Производные карбоновых кислот с оксазоло[5,4-b] пиридиновым кольцом

Изобретение относится к соединению формулы I или его физиологически приемлемой соли, где X означает (C16)алкандиилоксигруппу, где атом кислорода (C16)алкандиилоксигруппы связан с группой Y; Y означает фенилен, где в фенилене один или несколько содержащихся в кольце атомов углерода необязательно замещены одинаковыми или различными заместителями R5; R1 означает атом водорода; R2 и R3 независимо друг от друга выбраны из Н и галогена; R5 означает (С14)алкил. Изобретение также относится к фармацевтической композиции для активации рецептора EDG-1, содержащей по меньшей мере одно соединение формулы I или его физиологически приемлемую соль и фармацевтически приемлемый носитель. Технический результат – производные карбоновых кислот с оксазоло[5,4-b]пиридиновым кольцом для применения в качестве лекарственного средства для активации рецептора EDG-1. 2 н. и 2 з.п. ф-лы, 1 табл., 4 пр.

Реферат

Изобретение относится к производным карбоновых кислот с оксазоло[5,4-b]пиридиновым кольцом и к их физиологически приемлемым солям.

На предшествующем уровне техники уже были описаны соединения с подобной структурой (см. WO 2009/154775), являющиеся приемлемыми для лечения множественного склероза. Принцип действия этих соединений состоит в том, чтобы благодаря активации рецептора EDG-1 обуславливать десенсибилизацию сигнального пути EDG-1 (так называемый суперагонизм), которая затем становится равной функциональному антагонизму сигнального пути EDG-1. Системно это означает, что в первую очередь сигнальный путь EDG-1 долговременно угнетается в отношении лимфоцитов, вследствие чего эти клетки больше не могут хемотропически следовать градиенту S1P между кровью и лимфой. Это обуславливает то, что затронутые лимфоциты больше не могут покидать вторичную лимфатическую ткань (усиленный хоминг) и число свободно циркулирующих лимфоцитов в плазме сильно снижается. Этот дефицит лимфоцитов в плазме (лимфопения) способствует иммунодепрессии, которая в обязательном порядке требуется для механизма действия модуляторов рецепторов EDG-1, описанных в WO 2009/154775.

В основе настоящего изобретения лежала задача разработки соединений, проявляющих терапевтически приемлемое действие. В частности, задача состояла в том, чтобы найти новые соединения, которые были бы специфически приемлемыми в отношении заживления ран и, в частности, для терапии нарушений заживления ран пациентов с диабетом.

Далее было желательно разработать соединения, которые были бы приемлемыми для лечения синдрома диабетической стопы (DFS).

Далее было желательно добиться повторяемой активации рецептора EDG-1 сигнального пути, чтобы тем самым сделать возможной фармакологически устойчивую активацию сигнального пути EDG-1.

Таким образом, настоящее изобретение относится к соединениям формулы I:

где X, Y, R1, R2 и R3 имеют определенные далее значения.

Механизм действия соединений формулы I основан не на десенсибилизации сигнального пути EDG-1 и, таким образом, является диаметрально противоположным по сравнению с механизмом действия, описанным в WO 2009/154775. Настоящее изобретение относится также к способу получения соединений формулы I, к их применению, предпочтительно в качестве активного вещества в лекарственных средствах, и к фармацевтическим композициям, содержащим их.

У пациентов с диабетом по сравнению со здоровыми людьми наблюдается замедленное заживление ран и повышенная частота инфицирования, в первую очередь, в случае более долговременной гипергликемии, например, вызванной плохим регулированием содержания сахара в крови. К причинам относят нарушения кровообращения, в первую очередь, в области мелких сосудов, ведущие к ухудшенному снабжению тканей кислородом и питательными веществами. Кроме того, имеет место пониженная скорость деления клеток и клеточной миграции кератиноцитов, фибробластов и кожных эндотелиальных клеток. Дополнительно ограничивается активность различных защитных клеток (гранулоцитов) с уменьшенным фагоцитозом (поглощение и разрушение бактерий). При высоком содержании сахара в крови ограничивается также функция антител (иммунглобулинов) против бактерий. В соответствии с этим, ранам и инфекциям у пациентов с диабетом должно быть обеспечено особое внимание.

Рецептор Edg-1 относится к семейству рецепторов Edg (Edg = Endothelial Differentiation Gene (ген дифференцирования эндотелия)), состоящему в настоящее время из восьми идентифицированных рецепторов GPCR (рецепторы, сопряженные с G-белком) класса A. Это семейство может быть разделено на подсемейство рецепторов, активируемых сфингозин-1-фосфатом (S1P) (пять членов), и рецепторов, активируемых лизофосфатидовой кислотой (LPA) (три члена). Эндогенный лиганд S1P представляет собой плюрипотентный лизофосфолипид, который действует на различные типы клеток благодаря активации рецепторов GPCR из семейства рецепторов Edg, а именно: Edg-1 (=S1P1), Edg-3 (=S1P3), Edg-5 (=S1P2), Edg-6 (=S1P4) и Edg-8 (=S1P5). Хотя S1P описан также как внутриклеточный нейромедиатор, многочисленные клеточные ответы S1P опосредуются через активацию рецепторов Edg. S1P продуцируется благодаря ферментам семейства сфингозинкиназ (SPHK) и разлагается различными фосфатазами или лиазами.

Известные показания на агонисты рецептора Edg-1 дают, например, сердечно-сосудистые заболевания, атеросклероз, сердечная недостаточность, кардиопротекция, периферический облитерирующий эндартериит, заболевания почек и заболевания дыхательных путей.

Объектами настоящего изобретения являются соединения формулы I в любых своих стереоизомерных формах или в виде смеси стереоизомерных форм в любом соотношении или их физиологически приемлемые соли или физиологически приемлемые сольваты соединений такого типа или солей такого типа:

где:

X выбран из (C1-C6)алкандиила, (C2-C6)алкендиила, (C2-C6)алкиндиила, (C3-C7)циклоалкандиила, (C1-C6)алкандиилокси- и (C3-C7)циклоалкандиилоксигрупп, причем все группы необязательно имеют один или несколько одинаковых или различных заместителей, выбранных из атомов фтора и гидроксигрупп, причем атом кислорода (C1-C6)алкандиилокси- и (C3-C7)циклоалкандиилоксигрупп связан с группой Y;

Y выбран из фенилена и двухвалентного радикала ароматического 5-членного или 6-членного моноциклического гетероцикла, содержащего в кольце 1, 2 или 3 одинаковых или различных гетероатома, выбранных из атомов N, O и S, причем один из содержащихся в кольце атомов азота может быть связан с атомом водорода или с заместителем R4, и в фенилене и в двухвалентном радикале ароматического гетероцикла один или несколько содержащихся в кольце атомов углерода необязательно имеют одинаковые или различные заместители R5;

R1 выбран из атома водорода и (C1-C4)алкила;

R2 и R3 независимо друг от друга выбраны из атома H, атомов галогена, гидроксигрупп, (C1-C4)алкила, (C1-C4)алкилокси-, (C1-C4)алкил-S(O)m-, амино-, нитро-, цианогрупп, гидроксикарбонила, (C1-C4)алкилоксикарбонила, аминокарбонила и аминосульфонила, (C3-C7)циклоалкил-CwH2W- и оксигрупп, где w выбран из 0, 1 и 2;

R4 выбран из (C1-C4)алкила, (C3-C7)циклоалкил-CwH2W- и оксигрупп, где w выбран из 0, 1 и 2;

R5 выбран из атомов галогена, гидроксигруппы, (C1-C4)алкила, (C3-C5)циклоалкил-CzH2z-, (C1-C4)алкилокси-, (C1-C4)алкил-S(O)m-, амино-, нитро-, цианогруппы, гидроксикарбонила, (C1-C4)алкилоксикарбонила, аминокарбонила и аминосульфонила, где z выбран из 0, 1 и 2;

m выбран из 0, 1 и 2.

Все структурные элементы, такие как группы, заместители, члены гетероциклов, индексы или другие отличительные признаки, например, алкильные группы, группы, такие как R5, индексы, такие как m, которые могут встречаться в соединениях формулы I несколько раз, независимо друг от друга могут иметь любые указанные значения и соответственно случаю быть одинаковыми или отличающимися друг от друга. Например, алкильные группы в диалкиламиногруппе могут быть одинаковыми или различными.

Алкильные, алкенильные и алкинильные группы могут быть линейными, т.е. иметь прямую цепь, или разветвленными. Это положение относится также к случаю, когда они являются частью других групп, например, алкилоксигруппы (=алкоксигруппа, алкил-O-группа), алкилоксикарбонильной группы или алкилзамещенной аминогруппы, или к случаю, когда они имеют заместители. В зависимости от соответствующего определения число атомов углерода в алкильной группе может быть равным 1, 2, 3, 4, 5 или 6, или 1, 2, 3 или 4, или 1, 2 или 3. Примеры алкила представляют собой метил, этил, пропил, включая н-пропил и изопропил, бутил, включая н-бутил, втор-бутил, изобутил и трет-бутил, пентил, включая н-пентил, 1-метилбутил, изопентил, неопентил и трет-пентил, и гексил, включая н-гексил, 3,3-диметилбутил и изогексил. Двойные и тройные связи в алкенильных и алкинильных группах могут находиться в любых положениях. В одном из вариантов осуществления настоящего изобретения алкенильные группы содержат двойную связь, и алкинильные группы содержат тройную связь. В одном из вариантов осуществления настоящего изобретения алкенильная или алкинильная группа содержит по меньшей мере три атома углерода и через атом углерода, который не является элементом двойной или тройной связи, связана с остальной частью молекулы. Примеры алкенила и алкинила представляют собой этенил, проп-1-енил, проп-2-енил (=аллил), бут-2-енил, 2-метилпроп-2-енил, 3-метилбут-2-енил, гекс-3-енил, гекс-4-енил, проп-2-инил (=пропаргил), бут-2-инил, бут-3-инил, гекс-4-инил или гекс-5-инил. Замещенные алкильные, алкенильные и алкинильные группы могут иметь заместители в любых положениях, при условии, что соответствующее соединение является достаточно стабильным и является приемлемым для поставленной цели, такой как применение в качестве лекарственного вещества. Условие, заключающееся в том, что специфическая группа и соединение формулы I являются достаточно стабильными и приемлемыми для поставленной цели, такой как применение в качестве лекарственного вещества, в общем случае относится к определениям любых групп в соединениях формулы I.

В случае возможности применения, приведенные выше пояснения в отношении алкильных, алкенильных и алкинильных групп соответствующим образом относятся к двухвалентным алкильным группам, таким как алкандиильные группы CuH2u, CvH2v, CwH2w и CzH2z, и двухвалентным алкенильным и алкинильным группам, таким как алкендиильные и алкиндиильные группы, которые, таким образом, также могут быть линейными и разветвленными. Двойные и тройные связи в алкендиильных и алкиндиильных группах могут находиться в любых положениях. В одном из вариантов осуществления настоящего изобретения алкендиильные группы содержат двойную связь, и алкиндиильные группы содержат тройную связь. Примеры двухвалентных алкильных групп представляют собой -CH2- (=метилен), -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2-, -CH(CH3)-, -C(CH3)2-, -CH(CH3)-CH2-, -CH2-CH(CH3)-, -C(CH3)2-CH2-, -CH2-C(CH3)2-, примеры двухвалентных алкенильных групп представляют собой -CH=CH-, -CH2-CH=CH-, -CH=CH-CH2-, -CH2-CH=CH-CH2-, -CH2-CH2-CH=CH-, -C(CH3)=C(CH3)-, и примеры двухвалентных алкинильных групп представляют собой -C≡C-, -CH2-C≡C-, -C≡C-CH2-, -C(CH3)2-C≡C-, -C≡C-C(CH3)2-, -CH2-C≡C-CH2-, -CH2-CH2-C≡C-. Если индекс в двухвалентной группе, такой как, например, индекс z в группе CzH2z, равен 0 (=отсутствует), то обе группы, которые связаны с указанной группой, такой как CzH2z, непосредственно связаны друг с другом одинарной связью.

Число атомов углерода, содержащихся в кольце циклоалкильной группы, может быть равным 3, 4, 5, 6 или 7. В одном из вариантов осуществления настоящего изобретения число атомов углерода, содержащихся в кольце циклоалкильной группы, независимо от числа атомов углерода, содержащихся в кольце другой циклоалкильной группы, равно 3, 4, 5 или 6, в одном из других вариантов осуществления равно 3, 4 или 5, в одном из других вариантов осуществления равно 3 или 4, в одном из других вариантов осуществления равно 3, в одном из других вариантов осуществления равно 5, 6 или 7, в одном из других вариантов осуществления равно 5 или 6, в одном из других вариантов осуществления равно 6 или 7, в одном из других вариантов осуществления равно 6. Это положение соответствующим образом относится к двухвалентным циклоалкильным группам, т.е. циклоалкандиильным группам, которые через один или два любых атома углерода, содержащихся в кольце, могут быть связаны с соседними группами. Примеры циклоалкильных групп представляют собой циклопропил, циклобутил, циклопентил, циклогексил и циклогептил. Примеры двухвалентных циклоалкильных групп представляют собой циклопропан-1,1-диил, циклопропан-1,2-диил, циклобутан-1,3-диил, циклопентан-1,1-диил, циклопентан-1,2-диил, циклопентан-1,3-диил, циклогексан-1,1-диил, циклогексан-1,2-диил, циклогексан-1,3-диил, циклогексан-1,4-диил, циклогептан-1,4-диил. Независимо друг от друга и от других заместителей, циклоалкильные и циклоалкандиильные группы необязательно могут иметь заместители в виде одного или нескольких одинаковых или различных (C1-C4)алкилов, которые могут находиться в любых положениях, т.е. циклоалкильные группы могут не иметь заместителей в виде алкила или иметь заместители в виде алкила, например, 1, 2, 3 или 4, или 1 или 2 заместителя в виде (C1-C4)алкила, например, в виде метильных групп. Примеры алкилзамещенных циклоалкильных и циклоалкандиильных групп представляют собой 4-метилциклогексил, 4-трет-бутилциклогексил или 2,3-диметилциклопентил, 2,2-диметилциклопропан-1,1-диил, 2,2-диметилциклопропан-1,2-диил, 2,2-диметилциклопентан-1,3-диил, 6,6-диметилциклогептан-1,4-диил. Примерами циклоалкилалкильных групп, которые, например, могут представлять собой такие группы, как (C3-C7)циклоалкил-CzH2z-, являются циклопропилметил, циклобутилметил, циклопентилметил, циклогексилметил, циклогептилметил, 1-циклопропилэтил, 2-циклопропилэтил, 1-циклобутилэтил, 2-циклобутилэтил, 2-циклопентилэтил, 2-циклогексилэтил, 2-циклогептилэтил.

Независимо друг от друга и от других заместителей, алкильные группы, двухвалентные алкильные группы, алкенильные группы, двухвалентные алкенильные группы, алкинильные группы, двухвалентные алкинильные группы, циклоалкильные группы и двухвалентные циклоалкильные группы необязательно могут иметь один или несколько заместителей в виде атомов фтора, которые могут находиться в любых положениях, т.е. эти группы могут не иметь заместителей в виде атомов фтора или иметь заместители в виде атомов фтора, например, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 или 13 или 1, 2, 3, 4, 5, 6, 7, 8 или 9, или 1, 2, 3, 4, 5, 6 или 7, или 1, 2, 3, 4 или 5, или 1, 2 или 3, или 1 или 2 заместителя в виде атомов фтора. Примеры фторзамещенных групп такого типа представляют собой трифторметил, 2-фторэтил, 2,2,2-трифторэтил, пентафторэтил, 3,3,3-трифторпропил, 2,2,3,3,3-пентафторпропил, 4,4,4-трифторбутил, гептафторизопропил, -CHF-, -CF2-, -CF2-CH2-, -CH2-CF2-, -CF2-CF2-, -CF(CH3)-, -C(CF3)2-, 1-фторциклопропил, 2,2-дифторциклопропил, 3,3-дифторциклобутил, 1-фторциклогексил, 4,4-дифторциклогексил, 3,3,4,4,5,5-гексафторциклогексил, 2,2-дифторциклопропан-1,2-диил. Примеры алкилоксигрупп, в которых алкильная группировка имеет заместители в виде атомов фтора, представляют собой трифторметокси-, 2,2,2-трифторэтокси-, пентафторэтокси- и 3,3,3-трифторпропоксигруппу. В одном из вариантов осуществления настоящего изобретения общее число заместителей в виде атомов фтора и в виде (C1-C4)алкила, которые независимо от других заместителей необязательно содержатся в циклоалкильных и циклоалкандиильных группах соединений формулы I, равно 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или 11, в одном из других вариантов осуществления равно 1, 2, 3, 4, 5, 6, 7, 8 или 9, в одном из других вариантов осуществления равно 1, 2, 3, 4 или 5, в одном из других вариантов осуществления равно 1, 2, 3 или 4.

Группы, такие как фенил, нафтил (=нафталинил), и радикалы ароматических гетероциклов, которые необязательно имеют один или несколько заместителей, могут быть незамещенными или замещенными, например, иметь одинаковые или различные заместители, число которых равно 1, 2, 3, 4 или 5, или 1, 2, 3 или 4, или 1, 2 или 3, или 1 или 2, или 1 и которые могут находиться в любых положениях. В одном из вариантов осуществления настоящего изобретения общее число заместителей в виде нитрогрупп, содержащихся в соединении формулы I, составляет не более двух. Ароматические азотсодержащие гетероциклы, в которых в кольцевой системе, лежащей в основе, с атомом водорода связан атом азота, содержащийся в 5-членном кольце, таком как, например, пиррольное, имидазольное, индольное или бензоимидазольное кольцо, могут иметь заместители при атомах углерода и/или при содержащихся в кольце атомах азота такого типа. В одном из вариантов осуществления настоящего изобретения заместители при содержащихся в кольце атомах азота такого типа выбраны из (C1-C4)алкила, т.е. атомы азота такого типа, содержащиеся в ароматических гетероциклах, связаны с атомом водорода или с заместителями в виде (C1-C4)алкила. Если относительно атомов азота, содержащихся в кольце ароматических гетероциклов и других гетероциклов, указано, что они могут быть связаны с атомом водорода или с заместителем, то содержащиеся в кольце атомы азота такого типа связаны с атомом водорода или необязательно с заместителем. Содержащиеся в кольце атомы азота, связанные с атомом водорода или с заместителем, содержатся в азотсодержащем ароматическом 5-членном кольце, таком как, например, пиррол, имидазол, индол или бензоимидазол, и в неароматическом кольце, включая насыщенное кольцо. Содержащиеся в кольце атомы азота, которые не связаны с атомом водорода или с заместителем, поскольку они не находятся в положительно заряженной форме, включая другие содержащиеся в кольце атомы азота наряду с содержащимися в кольце атомами азота, связанными с атомами водорода или с заместителями, содержатся в ароматическом кольце, таком как, например, тиазол, имидазол, пиридин или бензоимидазол, и в неароматическом кольце, в котором они представляют собой головные атомы мостиков или связаны двойной связью и представляют собой содержащиеся в кольце атомы азота, через которые связано кольцо. Приемлемые атомы азота, содержащиеся в ароматических гетероциклах соединений формулы I, такие как атом азота, содержащийся в пиридиновом кольце, в специфическом случае атом азота, содержащийся в ароматическом гетероцикле, обозначенном как R2, могут находиться также в виде оксизаместителей -O- и в виде N-оксида, и содержащиеся в кольце атомы азота такого типа могут существовать также в виде четвертичной соли, например, в виде N-(C1-C4)алкильной соли, такой как N-метиловая соль, причем в одном из вариантов осуществления настоящего изобретения противоанион в четвертичной соли такого типа представляет собой физиологически приемлемый анион, происходящий из кислоты, которая образует физиологически приемлемые соли. В однозамещенных фенильных группах заместитель может находиться в положении 2, 3 или 4. В двузамещенных фенильных группах заместители могут находиться в положениях 2,3, 2,4, 2,5, 2,6, 3,4 или 3,5. В тризамещенных фенильных группах заместители могут находиться в положениях 2,3,4, 2,3,5, 2,3,6 и 2,4,5 и положениях 2,4,6 или 3,4,5. Нафтил может представлять собой 1-нафтил (=нафталин-1-ил) или 2-нафтил (=нафталин-2-ил). В однозамещенной группе 1-нафтильный заместитель может находиться в положении 2, 3, 4, 5, 6, 7 или 8. В однозамещенной группе 2-нафтильный заместитель может находиться в положении 1, 3, 4, 5, 6, 7 или 8. В двузамещенных нафтильных группах заместители также могут находиться в любых положениях как в кольце, с которым связана нафтильная группа, так и/или в другом кольце. Это положение, относящееся к одновалентным радикалам, соответствующим образом относится к двухвалентным радикалам, таким как, например, фениленовые группы, которые обозначены как R2, и которые, таким образом, также могут быть незамещенными или замещенными, например, иметь одинаковые или различные заместители, число которых равно 1, 2, 3, 4 или 5, или 1, 2, 3 или 4, или 1, 2 или 3, или 1 или 2, или 1, и которые могут находиться в любых положениях.

В ароматических гетероциклах, которые могут быть обозначены как гетероарилы и гетероарилены, а также во всех других гетероциклах и неароматических гетероциклах, содержащиеся в кольце гетероатомы в общем случае выбраны из атомов N, O и S, где символ N обозначает содержащиеся в кольце атомы азота, связанные с атомом водорода или с заместителем, а также содержащиеся в кольце атомы азота, не связанные с атомом водорода и с заместителем. Содержащиеся в кольце гетероатомы могут находиться в любых положениях, предполагая, что гетероциклическая система известна на предшествующем уровне техники, стабильна и является приемлемой в качестве основы для достижения поставленной в отношении соединения формулы I цели, такой как применение в качестве лекарственного вещества. В одном из вариантов осуществления настоящего изобретения содержащиеся в кольце два атома кислорода могут находиться в гетероцикле не в соседних положениях, в одном из других вариантов осуществления два содержащихся в кольце гетероатома, выбранных из атомов кислорода и серы, могут находиться не в соседних положениях любого гетероцикла. В насыщенных кольцах отсутствует двойная связь в кольце. Ненасыщенные кольцевые системы могут быть ароматическими или частично ненасыщенными, включая частично ароматические, причем в последнем случае кольцо в бициклической системе является ароматическим, и кольцевая система присоединена через атом в неароматическом кольце. В зависимости от группы ненасыщенные кольца могут содержать в кольце одну, две, три, четыре или пять двойных связей. Ароматические группы содержат кольцевую систему с шестью или десятью делокализованными π-электронами в кольце. В зависимости от соответствующей группы насыщенные и неароматические ненасыщенные гетероциклы, включая гетероциклы и неароматические группы, обозначенные как R3, могут быть 3-членными, 4-членными, 5-членными, 6-членными, 7-членными, 8-членными, 9-членными или 10-членными. В одном из вариантов осуществления настоящего изобретения ароматические гетероциклы представляют собой 5-членные или 6-членные моноциклы или 8-членные, 9-членные или 10-членные бициклы, в одном из других вариантов осуществления они представляют собой 5-членные или 6-членные моноциклы или 9-членные или 10-членные бициклы, в одном из других вариантов осуществления они представляют собой 5-членные или 6-членные моноциклы, причем 8-членные, 9-членные или 10-членные бициклы состоят из двух аннелированных 5-членных колец, 5-членного кольца и 6-членного кольца, которые конденсированы друг с другом, или из двух аннелированных 6-членных колец. В бициклических ароматических гетероциклических группах один или оба кольца могут содержать в кольце гетерогенные члены, и один или оба кольца могут быть ароматическими. Как правило, бициклические системы с ароматическим кольцом и неароматическим кольцом считают ароматическими, если они связаны через атом углерода в ароматическом кольце, и неароматическими, если они связаны через атом углерода в неароматическом кольце. Если не указано иное, гетероциклические группы, включая ароматические гетероциклические группы, могут быть связаны через любой приемлемый содержащийся в кольце атом углерода и в случае с азотсодержащими гетероциклами через любой приемлемый содержащийся в кольце атом азота. В одном из вариантов осуществления настоящего изобретения ароматическая гетероциклическая группа в соединении формулы I независимо от любой другой ароматической гетероциклической группы связана через содержащийся в кольце атом углерода, в другом варианте осуществления связана через содержащийся в кольце атом азота. В зависимости от определения соответствующей гетероциклической группы в одном из вариантов осуществления настоящего изобретения число содержащихся в кольце гетероатомов, которые могут содержаться в гетероциклической группе независимо от числа содержащихся в кольце гетероатомов в другой гетероциклической группе, составляет 1, 2, 3 или 4, в одном из других вариантов осуществления составляет 1, 2 или 3, в одном из других вариантов осуществления составляет 1 или 2, в одном из других вариантов осуществления составляет 1, где содержащиеся в кольце гетероатомы могут быть одинаковыми или разными. Гетероциклические группы, которые необязательно могут иметь заместители, могут независимо от любой другой гетероциклической группы быть незамещенными или иметь один или несколько одинаковых или различных заместителей, число которых составляет, например, 1, 2, 3, 4 или 5, или 1, 2, 3 или 4, или 1, 2 или 3, или 1 или 2, или 1, и которые указаны при определении соответствующей группы. Заместители в гетероциклических группах могут находиться в любых положениях. Так, заместители в группе пиридин-2-ила могут находиться, например, в положении 3 и/или в положении 4, и/или в положении 5, и/или в положении 6, в группе пиридин-3-ила могут находиться в положении 2 и/или в положении 4, и/или в положении 5, и/или в положении 6, и в группе пиридин-4-ила могут находиться в положении 2 и/или в положении 3, и/или в положении 5, и/или в положении 6.

Примеры основ гетероциклов, из которых могут происходить гетероциклические группы, включая ароматические гетероциклические группы, насыщенные гетероциклические группы и неароматические ненасыщенные гетероциклические группы, представляют собой азет, оксет, пиррол, фуран, тиофен, имидазол, пиразол, [1,3]диоксол, оксазол (=[1,3]оксазол), изоксазол (=[1,2]оксазол), тиазол (=[1,3]тиазол), изотиазол (=[1,2]тиазол), [1,2,3]триазол, [1,2,4]триазол, [1,2,4]оксадиазол, [1,3,4]оксадиазол, [1,2,4]тиадиазол, [1,3,4]тиадиазол, тетразол, пиридин, пиран, тиопиран, пиридазин, пиримидин, пиразин, [1,3]оксазин, [1,4]оксазин, [1,3]тиазин, [1,4]тиазин, [1,2,3]триазин, [1,3]дитиин, [1,4]дитиин, [1,2,4]триазин, [1,3,5]триазин, [1,2,4,5]тетразин, азепин, [1,3]диазепин, [1,4]диазепин, [1,3]оксазепин, [1,4]оксазепин, [1,3]тиазепин, [1,4]тиазепин, азоцин, азецин, циклопента[b]пиррол, 2-азабицикло[3.1.0]гексан, 3-азабицикло[3.1.0]гексан, 2-окса-5-азабицикло[2.2.1]гептан, индол, изоиндол, бензотиофен, бензофуран, [1,3]бензодиоксол (=1,2-метилендиоксибензол), [1,3]бензоксазол, [1,3]бензотиазол, бензоимидазол, тиено[3,2-c]пиридин, хромен, изохромен, [1,4]бензодиоксин, [1,4]бензоксазин, [1,4]бензотиазин, хинолин, изохинолин, циннолин, хиназолин, хиноксалин, фталазин, тиенотиофен, [1,8]нафтиридин и другие нафтиридины, птеридин и соответствующие насыщенные и частично ненасыщенные гетероциклы, в которых одна или несколько, например, одна, две, три, четыре или все двойные связи в кольцевой системе, включая двойные связи в ароматическом кольце, заменены одинарными связями, такие как, например, азетидин, оксетан, пирролидин, тетрагидрофуран, тетрагидротиофен, имидазолидин, оксазолидин, тиазолидин, дигидропиридин, пиперидин, тетрагидропиран, пиперазин, морфолин, тиоморфолин, азепан, хроман, изохроман, [1,4]бензодиоксан (=1,2-этилендиоксибензол), 2,3-дигидробензофуран, 1,2,3,4-тетрагидрохинолин, 1,2,3,4-тетрагидроизохинолин.

Примеры радикалов ароматических гетероциклов, которые могут содержаться в соединениях формулы I, представляют собой тиофенил (=тиенил), включая тиофен-2-ил и тиофен-3-ил, пиридинил (=пиридил), включая пиридин-2-ил (=2-пиридил), пиридин-3-ил (=3-пиридил) и пиридин-4-ил (=4-пиридил), имидазолил, включая, например, 1H-имидазол-1-ил, 1H-имидазол-2-ил, 1H-имидазол-4-ил и 1H-имидазол-5-ил, [1,2,4]триазолил, включая 1H-[1,2,4]триазол-1-ил и 4H-[1,2,4]триазол-3-ил, тетразолил, включая 1H-тетразол-1-ил и 1H-тетразол-5-ил, хинолинил (=хинолил), включая хинолин-2-ил, хинолин-3-ил, хинолин-4-ил, хинолин-5-ил, хинолин-6-ил, хинолин-7-ил и хинолин-8-ил, где все группы необязательно, как указано в определении соответствующей группы, имеют заместители. Примеры радикалов насыщенных и частично ненасыщенных гетероциклов, которые могут содержаться в соединениях формулы I, представляют собой азетидинил, пирролидинил, включая пирролидин-1-ил, пирролидин-2-ил и пирролидин-3-ил, 2,5-дигидро-1H-пирролил, пиперидил, включая пиперидин-1-ил, пиперидин-2-ил, пиперидин-3-ил и пиперидин-4-ил, 1,2,3,4-тетрагидропиридил, 1,2,5,6-тетрагидропиридил, 1,2-дигидропиридил, азепанил, азоканил, азеканил, октагидроциклопента[b]пирролил, 2,3-дигидробензофурил, включая 2,3-дигидробензофуран-7-ил, 2,3-дигидро-1H-индолил, октагидро-1H-индолил, 2,3-дигидро-1H-изоиндолил, октагидро-1H-изоиндолил, 1,2-дигидрохинолинил, 1,2,3,4-тетрагидрохинолинил, декагидрохинолинил, 1,2-дигидроизохинолинил, 1,2,3,4-тетрагидроизохинолил, 1,2,3,4-тетрагидроизохинолил, декагидроизохинолинил, декагидроизохинолинил, 4,5,6,7-тетрагидротиено[3,2-c]пиридил, пиразолидинил, имидазолидинил, гексагидропиримидинил, 1,2-дигидропиримидинил, пиперазинил, [1,3]диазепанил, [1,4]диазепанил, оксазолидинил, [1,3]оксазинанил, [1,3]оксазепанил, морфолинил, включая морфолин-2-ил, морфолин-3-ил и морфолин-4-ил, [1,4]оксазепанил, тиазолидинил, [1,3]тиазинанил, тиоморфолинил, включая тиоморфолин-2-ил, тиоморфолин-3-ил и тиоморфолин-4-ил, 3,4-дигидро-2H-[1,4]тиазинил, [1,3]тиазепанил, [1,4]тиазепанил, [1,4]тиазепанил, оксетанил, тетрагидрофурил, тетрагидротиенил, изоксазолидинил, изотиазолидинил, оксазолидинил, [1,2,4]оксадиазолидинил, [1,2,4]тиадиазолидинил, [1,2,4]триазолидинил, [1,3,4]оксадиазолидинил, [1,3,4]тиадиазолидинил, [1,3,4]триазолидинил, 2,3-дигидрофурил, 2,5-дигидрофурил, 2,3-дигидротиенил, 2,5-дигидротиенил, 2,3-дигидропирролил, 2,3-дигидроизоксазолил, 4,5-дигидроизоксазолил, 2,5-дигидроизоксазолил, 2,3-дигидроизотиазолил, 4,5-дигидроизотиазолил, 2,5-дигидроизотиазолил, 2,3-дигидропиразолил, 4,5-дигидропиразолил, 2,5-дигидропиразолил, 2,3-дигидрооксазолил, 4,5-дигидрооксазолил, 2,5-дигидрооксазолил, 2,3-дигидротиазолил, 4,5-дигидротиазолил, 2,5-дигидротиазолил, 2,3-дигидроимидазолил, 4,5-дигидроимидазолил, 2,5-дигидроимидазолил, тетрагидропиридазинил, тетрагидропиримидинил, тетрагидропиразинил, тетрагидро[1,3,5]триазинил, [1,3]дитианил, тетрагидропиранил, тетрагидротиопиранил, [1,3]диоксоланил, 3,4,5,6-тетрагидропиридил, 4H-[1,3]тиазинил, 1,1-диоксо-2,3,4,5-тетрагидротиенил, 2-азабицикло[3.1.0]гексил, включая 2-азабицикло[3.1.0]гекс-2-ил, 3-азабицикло[3.1.0]гексил, включая 3-азабицикло[3.1.0]гекс-3-ил, 2-окса-5-азабицикло[2.2.1]гептил, включая 2-окса-5-азабицикло[2.2.1]гепт-5-ил, где все группы связаны через соответствующий содержащийся в кольце атом углерода или атом азота и необязательно, как указано выше в определении соответствующей группы, имеют заместители.

Галоген означает фтор, хлор, бром и/или йод. В одном из вариантов осуществления настоящего изобретения каждый из атомов галогена в соединении формулы I независимо от любого другого атома галогена выбран из атомов фтора, хлора и брома, в одном из других вариантов осуществления выбран из атомов фтора и хлора.

В случае, когда оксогруппа связана с атомом углерода, она заменяет два атома водорода при атоме углерода системы, лежащей в основе. Таким образом, группа CH2 в цепи или в кольце в случае, когда в ней осуществляют замену на оксогруппу, т.е. на связанный двойной связью атом кислорода, преобразуется в группу C(O)- (=группа C(=O)). Очевидным образом, оксогруппа не может содержаться в качестве заместителя при атоме углерода в ароматическом кольце, таком как, например, фенильная группа. Если атом серы, содержащийся в кольце гетероциклической группы, может быть связан с одной или двумя оксогруппами, то в случае, когда он не связан с оксогруппой, речь идет о неокисленном атоме серы S, или если он связан с оксогруппой, то речь идет о группе S(O)- (сульфоксидная группа, S-оксидная группа), или если он связан с двумя оксогруппами, то речь идет о группе S(O)2 (= сульфогруппа, S,S-диоксидная группа).

Настоящее изобретение относится к любым стереоизомерным формам соединений формулы I и их солям и сольватам. Относительно каждого хирального центра независимо от любого другого хирального центра соединения формулы I могут находиться в S-конфигурации или в значительной степени в S-конфигурации или в R-конфигурации или в значительной степени в R-конфигурации, или в виде смеси S-изомера и R-изомера в любом отношении. Изобретение относится к любым возможным энантиомерам и диастереомерам и смесям двух или более стереоизомеров, например, к смеси энантиомеров и/или диастереоизомеров, в любых соотношениях. Таким образом, соединения по настоящему изобретению могут существовать в виде энантиомеров в энантиомерно чистой форме, как в виде левовращающих, так и в виде правовращающих антиподов, и в форме смесей обоих энантиомеров в любых соотношениях, включая рацематы. В случае E/Z-изомерии или цис/транс-изомерии, например, относительно двойных связей или колец, таких как циклоалкилы, настоящее изобретение относится как к E-форме, так и к Z-форме, или к цис-форме и к транс-форме, а также к смесям этих форм в любых соотношениях. В одном из вариантов осуществления настоящего изобретения в случае соединения, которое может находиться в двух или более стереоизомерных формах, речь идет о чистом или в значительной степени чистом отдельном стереоизомере. Получение отдельных стереоизомеров может быть осуществлено, например, разделением смеси изомеров традиционными способами, например, хроматографией или кристаллизацией, посредством применения стереохимически однородных исходных веществ при синтезе или стереоселективным синтезом. Необязательно перед разделением стереоизомеров может быть осуществлена их дериватизация. Разделение смеси стереоизомеров может быть осуществлено на стадии соединения формулы I или на стадии исходного или промежуточного вещества в ходе синтеза. Настоящее изобретение относится также к любым таутомерным формам соединений формулы I и их солей и сольватов.

В случае, когда соединения формулы I содержат одну или несколько кислотных и/или основных групп, т.е. солеобразующих групп, настоящее изобретение относится также к их соответствующим физиологически или токсикологически приемлемым солям, т.е. к нетоксичным солям, предпочтительно к их фармацевтически приемлемым солям.

Настоящее изобретение относится к любым сольватам соединений формулы I, например, к гидратам или аддуктам со спиртами, такими как (C1-C4)алканолы, к активным метаболитам соединений формулы I, а также к пролекарствам и производным соединений формулы I, которые in vitro необязательно проявляют фармакологическое действие, но in vivo преобразуются в фармакологически эффективные соединения, например, к сложным эфирам или амидам карбоновых кислот.

Алкандиильные, алкендиильные и алкиндиильные группы, содержащиеся в группе X, могут быть линейными или разветвленными, как в общем случае указано в отношении групп такого типа, причем эти группы, а также циклоалкандиильные группы, обозначенные как X, могут быть в любых положениях связаны с соседними группами, т.е. с группой R1O-C(O) и группой Y или в случае алкандиилоксигруппы с атомом кислорода алкандиилоксигруппы. Соседние группы могут быть связаны с одинаковыми или различными атомами углерода в группе X. В одном из вариантов осуществления цепь атомов углерода в алкандиильной, алкендиильной и алкиндиильной группе, содержащейся в группе X, которая группу R1O-C(O) связывает непосредственно с группой Y или в случае алкандиилоксигруппы с атомом кислорода алкандиилоксигруппы, состоит из 1, 2, 3 или 4 атомов углерода, в одном из других вариантов осуществления состоит из 1, 2 или 3 атомов углерода, в одном из других вариантов осуществления состоит из 1 или 2 атомов углерода, в одном из других вариантов осуществления состоит из 1 атома углерода. В случае циклоалкандиила, обозначенного как X, в одном из вариантов осуществления группы R1O-C(O) и Y связаны с двумя содержащимися в кольце атомами углерода, находящимися в положениях 1,2, 1,3 или 1,4 по отношению друг к другу, в одном из других вариантов осуществления находящимися в положениях 1,2 или 1,3 по отношению друг к другу, в одном из других вариантов осуществления находящимися в положении 1,2 по отношению друг к другу, в одном из других вариантов осуществления находящимися в положении 1,4 по отношению друг к другу. В одном из вариантов осуществления X выбран из (C1-C6)алкандиила, (C2-C6)алкендиила, (C3-C7)циклоалкандиила и (C1-C6)алкандиилоксигрупп, в одном из других вариантов осуществления X выбран из (C1-C6)алкандиила, (C2-C6)алкендиила и (C1-C6)алкандиилоксигрупп, в одном из других вариантов осуществления X выбран из (C1-C6)алкандиила, (C3-C7)циклоалкандиила и (C1-C6)алкандиилоксигрупп, в одном из вариантов осуществления X выбран из (C1-C6)алкандиила и (C1-C6)алкандиилоксигрупп, в одном из других вариантов осуществления X выбран из (C1-C6)алкандиила, (C2-C6)алкендиила, (C2-C6)алкиндиила и (C3-C7)циклоалкандиила, в одно