Конъюгаты квантовой точки с пептидом-носителем, пригодные для визуализации и доставки молекул в растения
Иллюстрации
Показать всеИзобретение относится к области биохимии, в частности к способу введения представляющей интерес нуклеиновой кислоты в растительную клетку, имеющую клеточную стенку, который включает взаимодействие растительной клетки, имеющей клеточную стенку, с активированным QD-пептидным конъюгатом. Изобретение также относится к способу проведения устойчивой экспрессии гена, способу переноса молекулярного вещества в растительную клетку, а также к способу идентификации трансформанта растения. Изобретение позволяет эффективно осуществлять введения представляющей интерес нуклеиновой кислоты в растительную клетку, имеющую клеточную стенку. 4 н. и 15 з.п. ф-лы, 2 ил., 4 табл., 3 пр.
Реферат
Заявление о праве на приоритет
Настоящая заявка притязает на преимущество приоритета предварительной заявки на патент № 61/466804, поданной 23 марта 2011 г.
Область техники, к которой относится изобретение
Настоящее изобретение относится к способам введения представляющей интерес молекулы в растительную клетку, имеющую клеточную оболочку, при помощи QD-пептидного конъюгата, содержащего квантовую точку (QD) и один или несколько проникающих в клетку пептидов (СРР).
Уровень техники
Наночастицы обладают уникальными свойствами, используемыми для доставки ДНК в клетки. Наночастицы металлов, такие как наночастицы золота (Au), используются для доставки ДНК благодаря низкой цитотоксичности и легкому взаимодействию с разными биологически значимыми лигандами. Помимо наночастиц металлов, в качестве носителей для доставки молекул в клетки используются наночастицы полупроводников (например, квантовые точки) (”QD”) размером 3-5 нм. ДНК и белки могут быть связаны с лигандом, присоединенным к поверхности QD (см., например, публикацию F. Patolsky et al., J. Am. Chem. Soc. 125, 13918 (2003)).
Наночастицы используются для доставки плазмидной ДНК в разные животные клетки. Установлено, что при инкубации наночастиц, покрытых ДНК, с клетками, не имеющими клеточной оболочки, указанные клетки поглощают такие наночастицы и начинают экспрессировать любые гены, кодированные ДНК. Однако доставка генов в растения затруднена из-за наличия у растительных клеток оболочек, что требует применения инвазивных средств доставки для генетической трансформации растений. Поэтому для опосредованной наночастицами доставки молекулы в клетки, имеющие клеточную оболочку, до введения частиц в протопласты растения удаляют клеточную оболочку (см. публикацию F. Torney et al., Nature Nanotechnol. 2 (2007)). Клеточная оболочка в растительных клетках является барьером, препятствующим доставке экзогенных молекул. Для доставки генов и мелких молекул в растительные клетки, имеющие оболочку, существуют многочисленные инвазивные методы, такие как генное ружье (биолистика), микроинъекция, электропорация и агробактерии, но доставка белков может быть осуществлена только с помощью микроинъекции. Доставка мелких молекул и белков при наличии оболочки у растительной клетки до сих пор не была исследована, при этом было бы желательно разработать методы, позволяющие манипулировать интактными растительными клетками, тканями или органами in vitro и in vivo.
Проникающие в клетки пептиды (СРР) являются новым и быстро растущим классом коротких пептидов, которые, как известно, играют важную роль в транслокации целого ряда несущих комплексов, включающих белки и ДНК, через биологические мембраны в линиях клеток млекопитающих и человека.
Хотя СРР облегчают доставку молекул в клетки млекопитающих, использование СРР для трансфекции растительных клеток ограничено рядом факторов. Главным препятствием для применения данной технологии при работе с растениями является то, что в отличие от животных клеток растительные клетки имеют двойной барьер (клеточную оболочку и плазматическую мембрану), препятствующий интернализации СРР и переносимых ими молекул. Поэтому СРР должны преодолеть два указанных барьера для эффективной транслокации. СРР используются в растительных клетках, но обычно благодаря применению агентов и методов, обеспечивающих проникновение СРР в растительные клетки. Домен, способствующий трансдукции белка ТАТ из ВИЧ-1, (PTD) является одним из наиболее хорошо исследованных перемещающихся пептидов. В недавно опубликованных отчетах была показана возможность использования ТАТ-PTD и его олигомеров для доставки в клетки млекопитающих плазмидной ДНК путем образования комплекса с отрицательно заряженной ДНК.
Другие пептиды, которые, как известно, обладают свойствами транслокации, включают pVEC, транспортан, пенетратин, пептиды рер-1 и их фрагменты.
Нанесение пептидов на QD является одним методом, широко применяемым при создании наночастиц для разных биотехнологических процессов. Например, присоединение проникающих в клетку пептидов, таких как полиаргинин и ТАТ-выделенные пептиды, к поверхности QD позволяет переносить QD в животные клетки. СРР широко используются в качестве носителей для доставки в клетки молекул при выполнении фундаментальных и прикладных биомедицинских исследований. С их помощью теперь можно вводить в клетки млекопитающих вещества, не способные проникать через мембрану, такие как нуклеиновые кислоты пепсина (PNA), белки, олигонуклеотиды или наночастицы. Биологи, работающие с растениями, считают весьма привлекательным использование СРР для доставки и временной экспрессии биомолекул в клетках. Таким образом, по-прежнему существует потребность в методе устойчивого введения генов и других представляющих интерес молекул в растения с помощью наночастиц.
Сущность изобретения
Нижеследующие варианты осуществления изобретения описаны наряду с системами, средствами и способами, которые поясняют и иллюстрируют изобретение, но не ограничивают его объем.
Один вариант осуществления изобретения относится к способу введения представляющей интерес молекулы в растительную клетку, имеющую клеточную оболочку, для достижения устойчивой трансформации растения и семян. Указанный способ включает получение растительной клетки, имеющей клеточную оболочку, осуществление взаимодействия квантовой точки (QD) с одним или несколькими проникающими в клетку пептидами (СРР) с образованием QD-пептидного конъюгата и присоединение одной или нескольких представляющих интерес молекул к одному или нескольким СРР с образованием активированного QD-пептидного конъюгата. Клетку и активированный QD-пептидный конъюгат вводят в соприкосновение друг с другом в условиях, обеспечивающих поглощение указанного конъюгата клеткой, имеющей клеточную оболочку.
Другой вариант осуществления изобретения относится к способу проведения устойчивой экспрессии гена. Указанный способ включает получение растительной клетки, имеющей клеточную оболочку, осуществление взаимодействия квантовой точки (QD) с одним или несколькими проникающими в клетку пептидами (СРР) с образованием QD-пептидного конъюгата и присоединение одного или нескольких генов к одному или нескольким СРР с образованием активированного QD-пептидного конъюгата. Растительную клетку, имеющую клеточную оболочку, и активированный QD-пептидный конъюгат вводят в соприкосновение друг с другом в условиях, обеспечивающих поглощение QD-пептидного конъюгата и одного ли нескольких генов растительной клеткой, имеющей клеточную оболочку. Указанный ген экспрессируется в потомстве растения, содержащего данную растительную клетку.
Другой вариант осуществления изобретения относится к способу переноса молекулярного вещества в растительную клетку. Указанный способ включает осуществление взаимодействия квантовой точки (QD) с одним или несколькими проникающими в клетку пептидами (СРР) с образованием QD-пептидного конъюгата и осуществление взаимодействия QD-пептидного конъюгата с плазмидной ДНК с образованием структуры активированного QD-пептидного конъюгата. Структуру активированного QD-пептидного конъюгата вводят в соприкосновение с интактной растительной клеткой, имеющей клеточную оболочку, в условиях, обеспечивающих поглощение растительной клеткой одного или нескольких СРР и одного или нескольких генов из плазмидной ДНК.
Другой вариант осуществления изобретения относится к способу скрининга и идентификации трансформации растения. Указанный способ включает получение растительной клетки, имеющей клеточную оболочку, осуществление взаимодействия квантовой точки (QD) с одним или несколькими проникающими в клетку пептидами (СРР) с образованием QD-пептидного конъюгата и присоединение одной или нескольких представляющих интерес молекул к одному или нескольким СРР с образованием активированного QD-пептидного конъюгата. Клетку, имеющую клеточную оболочку, и активированный QD-пептидный конъюгат вводят в соприкосновение друг с другом в условиях, обеспечивающих поглощение QD-пептидного конъюгата и представляющей интерес молекулы растительной клеткой, имеющей клеточную оболочку. Растительную клетку, имеющую клеточную оболочку, затем визуализируют.
Помимо вышеуказанных объектов и вариантов осуществления изобретения, из нижеследующего описания изобретения станут очевидными другие объекты и варианты осуществления изобретения.
Краткое описание чертежей
На фиг. 1 показан вариант конъюгата квантовой точки/пептида.
На фиг. 2 показана плазмидная карта pDAB3831.
Варианты осуществления изобретения
В нижеследующем описании изобретения и таблицах использован ряд терминов. Для достижения ясного и правильного понимания описания изобретения и формулы изобретения далее приведены следующие определения терминов.
Обратное скрещивание. Обратное скрещивание означает процесс, в соответствии с которым селекционер повторно скрещивает гибридное потомство с одним из родителей, например, гибрид F1 первого поколения скрещивают с одним из родительских генотипов гибрида F1.
Зародыш. Зародыш является маленьким растением, находящимся в созревшем зерне.
Устойчивость к гербициду. Устойчивость к гербициду означает способность растения выживать (то есть растение не может быть уничтожено) при внесении данной дозы гербицида. В некоторых случаях толерантные растения могут временно пожелтеть или каким-либо другим образом отреагировать на повреждение гербицидом (например, избыточным кущением и/или замедлением роста), но затем восстанавливаются.
Стабилизированный. Стабилизированный означает характеристики растения, которые воспроизводимо передаются одним поколением следующему поколению инбредных растений того же сорта.
Поглощение. Поглощение означает транслокацию частицы, такой как квантовая точка, несущие пептиды, проникающие в клетку пептиды и хоминг-пептиды, через клеточную оболочку или клеточную мембрану, при этом транслокация происходит не только под воздействием стимула, сообщаемого частице самой клеткой, поглощающей данную частицу. Неограничивающие примеры устройств или методов, обеспечивающих транслокацию частицы через клеточную оболочку или клеточную мембрану под воздействием стимула, сообщаемого частице, включают биолистику, генное ружье, микроинъекцию и/или прокалывание.
В некоторых вариантах осуществления изобретения в одном или нескольких пептидах может быть создано несколько сайтов присоединения или заполнения “добавляемой” или “гостевой” молекулой. Указанное свойство может быть использовано, например, для специфического направленного воздействия и изменения сайтов молекул в клетках в таких областях, как биомиметика, направленная доставка, с целью создания негенетически модифицированных организмов и временной трансформации древесных или растительных культур для сообщения им определенных признаков и устойчивости к болезням. Варианты осуществления изобретения также относятся к созданию приемлемых биосенсоров. Кроме того, в способах по настоящему изобретению могут быть использованы искусственные хромосомы (ACES) в качестве альтернативы современным эукариотическим векторам для точного воздействия и гомологичной рекомбинации.
Конкретные варианты осуществления изобретения относятся к использованию многофункциональных флуоресцирующих наночастиц, пригодных для доставки отрицательно заряженных молекул, таких как, например, ДНК/РНК. Несущие и проникающие в клетку пептиды (СРР)/хоминг-пептиды (НР) (совместно определяемые в настоящем описании изобретения как ”СРР”), такие как R9, TAT, MPG и γ-Zein, были присоединены к поверхности люминесцентных квантовых точек (QD). QD-пептидные конъюгаты были использованы для эффективной доставки ДНК в растение Arabidopsis. QD-пептидные биоконъюгаты не оказывали токсического воздействия на рост осей цветков Arabidopsis и образование семян. Было идентифицировано несколько устойчивых трансформантов Т1 и был произведен анализ рассады. Установлено, что доставка ДНК в растения произведена с помощью носителя и достигнута устойчивая трансформация. Могут быть созданы интеллектуальные системы для доставки биомолекул и направленного воздействия на клетки и компартменты клеток. В конкретных вариантах осуществления изобретения такие автофлуоресцентные QD могут быть использованы для визуализации признаков в растениях.
Определенные варианты осуществления изобретения относятся к способу введения представляющей интерес молекулы в растительную клетку, имеющую клеточную оболочку, для достижения устойчивой трансформации растения и семян. Указанный способ включает получение растительной клетки, имеющей клеточную оболочку, осуществление взаимодействия квантовой точки (QD) с одним или несколькими проникающими в клетку пептидами (СРР) с образованием QD-пептидного конъюгата и присоединение одной или нескольких представляющих интерес молекул к одному или нескольким СРР с образованием активированного QD-пептидного конъюгата. Клетку и активированный QD-пептидный конъюгат вводят в соприкосновение друг с другом в условиях, обеспечивающих поглощение указанного конъюгата клеткой, имеющей клеточную оболочку.
В некоторых вариантах осуществления изобретения несколько пептидов были ковалентно связаны с наночастицами QD и доставлены в растительные клетки. Наночастицы с проникающими в клетку пептидами R9, γ-Zein и MPG были успешно доставлены в растения для достижения устойчивой трансформации растений. В других вариантах осуществления изобретения была использована меченая биомолекула для отслеживания введенных молекул в цитоплазму. Было достигнуто эффективное поглощение указанных QD-пептид-ДНК конъюгатов, при этом комплекс ДНК с QD-пептидным конъюгатом был устойчивым, о чем свидетельствует устойчивая трансформация, передаваемая семенами, и получение устойчивой рассады Т1.
Другие объекты изобретения относятся к использованию QD-пептидных конъюгатов для многофункциональных вариантов интеллектуальной доставки биофункциональных биомолекул (например, для доставки ДНК/РНК и ферментов), визуализации и разных биотехнологических диагностических функций. Современная методика может способствовать развитию химии поверхностных взаимодействий и инкапсуляции, что позволит облегчить синтез целого ряда молекул, обладающих разными функциональными свойствами. Основные свойства указанных веществ с точки зрения их возможного использования для доставки биомолекул и генов определяются большой плотностью концевых групп в таких системах. Данное явление улучшает поверхностные характеристики молекул, позволяет создать много сайтов присоединения (например, для конъюгации сигнальных или направленно воздействующих частей) и определяет молекулярный объем, который имеет важное значение для включения других молекул в указанный комплекс. Конъюгированные несущие пептиды одновременно обеспечивают доставку QD и присоединенных молекул. Кроме того, в результате образования комплекса переносимой молекулы непосредственно с несущим пептидом можно устранить трэйдоф в целом ряде присоединенных видов на поверхности QD. Так как отрицательно заряженные олигонуклеотиды не могут проникать через барьеры, создаваемые клеточной оболочкой и клеточной мембраной и сами клеточные мембраны, настоящее изобретение наряду с прочим обеспечивает создание эффективных систем доставки для встраивания ДНК, регуляции генов и корреляции.
В соответствии с вариантами осуществления настоящего изобретения растительная клетка, имеющая клеточную оболочку, может быть любой растительной клеткой, имеющей интактную и целую клеточную оболочку. Примеры клеток, имеющих клеточную оболочку, включают, не ограничиваясь ими, водоросли, табак, морковь, кукурузу, канолу, рапс, хлопчатник, пальму, арахис, сою, сахарный тростник, Oryza sp., Arabidopsis sp. и Ricinus sp., предпочтительно табак, морковь, кукурузу, хлопчатник, канолу, сою и сахарный тростник, более предпочтительно табак и морковь. Варианты осуществления настоящего изобретения относятся к клеткам, имеющим клеточную оболочку, из любой ткани или органа, которые включают, не ограничиваясь ими, зародыши, меристематические клетки, каллюс, пыльцу, листья, пыльники, корни, корневые отростки, цветки, семена, бобы, стебли и культуру ткани.
В вариантах осуществления настоящего изобретения представляющая интерес молекула может быть любой молекулой, доставляемой в растительную клетку по настоящему изобретению. Представляющие интерес молекулы или компоненты таких молекул могут включать, не ограничиваясь ими, нуклеиновые кислоты, ДНК, РНК, иРНК, гены, плазмиды, космиды, YAC, BAC, искусственные хромосомы растений, минихромосомы растений, генетически созданные ДНК локусов признаков, полипептиды, ферменты, гормоны, гликопептиды, сахара, жиры, сигнальные пептиды, антибиотики, витамины, мессенджеры, вторичные мессенджеры, аминокислоты, сАМР, лекарственные средства, гербициды, фунгициды, антибиотики и/или их комбинации.
Варианты осуществления настоящего изобретения относятся к способам профилактики или лечения заболевания. Неограничивающие примеры вариантов осуществления изобретения включают доставку фунгицидов, антибиотиков и/или других лекарственных средств в клетки, нуждающиеся в таких средствах, способами по настоящему изобретению.
В соответствии с объектами настоящего изобретения QD-пептидный конъюгат может быть поглощен разными частями клетки. Примеры частей клетки, способных поглощать QD-пептидный конъюгат, включают, не ограничиваясь ими, цитозоль, ядро, тонопласты, пластиды, этиопласты, хромопласты, лейкопласты, элайопласты, протеинопласты, амилопласты, хлоропласты и полость двойной мембраны. В других вариантах осуществления изобретения QD-пептидный конъюгат может быть поглощен клеткой, имеющей клеточную оболочку, по симпластическому или апопластическому пути.
Дополнительные варианты осуществления изобретения относятся к генетически модифицированным растительным клеткам и способам создания таких клеток, в соответствии с которыми в растительные клетки вводят одну или несколько нуклеиновых кислот способами по настоящему изобретению. В одном варианте осуществления изобретения в растительную клетку, имеющую клеточную оболочку, с помощью QD-пептидного комплекса по настоящему изобретению вводят плазмиду, содержащую представляющий интерес ген и селектируемый маркер. В других вариантах осуществления изобретения могут быть выбраны устойчивые трансформанты, в которые устойчиво встроен представляющий интерес ген и/или селектируемый маркер. В альтернативных вариантах осуществления изобретения растительная клетка, включающая представляющий интерес ген, может быть размножена с образованием других клеток, включающих представляющую интерес молекулу. В других вариантах осуществления изобретения растительные клетки, содержащие представляющую интерес молекулу, могут быть регенерируемыми клетками, используемыми для регенерации всего растения, включающего представляющую интерес молекулу.
Другим объектом настоящего изобретения являются способы создания регенерируемых растительных клеток, включающих представляющую интерес молекулу, которые предназначены для использования в культуре ткани. Культура ткани предпочтительно способна регенерировать растения, относящиеся к такому же генотипу, что и регенерируемые клетки. Регенерируемые клетки в таких культурах ткани могут представлять собой зародыши, протопласты, меристематические клетки, каллюс, пыльцу, листья, пыльники, корни, корневые отростки, цветки, семена, бобы или стебли. Кроме того, вариант осуществления изобретения относится к растениям, регенерированным из культур ткани по настоящему изобретению.
Альтернативно, настоящее изобретение относится к способу сообщения желаемого признака растительной клетке, имеющей клеточную оболочку, который включает введение QD-пептидного конъюгата и представляющей интерес молекулы, сообщающей желаемый признак растительной клетке, в соприкосновение с указанной клеткой в условиях, обеспечивающих проникновение QD-пептидного конъюгата через клеточную оболочку. Примеры желаемых признаков включают, не ограничиваясь ими, признаки, выбираемые из мужской стерильности, устойчивости к гербициду, устойчивости к насекомым, устойчивости к бактериальному заболеванию, грибковому заболеванию и/или вирусному заболеванию.
Другими объектами настоящего изобретения являются способы создания устойчивых линий растений, включающих желаемый признак или представляющую интерес молекулу, в соответствии с которыми растительной клетке сначала сообщают желаемый признак или вводят представляющую интерес молекулу, обеспечивая проникновение QD-пептидного конъюгата через клеточную оболочку растения. Методы создания устойчивых линий растений хорошо известны специалисту с данной области и могут представлять собой методы, которые включают, не ограничиваясь ими, самоопыление, обратное скрещивание, создание гибридов, скрещивание с популяциями и тому подобные. В объем настоящего изобретения входят все растения и растительные клетки, включающие желаемый признак или представляющую интерес молекулу, которые были введены в растительную клетку (или ее предшественники) путем поглощения QD-пептидного конъюгата через клеточную оболочку. Растительные клетки, включающие желаемый признак или представляющую интерес молекулу, которые были введены в растение или клетку (или ее предшественники) путем поглощения QD-пептидного конъюгата через клеточную оболочку, могут быть использованы для скрещивания с другими растительными клетками с целью получения гибридных клеток первого поколения (F1), семян и/или растений, обладающих лучшими характеристиками.
В вариантах осуществления изобретения, в которых представляющая интерес молекула содержит один или несколько генов, указанные гены могут быть доминантными или рецессивными аллелями. В качестве примера можно отметить, что указанные гены могут сообщать растению такие признаки, как устойчивость к гербициду, устойчивость к насекомым, устойчивость к бактериям, устойчивость к грибам, устойчивость к вирусному заболеванию, мужская фертильность, мужская стерильность, более высокая питательная ценность и промышленная применимость.
Благодаря созданию методов молекулярной биологии, которые позволили выделять и исследовать гены, кодирующие определенные белковые продукты или РНК (например, иРНК), ученые, работающие в области биологии растений, стали проявлять повышенный интерес к созданию генома клеток, содержащего и экспрессирующего чужеродные гены, дополнительные или модифицированные варианты нативных или эндогенных генов (возможно, стимулируемых разными промоторами), с целью соответствующего изменения признаков клетки. Такие чужеродные дополнительные и/или модифицированные гены определяются в настоящем описании изобретения как “трансгены”. На протяжении последних пятнадцати-двадцати лет было разработано несколько методов создания трансгенных клеток, и конкретные варианты осуществления настоящего изобретения относятся к трансформированным вариантам клеток и способам создания таких клеток путем введения трансгена в клетку, имеющую клеточную оболочку, в результате поглощения QD-пептидного конъюгата через клеточную оболочку. В вариантах осуществления настоящего изобретения трансген может находиться в экспрессирующем векторе.
Трансформация клетки может включать создание экспрессирующего вектора, функционирующего в конкретной клетке. Такой вектор может содержать ДНК, включающую ген, контролируемый или функционально связанный с регуляторным элементом (таким как, например, промотор). Экспрессирующий вектор может содержать одну или нескольких таких функционально связанных комбинаций гена/регуляторного элемента. Вектор может быть плазмидой и может быть использован отдельно или в комбинации с другими плазмидами с образованием клеток, трансформированных методами, обеспечивающими введение трансгена в генетический материал растительной клетки, имеющей клеточную оболочку.
Использование QD-пептидных конъюгатов в соответствии со способами по настоящему изобретению позволило получить устойчиво трансформированные растения и продемонстрировало наличие экспрессии устойчиво трансформированного гена, относящегося к фенотипу, сообщающего трансгенному растению Т1 высокую устойчивость к гербициду. Было показано, что данное растение является плодородным, так как позволило получить семена Т2.
Экспрессирующие векторы, применяемые для поглощения молекул с помощью QD-пептидного конъюгата: гены-маркеры
Экспрессирующие векторы могут включать по меньшей мере один генетический маркер, функционально связанный с регуляторным элементом (таким как, например, промотор), который позволяет выявить трансформированные клетки, содержащие маркер, путем отбора по отрицательному признаку (то есть ингибирование роста клеток, не содержащих селектируемый ген-маркер) или путем отбора по положительному признаку (то есть скрининг продукта, кодированного генетическим маркером). В области трансформации клеток хорошо известны многие селектируемые гены-маркеры, которые включают, например, гены, кодирующие ферменты, метаболически детоксифицирующие селективный химический агент, который может быть антибиотиком или гербицидом, или гены, кодирующие измененную мишень, которая может быть невосприимчива к ингибитору. В данной области также известны несколько методов отбора по положительному признаку.
Одним широко используемым селектируемым геном-маркером, пригодным для трансформации растений, является ген неомицин-фосфотрансферазы II (nptII), контролируемый регуляторными сигналами растения, который сообщает устойчивость к канамицину. См., например, публикацию Fraley et al., Proc. Natl. Acad. Sci. U.S.A. 80:4803 (1983). Другим широко используемым селектируемым геном-маркером является ген гигромицин-фосфотрансферазы, сообщающий устойчивость к антибиотику гигромицину. См., например, публикацию Vanden Elzen et al., Plant Mol. Biol. 5:299 (1985).
Дополнительные селектируемые гены-маркеры бактериального происхождения, сообщающие устойчивость к антибиотикам, включают гентамицин-ацетилтрансферазу, стрептомицин-фосфотрансферазу, аминогликозид-3'-аденилтрансферазу и детерминанту устойчивости к блеомицину. См. публикации Hayford et al., Plant Physiol. 86:1216 (1988); Jones et al., Mol. Gen. Genet. 210:86 (1987); Svab et al., Plant Mol. Biol. 14:197 (1990); Hille et al., Plant Mol. Biol. 7:171 (1986). Другие селектируемые гены-маркеры сообщают устойчивость к гербицидам, таким как глифозат, глюфозинат или бромоксинил. См. публикации Comai et al., Nature 317:741-744 (1985); Gordon-Kamm et al., Plant Cell 2:603-618 (1990); и Stalker et al., Science 242:419-423 (1988).
Другие селектируемые гены-маркеры, пригодные для трансформации растений, имеют происхождение, отличное от бактериального. Указанные гены включают, например, мышиную дигидрофолат-редуктазу, растительную 5-енолпирувилшикимат-3-фосфат-синтазу и растительную ацетолактат-синтазу. См. публикации Eichholtz et al., Somatic Cell Mol. Genet. 13:67 (1987); Shah et al., Science 233:478 (1986); Charest et al., Plant Cell Rep. 8:643 (1990).
Другой класс генов-маркеров, пригодных для трансформации растений, требует скрининга предположительно трансформированных растительных клеток, а не прямого генетического отбора трансформированных клеток, обладающих устойчивостью к токсическому веществу, такому как антибиотик. Указанные гены особенно пригодны для количественного определения или визуализации пространственного паттерна экспрессии гена в определенных тканях и часто определяются как гены-репортеры, так как указанные гены могут быть гибридизированы с геном или регуляторной последовательностью гена для исследования экспрессии гена. Гены, обычно используемые для скрининга трансформированных клеток, включают β-глюкуронидазу (GUS), β-галактозидазу, люциферазу и хлорамфеникол-ацетилтрансферазу. См. публикации R.A. Jefferson, Plant Mol. Biol. Rep. 5:387 (1987); Teeri et al., EMBO J. 8:343 (1989); Koncz et al., Proc. Natl. Acad. Sci. U.S.A. 84:131 (1987), DeBlock et al., EMBO J. 3:1681 (1984).
Недавно была разработаны методы визуализации активности GUS in vivo, не требующие разрушения растительной ткани. См. публикации Molecular Probes, 2908, Imagene Green™, p. 1-4 (1993) и Naleway et al., J. Cell Biol. 115:151a (1991). Однако указанные методы визуализации активности GUS in vivo оказались непригодными для выявления трансформированных клеток из-за низкой чувствительности, высокой фоновой флуоресценции и ограничений, связанных с использованием генов люфицеразы в качестве селектируемых маркеров.
Недавно в качестве маркеров экспрессии генов в прокариотических и эукариотических клетках были использованы гены, кодирующие флуоресцирующие белки (например, GFP, EGFP, EBFP, ECFP и YFP). См. публикацию Chalfie et al., Science 263:802 (1994). В качестве селектируемых маркеров могут быть использованы флуоресцирующие белки и мутации флуоресцирующих белков.
Экспрессирующие векторы, применяемые для поглощения молекул с помощью QD-пептидных конъюгатов: промоторы
Гены, введенные в экспрессирующие векторы, должны стимулироваться нуклеотидной последовательностью, включающей регуляторный элемент, например, промотор. В настоящее время в области трансформации клеток хорошо известны несколько типов промоторов наряду с другими регуляторными элементами, которые могут быть использованы отдельно или в комбинации с промоторами.
В использованном здесь значении термин “промотор” означает область ДНК, расположенную вверху от начала транскрипции, которая участвует в узнавании и связывании РНК-полимеразы и других белков для инициации транскрипции. “Растительный промотор” может быть промотором, способным инициировать транскрипцию в растительных клетках. В качестве примеров создаваемых в настоящее время промоторов можно привести промоторы, которые предпочтительно инициируют транскрипцию в определенных тканях, таких как листья, корни, семена, волокна, сосуды ксилемы, трахеиды или склеренхима. Такие промоторы определяются как “тканепредпочтительные”. Промоторы, которые инициируют транскрипцию только в определенных тканях, определяются как “тканеспецифичные”. Промотор, специфичный к “типу клетки”, стимулирует главным образом экспрессию в определенных типах клеток в одном или нескольких органах, например, в сосудистых клетках корней или листьев. “Индуцибельный” промотор может быть промотором, активность которого регулируется окружающими условиями. Примеры окружающих условий, которые могут влиять на транскрипцию, вызываемую индуцибельными промоторами, включают анаэробные условия или наличие света. Тканеспецифичные, тканепредпочтительные, специфичные к типу клетки и индуцибельные промоторы составляют класс “неконститутивных” промоторов. “Конститутивный” промотор является промотором, который может быть активным в большинстве окружающих условий.
А. Индуцибельные промоторы
Индуцибельный промотор может быть функционально связан с геном для экспрессии в клетке. Индуцибельный промотор может быть необязательно функционально связан с нуклеотидной последовательностью, кодирующей сигнальную последовательность, которая может быть функционально связана с геном для экспрессии в клетке. При наличии индуцибельного промотора скорость транскрипции повышается под воздействием индуцирующего агента.
В настоящем изобретении может быть использован любой индуцибельный промотор. См. публикацию Ward et al., Plant Mol. Biol. 22:361-366 (1993). Типичные индуцибельные промоторы включают, не ограничиваясь ими, промоторы из системы ACEI, реагирующие на медь (Mett et al., PNAS 90:4567-4571 (1993)); ген In2 кукурузы, который реагирует на защитные средства от бензолсульфонамидного гербицида (Hershey et al., Mol. Gen. Genetics 227:229-237 (1991); and Gatz et al., Mol. Gen. Genetics 243:32-38 (1994)); и Tet-репрессор из Tn10 (Gatz et al., Mol. Gen. Genetics 227:229-237 (1991)). Особенно пригодным индуцибельным промотором может быть промотор, реагирующий на индуцирующий агент, на который растения обычно не реагируют. Типичным индуцибельным промотором является индуцибельный промотор гена стероидного гормона, транскрипционная активность которого может быть вызвана глюкокортикостероидным гормоном. Schena et al., Proc. Natl. Acad. Sci. U.S.A. 88-0421 (1991).
В. Конститутивные промоторы
Конститутивный промотор может быть функционально связан с геном для экспрессии в клетке, или конститутивный промотор может быть функционально связан с нуклеотидной последовательностью, кодирующей сигнальную последовательность, которая может быть функционально связана с геном для экспрессии в клетке.
В настоящем изобретении могут быть использованы разные конститутивные промоторы. Типичные конститутивные промоторы включают, не ограничиваясь ими, промоторы из растительных вирусов, такие как промотор 35S из CaMV (Odell et al., Nature 313:810-812 (1985)); промоторы из генов актина риса (McElroy et al., Plant Cell 2:163-171 (1990)); убиквитин (Chrictensen et al., Plant Mol. Biol. 12:619-632 (1989) and Christensen et al., Plant Mol. Biol. 18:675-689 (1992)); pEMU (Last et al., Theor. Appl. Genet. 81:581-588 (1991)); MAS (Velten et al., EMBO J. 3:2723-2730 (1984)) и гистон Н3 кукурузы (Lepetit et al., Mol. Gen. Genetics 231:276-285 (1992) и Atanassova et al., Plant Journal 2(3):291-300 (1992)). Особенно пригодным конститутивным промотором является промотор ALS, 5'-концевой фрагмент Xba1/NcoI структурного гена ALS3 Brassica napus (или нуклеотидная последовательность, подобная указанному фрагменту Xba1/NcoI). См. заявку на патент РСТ WO 96/30530.
С. Тканеспецифичные или тканепредпочтительные промоторы
Тканеспецифичный промотор может быть функционально связан с геном для экспрессии в клетке. Тканеспецифичный промотор может быть необязательно функционально связан с нуклеотидной последовательностью, кодирующей сигнальную последовательность, которая может быть функционально связана с геном для экспрессии в клетке. Растения, трансформированные представляющим интерес геном, функционально связанным с тканеспецифичным промотором, могут продуцировать белковый продукт трансгена исключительно или предпочтительно в определенной ткани.
В настоящем изобретении может быть использован любой тканеспецифичный или тканепредпочтительный промотор. Типичные тканеспецифичные или тканепредпочтительные промоторы включают, не ограничиваясь ими, промотор, предпочтительно инициирующий транскрипцию в корнях, такой как ген фазеолина (Murai et al., Science 23:476-482 (1983) и Sengupta-Gopalan et al., Proc. Natl. Acad. Sci. U.S.A. 82:3320-3324 (1985); промотор, специфичный к листьям и индуцируемый светом, такой как промотор из cab или rubisco (Simpson et al., EMBO J. 4(11):2723-2729 (1985) и Timko et al., Nature 318:579-582 (1985)); промотор, специфичный к пыльнику, такой как промотор из LAT52 (Twell et al., Mol. Gen. Genetics 217:240-245 (1989)); промотор, специфичный к пыльце, такой как промотор из Zm13 (Guerrero et al., Mol. Gen. Genetics 244:161-168 (1993)), или промотор, предпочитающий микроспоры, такой как промотор из apg (Twell et al., Sex. Plant Reprod. 6: 217-2245 (1993)).
Белок, продуцированный трансгенами, может быть перенесен в субклеточный компартмент, такой как хлоропласт, вакуоль, пероксисома, глиоксисома, клеточная оболочка или митохондрион, для секреции в апопласт, путем функционального связывания нуклеотидной последовательности, кодирующей сигнальную последовательность, с 5'- и/или 3'-концевой областью гена, кодирующего представляющий интерес белок. Направленно воздействующие последовательности, расположенные у 5'- и/или 3'-конца структурного гена, могут определять во время синтеза и процессинга белка окончательную локализацию кодированного белка в компартменте. Альтернативно, такие белки, определяющие субклеточный компартмент, могут быть непосредственно связаны с QD-пептидным конъюгатом для направления указанного конъюгата, содержащего представляющую интерес молекулу, в требуемый субклеточный компартмент.
Сигнальная последовательность направляет полипептид во внутриклеточную органеллу, в субклеточный компартмент или для секреции в апопласт. В данной области известны многие сигнальные последовательности. См., например, публикации
Гены чужеродных белков и агрономические гены
Трансгенные растения по настоящему изобретению способны продуцировать чужеродный белок в коммерческих количествах. Таким образом, методы отбора и размножения трансформированных растений, хорошо известные в данной обла