Фотолатентные катализаторы на основе титан-оксо-хелатов

Иллюстрации

Показать все

Изобретение относится к композиции катализатора реакций полиприсоединения или поликонденсации на основе титан-оксо-хелата. Композиция содержит (i) по меньшей мере, одно вещество формулы I

где R1 и R2 и R3 вместе с С-атомом, к которому они присоединены, образуют фенильную группу, которая может быть незамещенной или замещенной одним, двумя либо тремя С14алкилами, OR13 или NR13R14; R10 и R11 и R12 вместе с С-атомом, к которому они присоединены, образуют фенильную группу, которая может быть незамещенной или замещенной одним, двумя либо тремя С14алкилами, OR13 или NR13R14; R4, R5, R6, R7, R8, R9, независимо друг от друга представляют собой водород, галоген либо С14алкил; при условии что только один из R4, R5 и R6 в группе и только один из R7, R8 и R9 в группе может быть водородом;

или R4, R5 и R6 и R7, R8 и R9 вместе с С-атомом, к которому они присоединены, образуют фенильную группу; или R4 и R5 и R7 и R8 вместе с С-атомом, к которому они присоединены, образуют циклогексильное кольцо; R13 и R14 независимо друг от друга представляют собой С14алкил; (ii) по меньшей мере, один хелатный лиганд общей формулы IIa, IIb или IIc

в котором

R1, R2 и R3 независимо друг от друга представляют собой водород, галоген или С14алкил; или R1 и R2 и R3 вместе с С-атомом, к которому они присоединены, образуют фенильную группу; R4, R5 и R6 независимо друг от друга представляют собой водород, галоген или С14алкил; или R4 и R5 и R6 вместе с С-атомом, к которому они присоединены, образуют фенильную группу. Также предложены применение композиции катализатора, полимеризуемая композиция, применение полимеризуемой композиции, имеющий покрытие субстрат, способ полимеризации соединений, полимеризованная либо сшитая композиция, катализатор реакций полиприсоединения или поликонденсации. Изобретение позволяет получить композицию катализатора на основе титан-оксо-хелата, обладающего высокой влагостойкостью, имеющего длительный срок хранения и хорошую фотолатентность. 8 н. и 5 з.п. ф-лы, 6 табл., 8 пр.

Реферат

Данное изобретение относится к композициям фотолатентных катализаторов на основе титан-оксо-хелатов и их применению в качестве катализаторов, в частности для сшивания получаемых из 2 компонентов полиуретанов, и новых фотолатентных титан-оксо-хелатных катализаторов.

Из уровня техники известно, что для получения, например, полиуретанов (ПУ) методом сшивания изоцианатных веществ с полиолами, включая любые вещества с гидроксильными группами и политиолы, используют органометаллические катализаторы, в частности на основе олова. Подобные катализаторы известны из многих публикаций, например патента US 5545600. Такие органометаллические катализаторы также могут быть использованы для катализа сшивания мономеров посредством других конденсаций или дополнительных реакций, как в случае, например модифицированных силоксаном связующих веществ, используемых в силан-сшитых адгезивах или герметиках, как описано, например, в патенте WO 2006/136211.

Современные катализаторы, используемые в наши дни, основаны на производных Sn. Эти катализаторы обычно не являются латентными, и поэтому реакция между полиолом и полиизоцианатами ускоряется сразу после добавления катализатора. По завершении короткого реакционного периода (от около 0,5 часа до 2 часов в зависимости от концентраций и условий) реакция завершена. Такое время реакции ограничивает рабочее время со связующими материалами после того как смесь была изготовлена. Таким образом, крайне желательно иметь возможность контролировать инициацию реакции посредством внешнего активатора, например нагревания или облучения. Это даст возможность увеличить рабочее время с полимерной смесью связующих материалов в идеале до тех пор, пока не введен внешний активатор.

Следующая проблема, которая решается данным изобретением, возникла по причине законодательного давления на использование катализаторов олова из-за их негативного воздействия на окружающую среду. Общая тенденция, наблюдаемая в этой области промышленности, направлена на замену катализаторов на основе олова на альтернативные металлы менее опасные или вообще безопасные для окружающей среды.

Фотолатентные катализаторы для сшивания ПУ были описаны в предшествующем уровне техники, например в патентах WO 2007/147851, WO 2009/050115. Эти катализаторы могут быть активированы при помощи облучения УФ.

В предшествующем уровне техники описаны в основном фотолатентные катализаторы на основе олова, а также Bi, Zr, Al, и Ti. Фотолатентные катализаторы на основе Ti крайне перспективны, поскольку они действуют так же хорошо как фотолатентные катализаторы на основе Sn, но не оказывают вредного воздействия на окружающую среду, подобно Sn. Такие катализаторы на основе Ti проявляют себя достаточно фотолатентными, но срок хранения ПУ композиций, содержащих подобные вещества не достаточен для их практического промышленного применения.

В патенте WO 2011/032875 описано использование специфических комбинаций Ti-хелатных комплексов Ti(хелат)2(OR)2 с избытком особых хелатных лигандов, которые ведут к увеличению срока хранения композиции при этом не ухудшая высокую фотолатентность катализатора. Добавления совсем небольшого количества специфических 1,3-дикетонов к фотолатентному комплексу на основе Ti приводит к более длительному сроку хранения, но эквивалентной фотолатентности по сравнению с известной из уровня техники. Тем не менее такие катализаторы чрезвычайно чувствительны к гидролизу и поэтому требуют особо аккуратного обращения и строгого исключения возможности любого попадания влаги. Поэтому хранение таких катализаторов часто сопровождается снижением их активности.

Катализаторы на основе металл-оксо-хелатов и комбинаций 1,3-дикетонов упоминаются в патенте JP 2006/206781 как сшивающие катализаторы для полиуретановых связующих материалов, а также для отверждения силиконовых композиций в патенте JP 2008/280434. В любом случае, в данных работах не описываются фотолатентные катализаторы или концепции получения латентных катализаторов.

Данное изобретение относится к использованию Ti-оксо-хелатных комплексных соединений, которые могут быть получены контролируемым гидролизом Ti-алкоксо-хелатных соединений и обладают высокой влагостойкостью и таким образом могут легко храниться даже во влажных условиях. Катализаторы на основе Ti-оксо-хелатных соединений (и комбинаций катализатор / 1,3-дикетон), которые являются объектом данного изобретения, неожиданно оказались такими же реакционно-активными и фотолатентными, как и соединения на основе Ti-алкоксо-хелатов (и комбинаций катализатор / 1,3-дикетон) при использовании в качестве сшивающего катализатора для полиуретанов.

Объектом изобретения является композиция катализатора на основе титан-оксо-хелата, которая состоит из

(i) по меньшей мере, одного вещества общей формулы

,

где R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 и R12 независимо друг от друга являются водородом, галогеном, C1-C20алкилом, С614арилом незамещенным или замещенным одним или более С18алкилами, галогеном, OR13 или NR13R14;

при условии, что только один из R1, R2 и R3 из группы и только один из R4, R5 и R6 из группы и только один из R7, R8 и R9 из группы и только один R10, R11 и R12 из группы может быть водородом;

или R1, R2 и R3 и/или R4, R5 и R6 и/или R7, R8 и R9 и/или R10, R11 и R12 вместе с С-атомом, к которому они присоединены, образуют С614 арильную группу, которая в свою очередь может быть незамещенной или замещенной одним или более C1-C8алкилом, галогеном, OR13 или NR13R14;

или R1 и R2 и/или R4 и R5 и/или R7 и R8 и/или R10 и R11 вместе с С-атомом, к которому они присоединены, образуют 5-7-членное карбоциклическое кольцо;

R13 и R14 независимо друг от друга являются C1-C8алкилом; и

(ii) по крайней мере, одного хелатного лиганда общей формулы IIа, IIb или IIc

,

где R1, R2, R3, R4, R5 и R6 являются такими, как описано для формулы I.

Следующим объектом изобретения являются соединения катализатора на основе титан-оксо-хелатов общей формулы (IA) или (IB)

, где

R20. R'20, Rʺ20, R21, R'21 и Rʺ21 независимо друг от друга являются водородом, галогеном, C1-C20алкилом, незамещенным или замещенным одним или более OR13 или COOR13, или C6-C14арилом, незамещенным или замещенным одним или более С18алкилами, галогеном, OR13 или NR13R14;

при условии, что только один из R21, R'20 и Rʺ20 из группы и только один из R21, R'21 и Rʺ21 из группы могут быть водородом;

или R20 и R'20 и/или R21 и R'21 вместе с C-атомом, к которому они присоединены, образуют 5-7-членное карбоциклическое кольцо,

R22, R23, R24 независимо друг от друга являются водородом, галогеном, С18алкилом, С18 алкоксигруппой, С614арилом, С18алконоилом, С18алконоилокси группой, С715ароилом, С715ароилокси, нитрилом, нитрогруппой, С18алкилтиолом, С614арилтиолом или NR37R38;

R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35 и R36 независимо друг от друга являются водородом, C1-C8алкилом, замещенным или незамещенным одним или более OR13 или COOR14, или являются С614арилом, который может быть незамещенным или замещенным одним или более С18алкилом, OR13 или NR13R14;

или два радикала R25 и R26 и/или два радикала R28 и R29 и/или два радикала R31 и R32 и/или два радикала R34 и R35 вместе с C-атомом, к которому они присоединены, образуют от 5-7-членное карбоциклическое кольцо;

при условии, что только один из R25, R26, R27 в группе и только один из R28, R29, R30 в группе и только один из R31, R32, R33 в группе и только один из R34, R35, R36 в группе может быть водородом; и

при условии, что R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35 и R36 не могут одновременно являться метильной группой;

R13 и R14 независимо друг от друга являются С18алкилом;

R37 и R38 независимо друг от друга являются водородом, С18алкилом или C6-C14арилом, или

R37 и R38, взятые вместе с N-атомом, к которому они присоединены, образуют 5- или 6-членное насыщенное или ненасыщенное кольцо, которое кроме N-атома может содержать дополнительный N-атом или О-атом.

Соединения общей формулы IIa, IIb и IIc являются таутомерными формами одного и того же соединения. Далее они все будут называться соединением общей формулы II.

C1-C20алкил может быть линейным, разветвленным или карбоциклом и может являться, например, C1-C18-, C1-C14-, C1-C12-, C1-C8-, C1-C6- или C1-C4алкилом. В качестве примеров могут быть приведены метил, этил, пропил, изопропил, н-бутил, втор-бутил, изобутил, трет-бутил, пентил, например циклопентил, гексил, например циклогексил, гептил, 2,4,4-триметилпентил, 2-этилгексил, октил, нонил, децил, додецил, тетрадецил, пентадецил, гексадецил, октадецил и икосил, предпочтительно метил, этил, пропил, изопропил, н-бутил, втор-бутил, изобутил, трет-бутил.

C1-C8алкил, C1-C6алкил и С1-C4алкил имеют те же значения, что и описанный выше C1-C20алкил, учитывая соответствующее количество C-атомов.

C1-C8алкил является незамещенным или замещенным одним или несколькими радикалами и может быть замещен, например от 1 до 5 раз, например 1-4 раз или один, два раза или три раза.

C1-C8алкокси группа является линейной или разветвленной и может быть C1-C6-или C1-C4алкокси группой. В качестве примеров могут быть приведены такие группы как метокси, этокси, изопропокси, н-бутилокси, втор-бутилокси, изобутилокси, трет-бутилокси, пентилокси, гексилокси, гептилокси, 2,4,4-триметилпентилокси, 2-этил-гексилокси или октилокси, в частности метокси, этокси, изопропокси, н-бутилокси, втор-бутилокси, изобутилокси, трет-бутилокси н-бутилокси, втор-бутилокси, изобутилокси, трет-бутилокси, в особенности метокси.

C1-C8алканоил является линейным или разветвленным и может быть, например, C1-C6- или C1-C4алканоилом или C4-C8алканоилом. Также примерами являются формил, ацетил, пропионил, бутаноил, изобутаноил, пентаноил, гексаноил, гептаноил или октаноил, предпочтительно ацетил.

C1-C8алканоилокси группа является линейной или разветвленной и может быть C2-C8, C2-C6, C2-C4алканоилокси группой. Примерами C1-C8алканоилокси групп являются ацетилокси, пропионилокси, бутаноилокси, изобутаноилокси группа, предпочтительно ацетилокси группа.

C1-C8алкилтио группа является C1-C8алкилом, причем S-атом присоединен к "ил" функциональной группе заместителя. C1-C8алкил расшифровывается так же как и описанный выше C1-C20алкил с учетом соответствующего количества атомов углерода. C1-C8алкилтио группа является линейной или разветвленной или циклической, например метилтио, этилтио, пропилтио, изопропилтио, н-бутилтио, втор-бутилтио, изобутилтио, трет-бутилтио группы, в частности метилтио группа.

C6-C14арил является, например фенилом, нафтилом, антрилом или фенантрилом, в частности фенилом, нафтилом, предпочтительно фенилом.

C6-C14арил может быть замещенным одной или несколькими группами, например 1-5 раз, например 1-4 раз или один раз или два или три раза. Заместители находятся, например, в позициях 2,4,6-, 2,6-, 2,4-, 2,5-, 2,3,4-, 2-, 4- или 5-позиции фенильного кольца.

C7-C15ароил является C6-C14арилом, как описано выше, причем -CO-группа присоединена к "ил" функциональной группе заместителя. Примерами C7-C15ароила являются бензоил, нафтоил, фенантроил и антроил, в особенности бензоил и нафтоил, в частности бензоил.

C7-C15ароилокси группа является C6-C14арилом, как описано выше, причем -(CO)O-группа присоединена к "ил" функциональной группе заместителя. Примерами C7-C15ароилокси групп являются бензоилокси, нафтоилкси, фенантроилокси и антроилокси група, особенно бензоилокси и нафтоилокси, в частности бензоилокси группа.

C6-C14арилтио заместитель является C6-C14арилом, причем S-атом присоединен к "ил" функциональной группе заместителя. C6-C14арил описывается так же как и описанный выше C6-C14арил. Примерами могут быть фенилтио, нафтилтио, антрилтио, фенантрилтио группы, и в частности фенилтио группа.

Под термином «галоген» подразумевают Cl, F, Br или I, например Cl, F, Br, в частности Cl или F, и предпочтительно F.

Когда R1, R2 и R3 и/или R4, R5 и R6 и/или R7, R8 и R9 и/или R10, R11 и R12 вместе с C-атомом, к которому они присоединены, образуют циклическую C6-C14 арильную группу, то образуются, например такие группы как и т.д.,

причем они могут являться незамещенными или замещенными радикалами, как описано выше.

Когда R1 и R2 и/или R4 и R5 и/или R7 и R8 и/или R10 и R11 вместе с C-атомом, к которому они присоединены, образуют 5-7-членное карбоциклическое кольцо, то образуются, например, такие группы, как , где Rx является R3, R6, и/или R12, Ry является C1-C20 алкилом, n является целым числом от 1 до 5 и m представляет собой целое число от 1 до 4, и т.д. Как показано в примерах, 5-7-членное карбоциклическое кольцо может опционально включать один или более алкильных заместителей.

Когда R20 и R'2O и/или R21 и R'21 вместе с C-атомом, к которому они присоединены, образуют 5-7-членное карбоциклическое кольцо, то образуются, например, такие группы, как , где Rx1 является Rʺ20, и/или Rʺ21, Ry1 является C1-C20 алкилом, n является целым числом от 1 до 5 и m представляет собой целое число от 1 до 4, и т.д. Как показано в примерах 5-7-членное карбоциклическое кольцо, которое опционально может включать один или более алкильных заместителей.

Когда два радикала R25 и R26 и/или два радикала R28 и R29 и/или два радикала R31 и R32 и/или два радикала R34 и R35 вместе с C-атомом, к которому они присоединены, образуют 5-7-членное карбоциклическое кольцо, то образуются, например такие группы как , где Rx2 является R27, R36, R30 и/или R33, Ry2 является C1-C20 алкилом, n является целым числом от 1 до 5 и m представляет собой целое число от 1 до 4, и т.д. Как показано в примерах, 5-7-членное карбоциклическое кольцо может опционально включать один или более заместителей.

Когда R37 и R38 вместе с N-атомом, к которому они присоединены, образуют 5-или 6-членное насыщенное либо ненасыщенное кольцо, которое кроме N-атома может включать другие N-атомы или O-атомы, то образуются, например пиррол, пирролидин, оксазол, пиридин, 1,3-диазин, 1,2-диазин, пиперидин или морфолиновые кольца, в частности образуются морфолиновые кольца.

Такие выражения как: «при условии, что только один из R1, R2 и R3 из группы R1R2R3C- и только один из R4, R5 и R6 из группы R4R5R6C- и только один из R7, R8 и R9 из группы R7R8R9C- и только один из R10, R11 и R12 из группы R10R11R12C- может быть водородом;

при условии, что только один из R20, R'20 и Rʺ20 из группы R20R'2020C- и только один из R21, R'21 и Rʺ21 из группы R21R'2121C- может быть водородом;

при условии, что только один из R25, R26, R27 из группы R25R26R27C- и только один из R28, R29, R30 из группы R28R29R30C- и только один из R31, R32, R33 из группы R31R32R33C- и только один из R34, R35, R36 из группы R34R35R36C- может быть водородом»

предназначены для обозначения исключения тех соединений, в которых R1R2R3C-, R4R5R6C-, R7R8R9C-, R10R11R12C-, R20R'2020C-, R21R'2121C-, R25R26R27C-, R28R29R30C-, R31R32R33C- и R34R35R36C- являются -СН3 или -CH2Rz, где Rz - это оставшийся радикал R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35 или R36.

Термин "фотолатентный катализатор" означает соединение, которое при облучении светом, в частности светом с длинной волны 150-800 нм, например от 200 до 800 нм или 200-600 нм, становится активным катализатором.

Термины "и/или" или "или/и" в данном контексте вводятся для того, чтобы показать, что имеет место быть не только одна из приведенных альтернатив (заместителей), но и также несколько из альтернатив (заместителей) вместе, так называемые сочетания нескольких альтернатив (заместителей).

Термин «по меньшей мере» означает, что имеется одна либо несколько альтернатив, например, одна или две или три, предпочтительно одна или две.

Термин «опционально замещенный» означает, что радикал, к которому относится данный термин является либо незамещенным либо замещенным.

В описании и приведенной далее формуле изобретения, за исключением тех случаев, которые подразумеваются контекстом, слово "включает" или "включающий" следует понимать как таковой, который включает в себе целое число или стадию или группу целых чисел или стадий, но не как исключающий любые другие целые числа либо стадии или комбинации целых чисел либо стадий.

Термин «(мет)акрилат» в контексте данного изобретения обозначает акрилат, а также соответствующий метакрилат.

Предпочтительные значения, указанные при описании соединений (I), (IA), (IB) в соответствии с данным изобретением относятся ко всем пунктам и подпунктам формулы, касающимся самих соединений, композиций, использования и способам получения в контексте данного изобретения.

Соединения общей формулы I, IA и IB данного изобретения могу быть получены гидролизом соответствующих Ti-диалкоксо-хелатных соединений как, например, описано в патенте JP10-072475A, или гидролизом соответствующих Ti-дихлоро-хелатных соединений, как описано, например, в патенте US5767302 (см. кол.4, строка 33ff).

или

(подобно соответствующим промежуточным соединениям или соединениям IA или IB)

Специалисту в данной области техники хорошо известны подходящие способы проведения соответствующей реакции гидролиза. Например, для проведения гидролиза подходящими являются органические растворители, такие как ароматические углеводороды, например толуол и т.д., либо олифатические углеводороды, такие как пентан, гексан и т.д., а в качестве основания может быть использован, например водный раствор аммиака.

Гидролиз также можно проводить просто добавлением воды к раствору предшествующего соединения в органическом растворителе и дальнейшим перемешиванием реакционной смеси при, например незначительном повышении температуры до, например 50°C.

Соединения общей формулы II (IIa, IIb, IIc) являются коммерчески доступными, либо могут быть получены конденсацией Кляйзена соответствующих сложных эфиров и метилкетонов, реакцией, хорошо известной специалистам в данной области.

Комбинация катализатора (которая является композицией титан-оксо-хелатного катализатора) может быть получена различными путями, например: i) растворением фотолатентного катализатора формулы I, IA или IB в растворе или части композиции и добавлением 1,3-дикетона общей формулы II к полученному раствору или оставшейся части композиции (или в обратном порядке); ii) приготовлением комбинации катализатора заранее, в виде физической смеси фотолатентного катализатора общей формулы I, IA или IB и 1,3-дикетона общей формулы II, пригодной для хранения. Смесь может быть приготовлена смешиванием двух компонентов или добавлением 1,3-дикетона общей формулы II во время синтеза хелатного комплекса общей формулы I, IA или IB.

Для специалиста в данной области понятно, что формула I (а также формулы IA и IB) является схематическим изображением структуры титан-оксо-хелатного комплекса. С учетом того, что предпочтительное координационное число органометаллических соединений Ti(IV) представляет собой шесть, такие вещества часто находятся в форме димеров, хотя также иногда могут принимать формы тримеров, тетрамеров или даже полимерных структур, при этом все эти формулы подразумеваются под общей формулой I (IA и IB), представленной в этом изобретении.

В качестве примеров структурных композиций на основе соединений общей формулы I могут быть приведены:

Титан-оксо-хелатный катализатор, как описано выше, например, включает

(i) 50-99 масс.%, по меньшей мере, одного соединения общей формулы I, как описано выше, и

(ii) 1-50 масс.%, по меньшей мере, одного хелатного лиганда общей формулы IIa, IIb или IIc, как описано выше.

Особенно предпочтительными являются титан-оксо-хелатные катализаторы, как описано выше, включающие

(i) по меньшей мере, одно соединение общей формулы I, где:

R1 и R2 и R3 вместе С-атомом, к которому они присоединены, образуют фенильную группу, которая может быть незамещенной или замещенной одним, двумя либо тремя C1-C4алкилами, OR13 или NR13R14;

R10 и R11 и R12 вместе с C-атомом, к которому они присоединены, образуют фенильную группу, которая может быть незамещенной или замещенной одним, двумя либо тремя C1-C4алкилами, OR13 или NR13R14;

R4, R5, R6, R7, R8, R9, независимо друг от друга, являются водородом, галогеном или C1-C4алкилом;

при условии, что только один из R4, R5 и R6 из группы и только один из R7, R8 и R9 из группы может быть водородом;

либо R4, R5 и R6 и R7, R8 и R9 вместе с C-атомом, к которому они присоединены, образуют фенильную группу:

либо R4 и R5 и R7 и R8 вместе с C-атомом, к которому они присоединены, образуют циклогексильное кольцо;

R13 и R14 независимо друг от друга являются C1-C4алкилом;

(ii) по меньшей мере, один хелатный лиганд общей формулы IIa, IIb или IIc

, где

R1, R2 и R3 независимо друг от друга являются водородом, галогеном, С1-C4алкилом;

либо R1 и R2 и R3 вместе с C-атомом, к которому они присоединены, образуют фенильную группу;

R4, R5 и R6 независимо друг от друга являются водородом, галогеном, C1-C4алкилом;

либо R4 и R5 и R6 вместе с С-атомом, к которому они присоединены, образуют фенильную группу.

Предпочтительными являются соединения, в которых R1, R2 и R3 вместе с C-атомом, к которому они присоединены, образуют C6-C14 арильную группу, которая может быть замещенной либо незамещенной, как описано выше, и в которых каждый R10, R11 и R12 вместе с C-атомом, к которому они присоединены, образуют C6-C14 арильную группу, которая может быть незамещенной либо замещенной, как описано выше.

Также предпочтительными являются соединения, в которых R7, R8, и R9 идентичны; и соединения где R4, R5 и R6 идентичны; в частности те соединения, в которых R7, R8, R9, R4, R5 и R6 идентичны.

R1, R2 и R3 также как R10, R11 и R12 вместе с соответствующим C-атомом, к которому они присоединены, образуют C6-C14 арильную группу, например, образуют фенильную или нафтильную группу, которая может быть замещенной либо незамещенной, как описано выше. В частности, образуется фенильная группа, которая может быть незамещенной либо замещенной C1-C8алкилом, галогеном, OR13 или NR13R14. Заместители в C6-C14 арильной группе, в частности в фенильной группе, могут быть, например, C1-C4алкилом, в особенности метил, OR13, где R13 означает C1-C4алкил, в особенности метил, NR12R13, где R12 и R13 являются C1-C4 алкилом, в частности метилом.

Предпочтительными являются соединения общей формулы IA.

В предпочтительных соединениях группы R1R2R3C- и R10R11R12C- являются идентичными и/или группы R4R5R6C- и R7R8R9C- являются идентичными.

R20, R'20, Rʺ20, например, независимо друг от друга, являются водородом, галогеном или С120алкилом, который может быть незамещенным либо замещенным одним или более OR13 или COOR13; или R20, R'20, Rʺ20, например, независимо друг от друга, являются водородом, галогеном или C1-C8алкилом; либо R20, R'20, Rʺ20, например, независимо друг от друга, являются водородом, фтором или C18алкилом, в частности R20, R'20, Rʺ20 являются водородом, фтором или метилом.

R21, R'21, Rʺ21, например, независимо друг от друга, являются водородом, галогеном или C1-C20алкилом, замещенным или незамещенным одним или более OR13 или COOR13; либо R21, R'21, Rʺ21, например, независимо друг от друга, являются водородом, галогеном или С1-C8алкилом; либо R21, R'21, Rʺ21, например, независимо друг от друга, являются водородом, фтором или C1-C8алкилом, в частности R21, R'21, Rʺ21 являются водородом, фтором либо метилом.

Предпочтительно группы R2OR'20R'20C- и R21R'2121C- являются идентичными.

R22, R23, R24, например, независимо друг от друга, являются водородом, C1-C8алкилом, C1-C8алкокси, C1-C8алканоилом, C1-C8алканоилокси, хлором, нитрилом, нитрогруппой, C1-C8алкилтио, C6-C14арилтио или NR37R38; либо R22, R23, R24, например, независимо друг от друга являются водородом C1-C8алкилом, C1-C8алкокси, C1-C8алканоилом, C1-C8алканоилокси или NR37R38; либо R22, R23, R24, например, независимо друг от друга, являются водородом, C1-C8алкилом, C1-C8алкокси, или NR37R38; в частности R22, R23, R24, например, независимо друг от друга, являются водородом, метилом, метокси или диметиламиногруппой.

R25, R26, R27, например, независимо друг от друга, являются водородом, C1-C8алкилом, который может быть незамещенным или замещенным одним или более OR13 или COOR14, или два радикала R25 и R26 вместе с C-атомом, к которому они присоединены, образуют циклопентиловое или циклогексиловое кольцо; либо R25, R26, R27, например, независимо друг от друга являются водородом, C1-C8алкилом, или два радикала R25 и R26 вместе с C-атомом, к которому они присоединены, образуют циклопентиловое или циклогексиловое кольцо; либо R25, R26, R27, например, независимо друг от друга являются водородом, C1-C8алкилом, который может быть незамещенным или замещенным одним или более OR13 или COOR14; либо R25, R26, R27, например, независимо друг от друга, являются водородом или С18алкилом.

R31, R32, R33, например, независимо друг от друга, являются водородом, C1-C8алкилом, который может быть незамещенным или замещенным одним или более OR13 или COOR14, или два радикала R31 и R32 вместе с C-атомом, к которому они присоединены, образуют циклопентиловое или циклогексиловое кольцо; либо R31, R32, R33, например, независимо друг от друга, являются водородом, C1-C8алкилом, или два радикала R31 и R32 вместе с C-атомом, к которому они присоединены, образуют циклопентиловое или циклогексиловое кольцо; либо R31, R32, R33, например, независимо друг от друга, являются водородом, C1-C8алкилом, который может быть незамещенным или замещенным одним или более OR13 или COOR14; или R31, R32, R33, например, независимо друг от друга являются водородом или C1-C8алкилом.

R28, R29, R30, например, независимо друг от друга, являются водородом, C1-C8алкилом, который может быть незамещенным или замещенным одним или более OR13 или COOR14, или два радикала R28 и R29 вместе с C-атомом, к которому они присоединены, образуют циклопентиловое или циклогексиловое кольцо; либо R28, R29, R30, например, независимо друг от друга, являются водородом, C1-C8алкилом, или два радикала R28 и R29 вместе с C-атомом, к которому они присоединены, образуют циклопентиловое или циклогексиловое кольцо; либо R28, R29, R30, например, независимо друг от друга, являются водородом, C1-C8алкилом, который может быть незамещенным или замещенным одним или более OR13 или COOR14; либо R28, R29, R30, например, независимо друг от друга являются водородом или C1-C8алкилом.

R34, R35, R36, например, независимо друг от друга, являются водородом, C1-C8алкилом, который может быть незамещенным или замещенным одним или более OR13 или COOR14, или два радикала R34 и R35 вместе с C-атомом, к которому они присоединены, образуют циклопентиловое или циклогексиловое кольцо; либо R34, R35, R36, например, независимо друг от друга, являются водородом, C1-C8алкилом, или два радикала R34 и R35 вместе с C-атомом, к которому они присоединены, образуют циклопентиловое или циклогексиловое кольцо; либо R34, R35, R36, например, независимо друг от друга, являются водородом, C1-C8 алкилом, который может быть незамещенным или замещенным одним или более OR13 или COOR14; либо R34, R35, R36, например, независимо друг от друга, являются водородом или C1-C8алкилом.

В предпочтительных соединениях группы R25R26R27C- и R31R32R33C- являются идентичными и/или группы R28R29R30C- и R34R35R36C- являются идентичными.

Также предпочтительными являются соединения общей формулы IB'

, в которых

R'25, R'26, R'27 и R'28 независимо друг от друга являются водородом, C1-C8алкилом, который может быть незамещенным или замещенным одним или более OR13 или COOR14, или являются C6-C14арилом, который является незамещенным или замещенным одним или более C18алкилом, OR13 или NR13R14;

либо два радикала R'25 и R'26 вместе с C-атомом, к которому они присоединены, и/или два радикала R'27 и R'28 вместе с C-атомом, к которому они присоединены, образуют 5-7-членное карбоциклическое кольцо.

Особенно предпочтительными являются соединения, представленные далее в примерах.

В данном изобретении описываются фотолатентные вещества, которые можно использовать в качестве катализаторов реакций полиприсоединения или поликонденсации, которые катализируются при помощи реагентов типа кислот Льюиса. Особенно предпочтительными являются реакции между полиолами и изоцианатами.

Соединения общей формулы (I), как описано выше, так же как композиция катализатора, как описано выше, могут быть использованы как фотолатентные вещества, например в процессах, которые инициируются воздействием электромагнитного излучения длинной волны 200-800 нм на реакционную смесь, которое инициирует кросс-связывание, в частности, соединения общей формулы (I) могут быть использованы как фотолатентные вещества.

Особенно подходящими в качестве фотолатентного катализатора является катализатор 12 (см. примеры).

Соответственно, предметом изобретения также является использование композиции Ti-оксо-хелатного катализатора, как описано выше при реакциях полиприсоединения или поликонденсации, которые катализируются реагентами типа кислот Льюиса, в частности для сшивания защищенных и незащищенных изоцианатов или изотиоционатов с полиолами для образования полиуретанов (ПУ).

Следующим объектом данного изобретения является использование Ti-оксо-хелатного катализатора общей формулы (I) как описано выше в качестве катализатора реакций полиприсоединения или поликонденсации, которые катализируются реагентами типа кислот Льюиса, в частности, для сшивания защищенных и незащищенных изоцианатов или изотиоционатов с полиолами с целью получения полиуретанов (ПУ).

Также предметом изобретения является использование Ti-оксо-хелатного катализатора общей формулы (I), как описано выше, в котором, по меньшей мере, один из R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 или R12 не является метилом, для катализа реакций полиприсоединения или поликонденсации, которые катализируются реагентами типа кислот Льюиса, в частности, для сшивания защищенных и незащищенных изоцианатов или изотиоционатов с полиолами для образования полиуретанов (ПУ).

Предпочтительно использование катализатора на основе Ti-оксо-хелатного соединения, описанного выше.

Далее предметом изобретения является полимеризуемая композиция, которая включает:

(a) по меньшей мере, один компонент, склонный к реакциям полиприсоединения или поликонденсации в присутствии реагентов типа кислот Льюиса; и

(b) Ti-оксо-хелатный катализатор, описанный ранее;

а также полимеризуемая композиция, которая включает в качестве компонента (а)

(a1)