Способ и устройство для отправки и приема управляющей информации нисходящей линии связи

Иллюстрации

Показать все

Изобретение относится к беспроводной системе связи. Пользовательское оборудование, UE, выполнено с возможностью принимать управляющую информацию нисходящей линии связи, DCI, переданной на UE первичной сотой в беспроводной системе связи. UE содержит одну или более обрабатывающих схем, которые выполнены с возможностью предполагать то, что сообщение DCI, которое имеет общий размер полезной нагрузки и одинаковый первый индекс элемента управляющего канала, но различные битовые поля, в общем пространстве поиска и характерном для UE пространстве поиска, передается первичной сотой (26) в общее пространство поиска или характерное для UE пространство поиска на основе конфигурирования UE при помощи управления радиоресурсами, RRC. 4 н. и 18 з.п. ф-лы, 10 ил., 7 табл.

Реферат

РОДСТВЕННЫЕ ЗАЯВКИ

По настоящей заявке испрашивается приоритет по предварительной заявке США № 61/753,086, поданной 16 января 2013 года, содержание которой является включенным в настоящую заявку во всей своей полноте посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящая заявка, в целом, относится к управляющей информации нисходящей линии связи в беспроводной системе связи и, в частности, относится к базовой станции и пользовательскому оборудованию, выполненным с возможностью, соответственно, отправлять и принимать подобную управляющую информацию нисходящей линии связи.

УРОВЕНЬ ТЕХНИКИ

Агрегирование несущих представляет собой функциональную возможность, при помощи которой множество, так называемых, компонентных несущих (также называемых «сотами») передаются параллельным образом к и от одного и того же пользовательского оборудования (UE). Осуществление агрегирования несущих в более крупную одну общую несущую для конкретного UE задействует больше диапазонов частот для UE и, вследствие этого, обеспечивает возможность UE достигать более высокой пиковой скорости по сравнению со скоростью, обеспеченной при помощи любой отдельной компонентной несущей. В системах долгосрочного развития (LTE), например, отдельные компонентные несущие, каждая из них, содержат обратно-совместимую несущую LTE (в пределах от 1,4 МГц до 20 МГц по диапазону частот), что подразумевает то, что осуществление агрегирования этих очень больших частей диапазона частот позволяет UE использовать диапазон частот отдельной несущей LTE больший, чем 20 МГц. Конечно, не требуется, чтобы агрегированные компонентные несущие являлись смежными в частотной области. Это обеспечивает возможность системным операторам, которые имеют небольшие (т.е. фрагментарные) распределения диапазона частот (обычно от 10 МГц и ниже), объединять эти небольшие распределения диапазона частот для конкретного UE.

UE, имеющее возможность агрегирования несущих, имеет одну первичную компонентную несущую (т.е. одну первичную соту) в каждом из нисходящего (DL) и восходящего (UL) направлений. Будучи агрегированными с первичными компонентными несущими, UE может иметь одну или более вторичных компонентных несущих (т.е. одну или более вторичных сот) в каждом из DL и UL. Однако не требуется, чтобы количество вторичных сот являлось одинаковым в каждом направлении так, чтобы являться симметричными. В некоторых версиях LTE, например, UE имеет одну первичную соту в каждом направлении, но ассиметричным образом имеет вторичную соту только в DL, но не в UL. В терминах компонентных несущих это означает, что UE имеет 2 несущих DL и одну несущую UL.

Как правило, сеть передает управляющую информацию нисходящей линии связи (DCI) на UE при помощи осуществления передачи сообщения DCI по нисходящему управляющему каналу на каждой из сот нисходящей линии связи UE, где DCI, переданная на соте нисходящей линии связи, относится к этой соте нисходящей линии связи и к связанной соте восходящей линии связи. В системах LTE, например, сеть передает DCI на UE при помощи осуществления передачи сообщения DCI по физическому нисходящему управляющему каналу (PDCCH) на каждой соте нисходящей линии связи (где один PDCCH переносит одно сообщение DCI и является специальным для конкретного UE). Принимая во внимание вышесказанное, если используется планирование для нескольких несущих, сеть может передавать на UE, на одной соте нисходящей линии связи, DCI, которая относится к множеству сот.

UE должно контролировать, передала ли сеть нисходящий управляющий канал, предназначенный специально для UE. Для того чтобы уменьшить сложность подобного контролирования, сеть подчиняет назначение нисходящих управляющих каналов ресурсам передачи конкретной структуре, основанной на, так называемых, элементах управляющего канала (множестве CCE). CCE представляет собой набор определенного количества ресурсов передачи, пригодных для передачи управляющих каналов (например, набор из 36 элементов ресурсов в LTE). Количество CCE, которым сеть назначает нисходящий управляющий канал (называемое «уровнем агрегирования») является переменным. Принимая во внимание вышесказанное, возможные уровни агрегирования являются ограниченными. В системе LTE, например, возможные уровни агрегирования являются ограниченными 1, 2, 4 или 8, соответствуя агрегированию 1, 2, 4 или 8 CCE для данного PDCCH. Возможные пути для того, чтобы агрегировать смежные CCE на любом данном уровне агрегирования, также являются ограниченными. Например, со множеством CCE, последовательно проиндексированных (например, как множество CCE 0-39), агрегирования смежных CCE могут начинаться только на конкретных индексах CCE; говоря другими словами, первый индекс CCE для агрегирования смежных CCE является ограниченным. Эти ограничения означают то, что существуют только конкретные CCE или агрегирования CCE (называемые в настоящем описании кандидатами управляющего канала), которым сеть имеет возможность назначать нисходящие управляющие каналы.

Для того чтобы не допустить необходимости для любого данного UE контролировать всех кандидатов управляющего канала для канала, предназначенного для UE, дополнительные ограничения устанавливают то, что UE требуется контролировать только определенный набор кандидатов управляющего канала. Набор кандидатов управляющего канала, который конкретное UE должно контролировать, определяется на уровне агрегирования при помощи основы уровня агрегирования в терминах, так называемых, пространств поиска. Пространство поиска представляет собой группу кандидатов управляющего канала на данном уровне агрегирования. Каждое UE имеет, так называемое, характерное для UE пространство поиска (USS) для каждого уровня агрегирования, где USS, как используется в настоящем описании, представляет собой пространство поиска, определяющее часть кандидатов управляющего канала на конкретном уровне агрегирования, которую конкретное UE должно контролировать. Все множество UE также контролируют одно или более общих пространств поиска (множество CSS) в дополнение к их характерным для UE пространствам поиска. CSS, как используется в настоящем описании, представляет собой пространство поиска, определяющее часть кандидатов управляющего канала на конкретном уровне агрегирования, которую все множество UE должны контролировать. Причем CSS может перекрываться с USS, означая то, что кандидаты в пределах набора кандидатов, который конкретное UE должно контролировать, не должны являться уникальными.

UE контролирует кандидата управляющего канала на предмет того, назначен ли нисходящий управляющий канал, предназначенный для UE, этому кандидату, при помощи осуществления попытки декодировать этого кандидата управляющего канала. Если попытка декодирования является успешной, то UE объявляет то, что управляющий канал, предназначенный для UE, назначен декодированному кандидату, и что допустимое сообщение DCI было передано по управляющему каналу. В этом случае UE продолжает обрабатывать допустимое сообщение DCI, переданное по каналу, при помощи интерпретирования битовых полей сообщения DCI. Однако этот процесс контролирования осложняется тем фактом, что сообщение DCI может являться отформатированным в соответствии с различными возможными, так называемыми, форматами DCI. Формат DCI соответствует определенному размеру полезной нагрузки и использованию номинального сообщения DCI. Системы LTE, например, определяют различные форматы DCI в соответствии с разделом 5.3.3.1.1 в TS 36.212 V10.4.0 совместно с разделом 7.2.1 в TS 36.213 V11.1.0. Поскольку конкретный формат DCI, использующийся нисходящим управляющим каналом в любое данное время, является неизвестным для UE априори, то UE должно вслепую обнаруживать формат DCI. Это означает то, что UE должно попытаться декодировать кандидата управляющего канала в соответствии с различными возможными форматами DCI. Как правило, UE идентифицирует формат сообщения DCI, переданного по управляющему каналу, по размеру полезной нагрузки этого сообщения DCI на основе предположения о том, что различные форматы DCI диктуют различные размеры полезной нагрузки сообщения DCI. Документ US 2012/327917 A1 раскрывает способ и устройство, которые предоставляют возможность оконечному устройству принимать управляющий канал в беспроводной системе связи, которая использует несколько несущих.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Проблемы возникают, если первичная сота передает пользовательскому оборудованию (UE) сообщение с управляющей информацией нисходящей линии связи (DCI), которое имеет размер полезной нагрузки, который обычно определяется как допустимый, в обоих общем пространстве поиска (CSS) и характерном для UE пространстве поиска (USS). Если сообщение DCI также имеет одинаковый первый индекс элемента управляющего канала (CCE), как это определено в CSS и USS (т.е. CSS и USS перекрываются), то UE будет воспринимать сообщение DCI как допустимое, вне зависимости от того, в которое из CSS или USS было в действительности передано сообщение DCI. Поскольку битовые поля сообщения DCI определяются различным образом, в зависимости от того, в которое из CSS или USS было передано сообщение, существует неопределенность относительно того, каким образом правильно интерпретировать битовые поля сообщения, после того как сообщение объявлено допустимым.

Известные подходы к тому, чтобы разрешать вопросы, связанные с этой неопределенностью, заключаются в том, чтобы сконфигурировать UE таким образом, чтобы оно всегда предполагало, что подобное сообщение DCI передавалось первичной сотой в CSS. Эти подходы, однако, оказываются несовершенными при определенных обстоятельствах. Например, подходы существенно уменьшают покрытие вторичной соты по сравнению с имеющимся у первичной соты. Один или более вариантов осуществления настоящего описания доказывают преимущества перед известными подходами в том, что они используют управление радиоресурсами (RRC) для того, чтобы конфигурировать предположение со стороны UE о том, в которое из CSS или USS подобное сообщение DCI передается первичной сотой.

В частности, варианты осуществления настоящего описания включают в себя UE, выполненное с возможностью принимать DCI, переданную на UE первичной сотой в беспроводной системе связи. UE характеризуется тем, что содержит одну или более обрабатывающих схем, которые выполнены с возможностью предполагать, что сообщение DCI, которое имеет общий размер полезной нагрузки и одинаковый первый индекс элемента управляющего канала, но различные битовые поля, в общем пространстве поиска и в характерном для UE пространстве поиска, передается первичной сотой в общее пространство поиска или характерное для UE пространство поиска на основе конфигурирования UE при помощи RRC. В одном или более вариантах осуществления это означает то, что обрабатывающие схемы выполнены с возможностью предполагать, что сообщение DCI передается первичной сотой в общее пространство поиска или характерное для UE пространство поиска на основе того, имеет ли параметр в принятом сообщении RRC первое значение или второе значение, соответственно.

Кроме того, по меньшей мере, в некоторых вариантах осуществления, одна или более обрабатывающих схем выполнены с возможностью предполагать по умолчанию, что сообщение DCI передается первичной сотой в общее пространство поиска.

В одном варианте, сообщение DCI в некоторых вариантах осуществления имеет одинаковый формат DCI в пространствах поиска. Альтернативным образом, в других вариантах осуществления сообщение DCI имеет различные форматы DCI в пространствах поиска.

Другие варианты осуществления настоящего описания включают в себя базовую станцию, выполненную с возможностью обеспечивать первичную соту в беспроводной системе связи, которая отправляет DCI на UE. Базовая станция характеризуется тем, что содержит одну или более обрабатывающих схем, которые конфигурируют UE при помощи RRC таким образом, чтобы оно предполагало то, что сообщение DCI, которое имеет общий размер полезной нагрузки и одинаковый первый индекс элемента управляющего канала, но различные битовые поля, в общем пространстве поиска и характерном для UE пространстве поиска, передается первичной сотой в общее пространство поиска или характерное для UE пространство поиска. В одном или более вариантах осуществления, одна или более обрабатывающих схем являются выполненными с возможностью отправлять сообщение RRC на UE с первым значением или вторым значением для параметра в сообщении RRC для того, чтобы сконфигурировать UE таким образом, чтобы оно предполагало то, что сообщение DCI передается первичной сотой в общее пространство поиска или характерное для UE пространство поиска, соответственно.

В некоторых вариантах осуществления одна или более обрабатывающих схем базовой станции конфигурирует UE при помощи RRC таким образом, чтобы оно предполагало то, что сообщение DCI передается первичной сотой в характерное для UE пространство поиска, вместо предположения по умолчанию того, что сообщение DCI передается первичной сотой в общее пространство поиска.

В свою очередь, сообщение DCI в некоторых вариантах осуществления имеет одинаковый формат DCI в пространствах поиска. Альтернативным образом, в других вариантах осуществления, сообщение DCI имеет различные форматы DCI в пространствах поиска.

В одном или более вариантах осуществления одна или более обрабатывающих схем базовой станции являются выполненными с возможностью идентифицировать сообщение DCI, которое должно отправляться UE, как имеющее общий размер полезной нагрузки в пространствах поиска, несмотря на то, что определение битовых полей в сообщении DCI является различным в пространствах поиска. В ответ на эту идентификацию, одна или более обрабатывающих схем конфигурируют UE при помощи RRC таким образом, чтобы оно предполагало то, что сообщение DCI передается в характерное для UE пространство поиска. В ответ на это конфигурирование, одна или более обрабатывающих схем планируют то, что сообщение DCI должно отправляться на UE.

Другие варианты осуществления настоящего описания включают в себя соответствующие способы, выполняющиеся UE и базовой станцией.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фигура 1 представляет собой функциональную схему беспроводной системы связи, которая включает в себя пользовательское оборудование (UE) и базовую станцию в соответствии с одним или более вариантами осуществления.

Фигура 2 представляет собой логическую блок-схему способа, реализованного пользовательским оборудованием в соответствии с одним или более вариантами осуществления.

Фигура 3 представляет собой логическую блок-схему способа, реализованного базовой станцией в соответствии с одним или более вариантами осуществления.

Фигура 4 представляет собой логическую блок-схему обработки, выполненной базовой станцией для того, чтобы выполнить способ на Фигуре 3.

Фигура 5 представляет собой логическую блок-схему способа в соответствии с одним или более вариантами осуществления.

Фигура 6 представляет собой логическую блок-схему способа, реализованного базовой станцией в соответствии с еще другими вариантами осуществления.

Фигура 7 представляет собой логическую блок-схему способа, реализованного базовой станцией в соответствии с еще другими вариантами осуществления.

Фигура 8 представляет собой логическую блок-схему способа, реализованного базовой станцией в соответствии с другим вариантом осуществления.

Фигура 9 представляет собой функциональную схему пользовательского оборудования в соответствии с одним или более вариантами осуществления.

Фигура 10 представляет собой функциональную схему базовой станции в соответствии с одним или более вариантами осуществления.

ПОДРОБНОЕ ОПИСАНИЕ

Фигура 1 иллюстрирует беспроводную систему 10 связи в соответствии с одним или более вариантами осуществления. Как это показано, опорная сеть (CN) 12 коммуникационным образом соединяет сеть (RAN) 14 радио доступа с одной или более внешними сетями, такими как коммутируемая телефонная сеть общего доступа (PSTN) 16, сеть пакетной передачи данных (PDN) 18, такая как Интернет, или подобные им. RAN 14 в некоторых вариантах осуществления включает в себя различные размещения сети радиодоступа, такие как размещения макро точек доступа, размещения пико точек доступа и т.д. В одном варианте RAN 14 включает в себя одну или более базовых станций (также называемых в настоящем описании как eNodeB или eNB) для беспроводного взаимодействия с одним или более устройствами беспроводной связи (также называемыми в настоящем описании как пользовательское устройство, UE).

В частности, базовая станция 20 в настоящем описании передает компонентную несущую 22 нисходящей линии связи и связанную компонентную несущую восходящей линии связи (не показана), которая обеспечивает первичную соту одному или более обслуживаемых UE, включая сюда UE 24. Первичная сота 26 (через посредство базовой станции 20) передает управляющую информацию нисходящей линии связи (DCI) обслуживаемым UE при помощи осуществления передачи сообщений DCI по нисходящим управляющим каналам на первичной соте 26. Конкретный UE 24 контролирует, передала ли первичная сота 26 нисходящий управляющий канал, предназначенный специально для UE 24, при помощи контролирования одного или более общих пространств поиска (множество CSS) и характерных для UE пространств поиска (множество USS).

При некоторых обстоятельствах первичная сота 26 передает на UE 24 сообщение DCI, которое имеет размер полезной нагрузки, который обычно определяется как допустимый в обоих CSS и USS. Это означает то, что в том случае, когда сообщение DCI передается в USS, размер полезной нагрузки сообщения DCI также является допустимым сообщением DCI в CSS. Верно и обратное - в том случае, когда сообщение DCI передается в CSS, размер полезной нагрузки сообщения DCI также является допустимым сообщением DCI в USS. Этот размер полезной нагрузки соответственно называется в настоящем описании как общий размер полезной нагрузки, поскольку размер полезной нагрузки является общим в обоих CSS и USS. Сообщение DCI также имеет одинаковый первый индекс элемента управляющего канала (CCE), как определенного в CSS и USS (т.е. CSS и USS перекрываются). UE 24 является выполненным с возможностью воспринимать подобное сообщение DCI как допустимое, вне зависимости от того, в которое из CSS или USS сообщение DCI в действительности передавалось. UE 24 так делает, несмотря на то, что битовые поля сообщения DCI определяются различным образом в зависимости от того, в которое из CSS или USS передавалось сообщение. Для того чтобы разрешить вопрос неопределенности, которая в противном случае будет существовать по поводу того, как правильно интерпретировать битовые поля сообщения, один или более вариантов осуществления настоящего описания преимущественно используют управление радиоресурсами (RRC) для того, чтобы конфигурировать UE 24 таким образом, чтобы оно делало предположение о том, в которое из CSS или USS передается сообщение DCI, при помощи первичной соты 26. Говоря другими словами, UE 24 может конфигурироваться при помощи RRC таким образом, чтобы оно предполагало то, что принятое сообщение DCI передавалось или в общее, или в характерное для UE пространство поиска.

Фигура 2 иллюстрирует способ 100, выполненный UE 24 в этом отношении. Способ 100 реализуется UE 24 для осуществления приема DCI, переданной на UE 24 первичной сотой 26 в беспроводной системе 10 связи. Способ содержит UE 24, предполагающее то, что сообщение DCI, которое имеет общий размер полезной нагрузки и одинаковый первый индекс CCE, но различные битовые поля в общем пространстве поиска и характерном для UE пространстве поиска, передается первичной сотой 26 в общее пространство поиска или характерное для UE пространство поиска на основе конфигурирования UE 24 при помощи RRC (Блок 110). Говоря другими словами, UE 24 будет предполагать, что сообщение DCI, которое оно принимает, является связанным со характерным для UE пространством поиска или общим пространством поиска на основе конфигурирования RRC.

Это косвенным образом означает, конечно, что UE 24 принимает сообщение RRC (Блок 105), и что UE 24 основывает вышеупомянутое предположение на значении параметра в этом сообщении RRC. Говоря другими словами, UE предполагает, что сообщение DCI передается первичной сотой в общее пространство поиска или характерное для UE пространство поиска на основе того, имеет ли параметр в принятом сообщении RRC первое значение или второе значение, соответственно.

По меньшей мере, в некоторых вариантах осуществления UE 24 предполагает по умолчанию то, что сообщение DCI передается первичной сотой 26 в общее пространство поиска. Говоря другими словами, значение по умолчанию для конфигурирования RRC представляет собой то, что UE 24 предполагает то, что сообщения DCI, которые оно принимает, относятся к общему пространству поиска.

Следует отметить, что, по меньшей мере, в некоторых вариантах осуществления описанное сообщение DCI имеет одинаковый тип формата DCI в общем пространстве поиска и характерном для UE пространстве поиска. Говоря другими словами, сообщение DCI имеет размер полезной нагрузки, который обычно определяется в общем пространстве поиска и в характерном для UE пространстве поиска, как являющийся допустимым для одинакового типа форматов DCI. Несмотря на то, что сообщение DCI имеет одинаковый тип форматов DCI, оно, однако, содержит различные битовые поля в зависимости от того, располагается ли оно в характерном для UE пространстве поиска или общем пространстве поиска. Это означает то, что в ответ на осуществление приема сообщения DCI, которое имеет размер полезной нагрузки, который обычно определяется в общем пространстве поиска и характерном для UE пространстве поиска, как являющимся допустимым для конкретного типа форматов DCI, UE 24 предполагает то, что сообщение DCI передавалось в одно из этих пространств поиска на основе конфигурирования UE при помощи RRC. Вследствие этого, UE 24 интерпретирует битовые поля сообщения DCI так же, как эти поля определяются в предполагаемом пространстве поиска.

В других вариантах осуществления описанное сообщение DCI имеет различные типы форматов DCI в общем пространстве поиска и характерном для UE пространстве поиска. Говоря другими словами, сообщение DCI имеет размер полезной нагрузки, который обычно определяется в общем пространстве поиска, как являющийся допустимым для одного типа форматов DCI, и определяется в характерном для UE пространстве поиска, как являющийся допустимым для другого типа форматов DCI. Вследствие этого, сообщение DCI в обязательном порядке содержит различные битовые поля в зависимости от того, располагается ли оно в характерном для UE пространстве поиска или общем пространстве поиска. Это означает то, что в ответ на осуществление приема сообщения DCI, которое имеет размер полезной нагрузки, который обычно определяется в общем пространстве поиска, как являющийся допустимым для одного типа формата DCI, и определяется в характерном для UE пространстве поиска, как являющийся допустимым для другого типа формата DCI, UE 24 предполагает то, что сообщение DCI передавалось в одно из этих пространств поиска на основе конфигурирования UE при помощи RRC. Вследствие этого, UE 24 интерпретирует битовые поля сообщения DCI так же, как эти поля определяются в предполагаемом пространстве поиска.

Фигура 3 иллюстрирует соответствующий способ 200, реализованный при помощи базовой станции 20, обеспечивающей первичную соту 26, которая отправляет DCI на UE 24. Как показано на Фигуре 3, способ 200 влечет за собой конфигурирование UE 24 при помощи RRC таким образом, чтобы оно предполагало то, что сообщение DCI, которое имеет общий размер полезной нагрузки и одинаковый первый индекс элемента управляющего канала, но различные битовые поля, в общем пространстве поиска и характерном для UE пространстве поиска, передается первичной сотой 26 в общее пространство поиска или характерное для UE пространство поиска (Блок 210). По меньшей мере, в некоторых вариантах осуществления, в ответ на осуществление конфигурирования UE 24 таким образом, чтобы оно делало вышеупомянутое предположение для сообщения DCI, базовая станция 20 планирует сообщение DCI для передачи на UE 24.

Осуществление конфигурирования UE 24 при помощи RRC таким путем, по существу, означает осуществление отправки сообщения RRC на UE 24. В одном или более вариантах осуществления базовая станция отправляет сообщение RRC с первым значением или вторым значением для параметра в сообщении RRC, для того чтобы сконфигурировать UE 24 таким образом, чтобы оно предполагало то, что сообщение DCI передается первичной сотой 26 в общее пространство поиска или характерное для UE пространство поиска, соответственно.

Конечно, как упоминалось выше с точки зрения UE 24, UE 24 может выполняться с возможностью предполагать по умолчанию то, что сообщение DCI передается первичной сотой 26 в общее пространство поиска. В этом случае, при обстоятельствах, когда базовая станция 20 воспринимает это предположение по умолчанию неправильным, то базовая станция 20 конфигурирует UE при помощи RRC таким образом, чтобы вместо этого оно воспринимало то, что сообщение DCI передается первичной сотой 26 в характерное для UE пространство поиска. Параметр в сообщении RRC может, например, иметь первое значение, указывающее то, что должно делаться предположение по умолчанию (например, CSS), и второе значение, указывающее то, что должно делаться предположение не по умолчанию (например, USS).

В одном варианте, базовая станция в некоторых вариантах осуществления является выполненной с возможностью выполнять вышеупомянутое на постоянной основе или на основе «сообщение-за-сообщением», как часть планирования DCI. Фигура 4 иллюстрирует способ, выполняемый базовой станцией 20 в этом отношении с использованием примера, где базовая станция 20 конфигурирует UE таким образом, чтобы оно не принимало во внимание предположение CSS по умолчанию. Как это показано, способ включает в себя осуществление идентификации того, что размер полезной нагрузки между сообщением DCI в общем и характерном для UE пространствах поиска является одинаковым, хотя определение битов является различным (т.е. конфликтным) в этих пространствах (Блок 310). Для того чтобы предотвратить неопределенность, которая в противном случае приведет к интерпретированию определения битов, вследствие этого, способ дополнительно включает в себя, в ответ на эту идентификацию, осуществление конфигурирования UE 24 при помощи RRC для того, чтобы установить приоритет характерного для UE пространства поиска перед общим пространством поиска (Блок 320). Это, по существу, означает то, что базовая станция 20 конфигурирует UE 24 при помощи RRC таким образом, чтобы оно предполагало то, что сообщение DCI передается в характерное для UE пространство поиска. В ответ на подобное конфигурирование RRC, способ, в конце концов, влечет за собой осуществление планирования сообщения DCI таким образом, чтобы оно отправлялось на UE 24, теперь, когда ранее конфликтные определения битов сообщения являются решенными (Блок 330).

В то время как варианты осуществления настоящего описания являются применимыми к любому типу беспроводной системы 10 связи, которая применяет общее пространство поиска и характерное для UE пространство поиска для передачи управляющей информации нисходящей линии связи, один или более вариантов осуществления оказываются, в частности, применимыми к системе 10, основанной на системе долгосрочного развития (LTE). Эти или более вариантов осуществления будут описываться ниже в контексте модификаций версий LTE, определенных TS 36.212 V10.4.0 и TS 36.213 V11.1.0. В подобных вариантах осуществления нисходящий управляющий канал, описанный выше, соответствует физическому нисходящему управляющему каналу (PDCCH). Помимо всего прочего, циклическая проверка избыточности (CRC) для каждого сообщения DCI скремблируется при помощи временного идентификатора радиосети (RNTI), назначенного предполагаемому UE-получателю, так что не требуется передавать явный адрес назначения.

В этом контексте способ на Фигуре 2 может эквивалентным образом заявляться в качестве способа, реализованного UE 24 для контролирования кандидатов PDCCH. Как это используется в настоящем описании, кандидаты PDCCH содержат конкретные элементы управляющего канала (множество CCE) или агрегирований множества CCE, которым PDCCH имеет возможность назначаться. UE 24 контролирует набор кандидатов PDCCH на предмет того, является ли PDCCH, предназначенный для UE 24, назначенным одному из этих кандидатов. Этот набор определяется на уровне агрегирования на основании уровня агрегирования в терминах общих пространств поиска и характерных для UE пространств поиска. В одном варианте, UE 24 в настоящем описании является выполненным с возможностью контролировать кандидатов PDCCH с CRC, скремблированной при помощи RNTI на UE, с общим размером полезной нагрузки и одинаковым первым индексом CCE, но с различными наборами информационных полей DCI, как определяется в общем пространстве поиска и характерном для UE пространстве поиска на первичной соте 26. Поступая таким образом, UE 24 будет предполагать то, что для кандидатов PDCCH с CRC, скремблированной при помощи RNTI на UE, или только PDCCH в общее пространство поиска, или только PDCCH в характерное для UE пространство поиска передается первичной сотой 26 в зависимости от конфигурирования UE 24 при помощи RRC.

В одном или более вариантах осуществления, например, UE 24 будет предполагать то, что для PDCCH с CRC, скремблированной при помощи RNTI на UE, если параметр в сообщении RRC, принятом UE 24, имеет первое значение, только PDCCH в общее пространство поиска передается первичной сотой 26. В противном случае, UE 24 будет предполагать, что только PDCCH в характерное для UE пространство передается первичной сотой.

Контролирование кандидата PDCCH, как это используется в настоящем описании, влечет за собой осуществление попытки декодировать кандидата PDCCH. В ответ на успешное декодирование кандидата PDCCH с общим размером полезной нагрузки и с одинаковым первым индексом CCE, но различными наборами информационных полей DCI, как определено в общем пространстве поиска и характерном для UE пространстве поиска, UE 24 интерпретирует битовые поля декодированного кандидата в соответствии с вышеупомянутым предположением. Говоря другими словами, UE 24 интерпретирует битовые поля декодированного кандидата так, как эти битовые поля определяются или в общем пространстве поиска, или характерном для UE пространстве поиска, в зависимости от конфигурирования UE при помощи RRC.

В частности, однако же, контролирование кандидата PDCCH влечет за собой осуществление попытки декодировать кандидата PDCCH в соответствии с одним или более форматами DCI. В ответ на успешное декодирование кандидата PDCCH в соответствии с форматом DCI (например, форматом DCI 0 или 1A), который имеет одинаковый размер полезной нагрузки в обоих общем пространстве поиска (CSS) и характерном для UE пространстве поиска (USS), UE 24 в настоящем описании интерпретирует информационные поля DCI декодированного кандидата так, как эти поля определены в CSS или USS, в зависимости от конфигурирования UE при помощи RRC. Например, в случае, когда формат DCI 0/1A имеет общую полезную нагрузку и одинаковый первый индекс CCE между общим и характерным для UE пространством поиска, UE 24 будет предполагать то, что сообщение DCI, которое оно принимает, является связанным со характерным для UE пространством поиска или общим пространством поиска на основе конфигурирования UE при помощи RRC. Дополнительным или альтернативным образом, в ответ на успешное декодирование кандидата PDCCH в соответствии с форматом DCI (например, форматом DCI 1), определенным первым из CSS или USS, как имеющим одинаковый размер полезной нагрузки, как и другой формат DCI (например, формат DCI 1A), определенный вторым из CSS и USS, UE 24 интерпретирует информационные поля DCI декодированного кандидата так, как эти поля определены в CSS или USS, в зависимости от конфигурирования UE при помощи RRC.

Безотносительно к использованной конкретной терминологии, варианты осуществления настоящего описания оказываются преимущественным способом для того, чтобы справиться со значительными проблемами, которые в противном случае вносятся при определенных обстоятельствах неопределенностью относительно того, как правильно интерпретировать битовые поля сообщения DCI. Как принимается в настоящем описании, проблемы в системах на основе LTE касаются того факта, что подобная неопределенность в противном случае будет существенно ухудшать покрытие и/или планирование вторичной соты по сравнению с тем, что имеется у первичной соты 26.

Более конкретно в отношении этого, один из важных инструментов для того, чтобы сделать возможным хорошую производительность на агрегированной вторичной соте, – это иметь хорошую информацию о качестве канала, т.е. отчеты по информации о состоянии канала (CSI). На практике это означает, что сети требуется получать непериодические отчеты CSI. Непериодические отчеты CSI являются важными для того, чтобы делать возможным адаптацию каналов и осуществление планирования данных с достаточной производительностью на обеих вторичной соте и первичной соте. Базовая станция (т.е. eNB) запрашивает непериодическую CSI от UE при помощи включения подобного запроса в состав сообщения DCI, переданного на UE по PDCCH на первичной соте. Точнее говоря, сеть включает запрос на непериодическую CSI в состав разрешающего сигнала UL, переданного на UE по PDCCH на первичной соте. Точнее говоря, сеть включает в состав разрешающего сигнала UL, переданного на UE по PDCCH на первичной соте, запрос на непериодическую CSI.

Осуществление запуска непериодической CSI определяется различным образом в зависимости от того, принимается ли UE разрешающий сигнал UL в общем пространстве поиска (CSS) или характерном для UE пространстве поиска. В общем пространстве поиска непериодическая CSI может запрашиваться только для первичной соты в DL с форматом DCI 0. Если UE принимает разрешающий сигнал UL в характерном для UE пространстве поиска, то используется двух-битовый идентификатор для осуществления запуска непериодической CSI, причем определенная комбинация битов является конфигурируемой для того, чтобы непериодическая CSI могла запрашиваться для обеих вторичной соты и/или первичной соты.

Этот вышеупомянутый режим работы осуществления запуска в общем случае обеспечивает возможность eNB запрашивать непериодическую CSI для обеих первичной соты и вторичной соты. В том случае, когда формат DCI 0/1А имеет одинаковый размер полезной нагрузки в USS и CSS и одинаковый первый индекс CCE между USS и CSS, UE (в соответствии с известными подходами, специфицированными в разделе 9.1.1 в TS 36.213 V11.1.0) будет предполагать то, что сообщение DCI, которое оно принимает, является связанным с CSS. То, насколько часто это происходит или нет, в основном зависит от диапазона частот системы.

В Таблице 1 показаны различные размеры полезной нагрузки формата DCI 0/1a в USS и CSS, когда UE является выполненным с одной вторичной нисходящей несущей. Можно заметить на основе таблицы то, что формат DCI 0/1a имеет одинаковый размер в общем и характерном для UE пространстве поиска для диапазонов частот системы в 1.4, 5 и 10 МГц. Результаты изменяются в зависимости от диапазона частот системы из-за того, что количество битов заполнения, представленных в формате DCI 0, является различным для различным диапазонов частот системы.

Таблица 1Длина формата DCI в CSS и USS для формата DCI 0/1a
BW системы Характерное для UESS (длина в битах) Общее SS(длина в битах)
1,4 МГц 37 37
3 МГц 39 38
5 МГц 41 41
10 МГц 43 43
15 МГц 44 43
20 МГц 45 44

Кроме того, здесь является важным отметить то, что общее пространство поиска имеет уровни агрегирования 4 и 8, в то время как характерное для UE пространство поиска имеет уровни агрегирования 1, 2, 4 и 8. Воздействие перекрывания уровней агрегирования 4 и 8 между характерным для UE пространством поиска и общим пространством поиска с