурирования всей системы.

Кроме того, в соответствии с системой и способом обработки сжиженного газа по настоящему изобретению, когда у BOG, охлажденного и сжиженного в теплообменнике, после сжатия снижают давление посредством детандера, потраченную энергию можно повторно использовать, поскольку во время расширения можно генерировать энергию.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 представлена схематическая диаграмма конфигурации, которая иллюстрирует систему обработки сжиженного газа для судна в соответствии с первым вариантом осуществления настоящего изобретения.

На фиг. 2 представлена схематическая диаграмма конфигурации, которая иллюстрирует систему обработки сжиженного газа для судна в соответствии со вторым вариантом осуществления настоящего изобретения.

На фиг. 3 и 4 представлены схематические диаграммы конфигурации, которые иллюстрируют системы обработки сжиженного газа для судна в соответствии с модификациями второго варианта осуществления настоящего изобретения.

На фиг. 5 представлена схематическая диаграмма конфигурации, которая иллюстрирует систему обработки сжиженного газа для судна в соответствии с третьим вариантом осуществления настоящего изобретения.

На фиг. 6 представлена схематическая диаграмма конфигурации, которая иллюстрирует систему обработки сжиженного газа для судна в соответствии с четвертым вариантом осуществления настоящего изобретения.

На фиг. 7 и 8 представлены схематические диаграммы конфигурации, которые иллюстрируют системы обработки сжиженного газа для судна в соответствии с модификациями четвертого варианта осуществления настоящего изобретения.

На фиг. 9 представлена схематическая диаграмма конфигурации, которая иллюстрирует систему обработки сжиженного газа для судна в соответствии с пятым вариантом осуществления настоящего изобретения.

На фиг. 10-12 представлены схематические диаграммы конфигурации, которые иллюстрируют системы обработки сжиженного газа для судна в соответствии с модификациями пятого варианта осуществления настоящего изобретения.

На фиг. 13 представлена схематическая диаграмма конфигурации, которая иллюстрирует систему обработки сжиженного газа для судна в соответствии с шестым вариантом осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ОБРАЗЦОВЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Варианты осуществления настоящего изобретения описаны ниже подробно со ссылкой на сопроводительные чертежи. Эти варианты осуществления предоставлены с тем, чтобы это раскрытие было тщательным и полным и чтобы полностью передать объем изобретения специалистам в данной области. Однако изобретение можно осуществлять во многих различных формах, и его не следует толковать в качестве ограниченного вариантами осуществления, изложенными в настоящем документе. На всем протяжении чертежей и описания, схожие номера позиций используют, чтобы отослать к схожим элементам.

Международная морская организация (IMO) регулирует выбросы оксидов азота (NOx) и оксидов серы (SOx) в выхлопных газах кораблей и также пытается регулировать выбросы диоксида углерода (CO2). В частности, вопрос регулирования оксидов азота (NOx) и оксидов серы (SOx) поднят в Протоколе по предотвращению загрязнения моря кораблями (MARPOL) в 1997 году. После восьми долгих лет протокол согласован с требованиями по выполнению и вступил в силу в мае 2005 года. В настоящее время это регулирование имеет силу в качестве обязательного положения.

Следовательно, для того, чтобы отвечать таким положениям, предложены различные способы для того, чтобы снижать выбросы оксидов азота (NOx). В качестве одного из таких способов разработан и используется двигатель с впрыском природного газа высокого давления для LNG газовоза, например, разработан и используется двигатель MEGI. По сравнению с дизельным двигателем той же мощности, двигатель MEGI может снижать выбросы загрязняющих веществ (диоксид углерода: 23%, соединения азота: 80%, соединения серы: 95% или больше). Таким образом, двигатель MEGI рассматривают в качестве экологически благоприятного двигателя следующего поколения.

Такой двигатель MEGI можно устанавливать на судне, таком как LNG газовоз, который транспортирует LNG, при этом LNG хранится в цистерне для хранения, способной выдерживать криогенную температуру. Термин «судно», как используют в настоящем документе, включает LNG газовоз, LNG RV и морские агрегаты, такие как LNG FPSO и LNG FSRU. В этом случае, двигатель MEGI использует природный газ в качестве топлива и требует высокого давления приблизительно от 150 до 400 бар (абсолютное давление) для подачи газа, в зависимости от его нагрузки.

MEGI можно непосредственно соединять с гребным винтом для движения. С этой целью, в двигателе MEGI предусмотрен 2-тактный двигатель, вращающийся с низкой скоростью. То есть, двигатель MEGI представляет собой низкоскоростной 2-тактный двигатель с впрыском природного газа высокого давления.

Кроме того, чтобы снижать выбросы оксида азота, для движения или генерации энергии разработан и используется двигатель DF (например, DFDG: двухтопливный дизельный генератор), который использует смесь дизельного топлива и природного газа в качестве топлива. Двигатель DF представляет собой двигатель, который может сжигать смесь нефти и природного газа, или может избирательно использовать одно из нефти и природного газа в качестве топлива. Поскольку содержание серы составляет меньше, чем в случае, когда используют только нефть в качестве топлива, в выхлопных газах содержание оксида серы мало.

Двигатель DF не должен подавать газообразное топливо под высоким давлением, как у двигателя MEGI, и только должен подавать газообразное топливо после его сжатия приблизительно от нескольких бар до нескольких десятков бар. Двигатель DF получает энергию посредством приведения в действие генератора энергии через движущую силу двигателя. Эту энергию можно использовать для того, чтобы приводить в действие ходовой двигатель или для работы различных аппаратов или установок.

Когда подают природный газ в качестве топлива, в случае двигателя MEGI нет необходимости, чтобы совпадало метановое число, но в случае двигателя DF необходимо, чтобы метановое число совпадало.

Если нагревают LNG, метановый компонент, который имеет относительно низкую температуру сжижения, предпочтительно испаряется. Таким образом, поскольку содержание метана в BOG высоко, BOG можно непосредственно подавать в качестве топлива в двигатель DF. Однако, поскольку содержание метана в LNG относительно ниже, чем в BOG, метановое число в LNG ниже, чем метановое число, необходимое для двигателя DF. Доли углеводородных компонентов (метан, этан, пропан, бутан и т.п.), образующих LNG, отличаются в соответствии с районами производства. Следовательно, не подходит испарять LNG как он есть и затем подавать испаренный LNG в двигатель DF в качестве топлива.

Для того чтобы регулировать метановое число, тяжелый углеводородный (HHC) компонент, который имеет более высокую температуру сжижения, чем метан, можно сжижать и удалять посредством принудительного испарения LNG и понижения температуры LNG. После регулировки метанового числа возможно дополнительно нагревать природный газ, метановое число которого регулируют в соответствии с температурными условиями, необходимыми для двигателя.

Далее в настоящем документе, конфигурации и работа предпочтительных вариантов осуществления настоящего изобретения описаны подробно со ссылкой на сопроводительные чертежи. Кроме того, следующие варианты осуществления можно модифицировать в различных формах, и они не предназначены для того, чтобы ограничивать объем настоящего изобретения.

На фиг. 1 представлена диаграмма конфигурации, которая иллюстрирует систему обработки сжиженного газа для судна в соответствии с первым вариантом осуществления настоящего изобретения. Систему обработки сжиженного газа по настоящему варианту осуществления можно применять в LNG газовозе, оборудованном двигателем MEGI в качестве основного гребного двигателя (то есть движущее средство, которое использует LNG в качестве топлива).

Со ссылкой на фиг. 1, система 100 обработки сжиженного газа в соответствии с данным вариантом осуществления содержит линию 110 подачи топлива и линию 140 BOG. Линия 110 подачи топлива выполнена с возможностью предоставлять проход для переноса LNG из грузовой цистерны 1 к основному двигателю 3 в качестве пропульсивной системы. Линия 140 BOG выполнена с возможностью предоставлять проход для переноса BOG, образуемого в грузовой цистерне 1, к основному двигателю 3. Кроме того, система 100 обработки сжиженного газа, которая использует BOG в соответствии с данным вариантом осуществления, подает LNG в основной двигатель 3 в качестве топлива через линию 110 подачи топлива с помощью насоса 120 LNG и испарителя 130 LNG, подает BOG в основной двигатель 3 в качестве топлива через линию 140 BOG после сжатия BOG посредством компрессора 150 BOG и подает избыточный BOG из компрессора 150 BOG в интегрированную систему 200 генератора инертного газа/камеры сгорания газа (IGG/GCU).

В двигатель MEGI, который можно использовать в качестве основного двигателя 3, нужно подавать топливо под высоким давлением приблизительно от 150 до 400 бар (абсолютное давление). Следовательно, в качестве насоса 120 LNG и компрессора 150 BOG в соответствии с данным вариантом осуществления используют насос высокого давления и компрессор высокого давления, которые могут сжимать LNG и BOG до давления, соответственно, необходимого для двигателя MEGI.

Линия 110 подачи топлива предоставляет проход, через который LNG, подаваемый из грузовой цистерны для LNG 1 посредством приведения в действие переносящего насоса 2, переносят в основной двигатель 3 в качестве топлива, а насос 120 LNG и испаритель 130 LNG устанавливают в нем.

Насос 120 LNG устанавливают в линии 110 подачи топлива для того, чтобы предоставлять усилие насоса, необходимое для переноса LNG. В качестве примера насоса 120 LNG можно использовать насос LNG высокого давления (HP). Подобно данному варианту осуществления, множество насосов 120 LNG можно устанавливать параллельно.

Испаритель 130 LNG устанавливают на заднем конце насоса 120 LNG в линии 110 подачи топлива и он испаряет LNG, переносимый с помощью насоса 120 LNG. В качестве примера, LNG испаряют посредством теплообмена с теплоносителем, который циркулирует и который подают через линию 131 циркуляции теплоносителя. В качестве другого примера, различные нагревательные средства, включая нагреватели, можно использовать для предоставления тепла испарения для LNG. Кроме того, испаритель 130 LNG может использовать испаритель высокого давления (HP), который можно использовать под высоким давлением для испарения LNG. Между тем, в качестве примера теплоносителя, который циркулирует и который подают через линию 131 циркуляции теплоносителя, можно использовать пар, образуемый бойлером, или тому подобное.

Линия 140 BOG предоставляет проход для переноса BOG, образуемого естественным путем, из грузовой цистерны 1 в основной двигатель 3. Подобно данному варианту осуществления, линию 140 BOG соединяют с линией 110 подачи топлива для того, чтобы подавать BOG в основной двигатель 3 в качестве топлива. Альтернативно, линия 140 BOG может предоставлять проход для непосредственной подачи BOG в основной двигатель 3.

Компрессор 150 BOG устанавливают на линии 140 BOG для того, чтобы сжимать BOG, проходящий через линию 140 BOG. Несмотря на то, что только один компрессор 150 BOG проиллюстрирован на фиг. 1, систему можно выполнять с такой возможностью, что два компрессора BOG с одинаковым описанием соединяют параллельно с тем, чтобы отвечать требованиям к дублированию, точно таким же, как к основным системам подачи топлива. Однако, подобно данному варианту осуществления, когда один компрессор 150 BOG устанавливают в ответвленной части линии 160 избыточного BOG в линии 140 BOG, возможно добиваться дополнительных эффектов понижения бремени расходов на установку дорогостоящего компрессора 150 BOG и расходов на обслуживание.

Линия 160 избыточного BOG предоставляет проход для подачи избыточного BOG из компрессора 150 BOG в интегрированную систему 200 IGG/GCU. Линия 160 избыточного BOG может подавать избыточный BOG в качестве топлива во вспомогательный двигатель, такой как двигатель DF, также как интегрированная система 200 IGG/GCU.

Интегрированная система 200 IGG/GCU представляет собой систему, в которой интегрированы IGG и GCU.

Между тем линию 160 избыточного BOG и линию 110 подачи топлива можно соединять вместе посредством соединительной линии 170. Следовательно, благодаря соединительной линии 170, избыточный BOG можно использовать в качестве топлива основного двигателя 3 или испаренный LNG можно использовать в качестве топлива интегрированной системы 200 IGG/GCU. Нагреватель 180 можно устанавливать в соединительной линии 170 с тем, чтобы нагревать BOG или испаренный LNG, проходящий через нее, и клапан 190 понижения давления (PRV) можно устанавливать для того, чтобы снижать чрезмерное давление посредством регулировки давления обусловленного BOG или испаренным LNG. Между тем нагреватель 180 может представлять собой газовый нагреватель, использующий теплоту сгорания газа. Также нагреватель 180 может использовать различные нагревательные средства, включая блок циркуляции/подачи теплоносителя, который предоставляет источник тепла для нагрева посредством циркуляции теплоносителя.

Работа системы обработки сжиженного газа в соответствии с первым вариантом осуществления настоящего изобретения описана далее.

Когда давление внутри грузовой цистерны 1 равно или превышает заданное давление или когда генерируют большое количество BOG, BOG сжимают посредством приведения в действие компрессора 150 BOG и затем подают в качестве топлива в основной двигатель 3. Кроме того, когда давление внутри грузовой цистерны 1 ниже, чем заданное давление, или когда генерируют малое количество BOG, LNG переносят и испаряют посредством приведения в действие насоса 120 LNG и испарителя 130 LNG и затем подают в качестве топлива в основной двигатель 3.

Между тем избыточный BOG из компрессора 150 BOG подают в интегрированную систему 200 IGG/GCU или вспомогательный двигатель, такой как двигатель DF, через линию 160 избыточного BOG. Избыточный BOG потребляют или используют для генерации инертного газа для подачи в грузовую цистерну 1. Кроме того, избыточный BOG можно использовать в качестве топлива вспомогательного двигателя или тому подобное.

Интегрированная система 200 IGG/GCU, в которую подают BOG, может потреблять BOG, непрерывно образуемый в грузовой цистерне 1 посредством сгорания BOG внутри основного корпуса 210, и может, в случае необходимости, генерировать горючий газ в качестве инертного газа для подачи в грузовую цистерну 1.

На фиг. 2 представлена схематическая диаграмма конфигурации, которая иллюстрирует систему обработки сжиженного газа для судна в соответствии со вторым вариантом осуществления настоящего изобретения.

Несмотря на то, что на фиг. 2 проиллюстрирован пример, в котором систему обработки сжиженного газа по настоящему изобретению применяют в LNG газовозе, оборудованном двигателем с впрыском природного газа высокого давления, способного использовать природный газ в качестве топлива (то есть движущее средство, которое использует LNG в качестве топлива), систему обработки сжиженного газа по настоящему изобретению также можно применять к судам любого типа (LNG газовоз, LNG RV и т.п.) и морским агрегатам (LNG FPSO, LNG FSRU, BMPP и т.п.), в которых устанавливают грузовую цистерну для сжиженного газа.

В системе обработки сжиженного газа для судна в соответствии со вторым вариантом осуществления настоящего изобретения, NBOG, образуемый и отводимый из грузовой цистерны 11, в которой хранят сжиженный газ, переносят вдоль линии L1 подачи BOG, сжимают в компрессоре 13 и затем подают в двигатель с впрыском природного газа высокого давления, например, двигатель MEGI. BOG сжимают под высоким давлением приблизительно от 150 до 400 бар посредством компрессора 13 и затем подают в качестве топлива в двигатель с впрыском природного газа высокого давления, например, двигатель MEGI.

Грузовая цистерна 11 имеет герметизирующие и теплоизоляционные стенки с тем, чтобы хранить сжиженный газ, такой как LNG, в криогенном состоянии, но не может превосходно блокировать тепло, переносимое извне. Следовательно, непрерывно происходит испарение сжиженного газа внутри грузовой цистерны 11. Для того чтобы поддерживать давление BOG на подходящем уровне, BOG отводят из грузовой цистерны 11 через отводящую BOG линию.

Отводящий насос 12 устанавливают внутри грузовой цистерны 11 с тем, чтобы отводить LNG вовне грузовой цистерны, когда необходимо.

Компрессор 13 может содержать один или несколько цилиндров 14 сжатия и один или несколько промежуточных охладителей 15 для охлаждения BOG, температура которого поднимается. Компрессор 13 можно выполнять с возможностью сжимать BOG, например, приблизительно до 400 бар. Несмотря на то, что на фиг. 2 проиллюстрирован многоступенчатый компрессор 13, который содержит пять цилиндров 14 сжатия и пять промежуточных охладителей 15, число цилиндров сжатия и число промежуточных охладителей можно изменять, когда необходимо. Кроме того, множество цилиндров сжатия можно располагать внутри одного компрессора, и множество компрессоров можно соединять последовательно.

BOG, сжимаемый в компрессоре 13, подают в двигатель с впрыском природного газа высокого давления через линию L1 подачи BOG. Весь или часть сжатого BOG можно подавать в двигатель с впрыском природного газа высокого давления в соответствии с количеством топлива, необходимым для двигателя с впрыском природного газа высокого давления.

Кроме того, в соответствии с вариантом осуществления настоящего изобретения, когда BOG, отводимый из грузовой цистерны 11 и сжатый в компрессоре 13 (то есть весь BOG, отводимый из грузовой цистерны), представляет собой первый поток, первый поток BOG можно подразделять на второй поток и третий поток после сжатия. Второй поток можно подавать в качестве топлива в двигатель с впрыском природного газа высокого давления, а третий поток можно сжижать и возвращать в грузовую цистерну.

В этот момент второй поток подают в двигатель с впрыском природного газа высокого давления через линию L1 подачи BOG. Когда необходимо, второй поток можно подавать в качестве топлива через линию (то есть линия L1 подачи BOG), соединенную с двигателем с впрыском природного газа высокого давления, после прохождения через все из множества цилиндров 14 сжатия, содержащихся в компрессоре 13, или можно подавать в качестве топлива через линию (то есть ответвляющая BOG линия L8), соединенную с двигателем DF после прохождения через часть из множества цилиндров 14 сжатия, содержащихся в компрессоре 13.

Третий поток возвращают в грузовую цистерну 11 через линию L3 возврата BOG. Теплообменник 21 устанавливают в линии L3 возврата BOG с тем, чтобы охлаждать и сжижать третий поток. В теплообменнике 21 третий поток сжатого BOG обменивается теплом с первым потоком BOG, отводимым из грузовой цистерны 11 и затем подаваемым в компрессор 13.

Поскольку скорость потока первого потока BOG перед сжатием больше, чем скорость потока третьего потока, третий поток сжатого BOG можно сжижать посредством получения энергии холода от первого потока BOG перед сжатием. По существу, в теплообменнике 21, BOG в состоянии высокого давления охлаждают и сжижают посредством теплообмена между BOG с криогенной температурой незамедлительно после отвода из грузовой цистерны 11 и BOG в состоянии высокого давления, сжатым в компрессоре 13.

Давление LBOG, охлажденного в теплообменнике 21 и сжиженного, снижают по меньшей мере частично при прохождении через расширительный клапан 22, который служит в качестве средства понижения давления, и его подают в газожидкостный разделитель 23 в состоянии смеси газа и жидкости. Можно снижать давление LBOG приблизительно до атмосферного давления (например, давление снижают от 300 бар до 3 бар) при прохождении через расширительный клапан 22. Сжиженный BOG разделяют на газовые и жидкостные компоненты в газожидкостном разделителе 23. Жидкостный компонент, то есть LNG, переносят в грузовую цистерну 11 через линию L3 возврата BOG, и газовый компонент, то есть BOG, отводят из грузовой цистерны 11 через линию L5 рециркуляции BOG и объединяют с BOG, который подают в компрессор 13. Более конкретно, линия L5 рециркуляции BOG идет от верхнего конца газожидкостного разделителя 23 и соединяется со стороной выше по потоку, чем теплообменник 21 в линии L1 подачи BOG.

Для того чтобы плавно возвращать BOG с пониженным давлением в грузовую цистерну 11 и плавно объединять газовый компонент BOG с пониженным давлением с линией L1 подачи BOG через линию L5 рециркуляции BOG, благоприятно давление BOG после понижения давления с помощью средства понижения давления задавать выше внутреннего давления в грузовой цистерне 11.

Для удобства объяснения, указано, что теплообменник 21 устанавливают в линии L3 возврата BOG, но теплообменник 21 можно устанавливать в линии L1 подачи BOG, поскольку теплообмен фактически осуществляют между первым потоком BOG, переносимым через линию L1 подачи BOG, и третьим потоком BOG, переносимым через линию L3 возврата BOG.

Другой расширительный клапан 24 дополнительно можно устанавливать в линии L5 рециркуляции BOG. Следовательно, можно снижать давление газового компонента, отводимого из газожидкостного разделителя 23, при прохождении через расширительный клапан 24. Кроме того, охладитель 25 устанавливают в линии L5 рециркуляции BOG с тем, чтобы дополнительно охлаждать третий поток посредством теплообмена между третьим потоком BOG, сжиженным в теплообменнике 21 и подаваемым в газожидкостный разделитель 23, и газовым компонентом, отделенным от газожидкостного разделителя 23 и переносимым через линию L5 рециркуляции BOG. То есть, охладитель 25 дополнительно охлаждает BOG в жидком состоянии высокого давления до природного газа в криогенном газообразном состоянии низкого давления.

Для удобства объяснения, указано, что охладитель 25 устанавливают в линии L5 рециркуляции BOG, но охладитель 25 можно устанавливать в линии L3 возврата BOG, поскольку теплообмен фактически осуществляют между третьим потоком BOG, переносимым через линию L3 возврата BOG, и газовым компонентом, переносимым через линию L5 рециркуляции BOG.

Несмотря на то, что не проиллюстрировано, в соответствии с модификацией данного варианта осуществления, систему можно выполнять с такой возможностью, что охладитель 25 не используют. Если охладитель 25 не устанавливают, общая эффективность системы может быть слегка понижена. Однако можно упрощать расположение труб и работу системы, и можно снижать начальные затраты на монтаж и затраты на эксплуатацию.

Между тем, когда ожидают образования избыточного BOG, поскольку количество BOG, образуемого в грузовой цистерне 11, больше количества топлива, необходимого для двигателя с впрыском природного газа высокого давления, BOG, сжатый или сжимаемый поэтапно в компрессоре 13, ответвляют через ответвляющие BOG линии L7 и L8 и затем используют в потребляющих BOG средствах. Примеры потребляющих BOG средств могут включать GCU, DF генератор (DFDG) и газовую турбину, каждое из которых может использовать природный газ, который имеет относительно более низкое давление, чем для двигателя MEGI, в качестве топлива. На средней ступени компрессора 13 давление BOG, ответвленного через ответвляющие BOG линии L7 и L8, может составлять приблизительно от 6 до 10 бар.

Как описано выше, в системе обработки сжиженного газа и способе в соответствии с вариантом осуществления настоящего изобретения, BOG, образуемый во время транспортировки груза (то есть LNG) в LNG газовозе, можно использовать в качестве топлива двигателя, или можно повторно сжижать, возвращать в грузовую цистерну и хранить в ней. Следовательно, определенное количество BOG, потребляемого в GCU или тому подобном, можно снижать или устранять. Кроме того, BOG можно обрабатывать посредством повторного сжижения, без монтажа аппаратов повторного сжижения, использующих отдельные охлаждающие средства, такие как азот.

Кроме того, в системе обработки сжиженного газа и способе в соответствии с вариантом осуществления настоящего изобретения, поскольку нет необходимости монтировать аппараты повторного сжижения, использующие отдельные охлаждающие средства (то есть цикл охлаждения с азотным охлаждающим средством, цикл охлаждения со смешанным охлаждающим средством или тому подобное), установки для подачи и хранения охлаждающих средств не нужно монтировать отдельно. Следовательно, возможно сокращать начальные затраты на монтаж и затраты на эксплуатацию для конфигурирования всей системы.

Несмотря на то, что на фиг. 2 проиллюстрирован пример, в котором линию L3 возврата BOG для подачи сжатого BOG в теплообменник 21 ответвляют на заднем конце ко