Способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата

Иллюстрации

Показать все

Изобретение относится к радиотехнике и может быть использовано для определения координат наземных источников радиоизлучения (ИРИ) при радиопеленговании с борта летательного аппарата (ЛА). Достигаемый технический результат - повышение точности определения координат наземных ИРИ и снижение вычислительных затрат при радиопеленговании с борта ЛА. Указанный результат достигается за счет того, что осуществляют прием радиосигналов бортовой пеленгаторной антенной (БПА), частотную селекцию радиосигналов, определение линий радиопеленгов в азимутальной плоскости БПА, регистрацию полученных данных периодически отсчетами, формирование не менее одной независимой пары пересекающихся полуплоскостей положения наземного ИРИ, ортогональных азимутальной плоскости БПА, проходящих через каждую полученную линию радиопеленга, выбор и весовую обработку пар независимых отсчетов данных, учитывающих зависимости дисперсий оценок координат наземного ИРИ от взаимного расположения в пространстве ЛА и наземного ИРИ. При этом дополнительно введены операции формирования нормалей к полуплоскостям положения наземного ИРИ, определения не менее одной линии положения наземного ИРИ как линии пересечения независимой пары пересекающихся полуплоскостей положения наземного ИРИ, параметры которой определяют из условия ортогональности к вышеупомянутым нормалям, и определения координат наземного ИРИ как точки пересечения линии положения наземного ИРИ с поверхностью Земли с использованием итерационной процедуры ее поиска. Кроме того, при выборе и весовой обработке пар независимых отсчетов данных дополнительно учтены зависимости дисперсий оценок координат наземного ИРИ от параметров угловой ориентации БПА и от углов пересечения линии положения и нормалей к полуплоскостям положения наземного ИРИ с поверхностью Земли. 1 з.п. ф-лы, 5 ил.

Реферат

Изобретение относится к радиотехнике и может быть использовано для определения координат наземных источников радиоизлучения (ИРИ) при радиопеленговании с борта летательного аппарата (ЛА).

Задача определения координат наземных источников электромагнитного излучения в радиочастотном диапазоне является важной составляющей радиомониторинга. Достоинством радиопеленгования в системе местоопределения ИРИ является скрытность при определении координат ИРИ вследствие отсутствия необходимости генерации и излучения зондирующих радиосигналов из точки радиомониторинга. Размещение радиопеленгационных средств на ЛА, и в том числе на беспилотных летательных аппаратах [1. Василии Н.Я. Беспилотные летательные аппараты. - Мн.: ООО «Попури», 2003.], позволяет существенно расширить зону радиомониторинга и осуществлять превентивное обнаружение и определение координат ИРИ, находящихся на поверхности Земли. При этом ввиду ограничений на массо-габаритные характеристики радиопеленгационных средств, размещаемых на ЛА, в качестве бортовых пеленгаторных антенн (БПА) в абсолютном большинстве практически важных случаев используются плоские антенные решетки, обеспечивающие возможность радиопеленгования с требуемым качеством в одной (азимутальной) плоскости [2. Кукес И.С., Старик М.Е. Основы радиопеленгации. - М.: Сов. радио. 1964. - 640 с.].

Известны способ и устройство определения координат наземного ИРИ [3. Патент Российской Федерации №2419106, МПК G01S 13/46, опубл. 20.06.2011], в котором на ЛА размещена бортовая пеленгаторная антенна, приемоиндикатор, обеспечивающий измерение радиопеленга с использованием бортовой пеленгаторной антенны, измеритель угловой ориентации ЛА, измеритель местоположения ЛА, преобразователь угловых координат линии радиопеленга в координаты наземного ИРИ.

Однако точность определения координат наземного ИРИ при использовании известного способа бортовыми средствами ЛА низкая. Это объясняется тем, что возникает ошибка определения координат, связанная со случайными флуктуациями пространственного положения азимутальной плоскости бортовой пеленгаторной антенны во время полета ЛА, причем величина этой ошибки соизмерима с систематическими и эксплуатационными ошибками бортового радиопеленгатора.

Известен способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата [4. Патент Российской Федерации №2510618, МПК G01S 1/08, опубл. 10.04.2014], включающий радиоприем радиосигналов бортовой пеленгаторной антенной, частотную селекцию радиосигналов, определение линий радиопеленгов в азимутальной плоскости бортовой пеленгаторной антенны, регистрацию полученных данных периодически отсчетами, формирование по результатам регистрации полученных данных и с использованием соответствующей отсчетам априорно известной текущей информации о координатах фазового центра бортовой пеленгаторной антенны и угловой ориентации продольной, поперечной и нормальной осевых линий бортовой пеленгаторной антенны в нормальной земной прямоугольной системе координат не менее двух полуплоскостей положения наземного источника радиоизлучения, ортогональных азимутальной плоскости бортовой пеленгаторной антенны, проходящих через каждую полученную линию радиопеленга и ограниченных нормальной осевой линией бортовой пеленгаторной антенны, определение линий положения наземного источника радиоизлучения как линий пересечения каждой полуплоскости положения наземного источника радиоизлучения с поверхностью Земли, усреднение полученных данных в случае, если сформировано более двух вышеупомянутых полуплоскостей положения наземного источника радиоизлучения и текущее значение полученных данных отличается от ранее полученного среднего значения на величину, не превышающую заданное априорно известное значение, и определение координат наземного источника радиоизлучения как точки пересечения линий положения наземного источника радиоизлучения.

Недостатками известного способа определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата являются низкая точность определения координат наземных источников радиоизлучения и большие вычислительные затраты при радиопеленговании с борта летательного аппарата, которые обусловлены следующими факторами.

Во-первых, линии положения наземного источника радиоизлучения определяются как линии пересечения каждой полуплоскости положения наземного источника радиоизлучения с поверхностью Земли, что при отклонении поверхности Земли от плоскости, изрезанности рельефа земной поверхности в зоне радиопеленгования и заданной априорно известной кусочно-постоянной аппроксимации поверхности Земли приводит к погрешностям определения линий положения и высоким вычислительным затратам при их определении.

Во-вторых, определение координат наземного источника радиоизлучения осуществляется путем определения координат точки пересечения пар вышеупомянутых линий положения наземного источника радиоизлучения, что при наличии вышеупомянутых погрешностей линий положения, отклонении поверхности Земли от плоскости, изрезанности рельефа земной поверхности в зоне радиопеленгации и заданной априорно известной кусочно-постоянной аппроксимации поверхности Земли приводит к погрешностям определения координат наземного источника радиоизлучения и высоким вычислительным затратам при их определении.

В-третьих, при осуществлении процедуры усреднения данных не учитываются зависимости точности единичных оценок координат наземного ИРИ от углов между парами полуплоскостей положения наземного источника радиоизлучения, углов между линиями пересечения пар полуплоскостей положения наземного источника радиоизлучения и поверхностью Земли и углов между каждой из полуплоскостей пары полуплоскостей положения наземного источника радиоизлучения и местной вертикалью поверхности Земли, а также - от углов возвышения и углов места наземного источника радиоизлучения, что приводит к погрешностям процедуры усреднения данных, и, соответственно, к снижению точности определения координат при многократном радиопеленговании с разных точек траектории движения ЛА.

Наиболее близким по технической сущности к заявляемому способу определения координат наземного источника радиоизлучения с борта летательного аппарата и принятым за прототип является способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата [5. Патент Российской Федерации №2432580, МПК G01S 1/08, опубл. 27.10.2011], включающем радиоприем радиосигналов бортовой пеленгаторной антенной, частотную селекцию радиосигналов, определение линий радиопеленгов в азимутальной плоскости бортовой пеленгаторной антенны, регистрацию полученных данных периодически отсчетами, формирование по результатам регистрации полученных данных и с использованием соответствующей отсчетам априорно известной текущей информации о координатах фазового центра бортовой пеленгаторной антенны и угловой ориентации продольной, поперечной и нормальной осевых линий бортовой пеленгаторной антенны в нормальной земной прямоугольной системе координат не менее одной независимой пары пересекающихся полуплоскостей положения наземного источника радиоизлучения, ортогональных азимутальной плоскости бортовой пеленгаторной антенны, проходящих через каждую полученную линию радиопеленга и ограниченных нормальной осевой линией бортовой пеленгаторной антенны, определение пересекающихся линий положения наземного источника радиоизлучения как линий пересечения каждой полуплоскости положения наземного источника радиоизлучения с поверхностью Земли, причем при формировании двух и более независимых пар пересекающихся полуплоскостей положения наземного источника радиоизлучения, и, соответственно, при определении двух и более независимых пар пересекающихся линий положения наземного источника радиоизлучения, выбирают пары независимых отсчетов данных, соответствующие наименьшим расстояниям от фазового центра бортовой пеленгаторной антенны до наземного источника радиоизлучения и значениям модулей разностей между парами радиопеленгов, наиболее близким к 90 градусам, весовую обработку полученных данных в случае, если сформировано две и более независимые пары пересекающихся полуплоскостей положения наземного источника радиоизлучения, которая зависит от значений радиопеленгов, соответствующих парам независимых отсчетов данных, и увеличивает веса пар независимых отсчетов данных, соответствующих наименьшим расстояниям от фазового центра бортовой пеленгаторной антенны до наземного источника радиоизлучения и значениям модулей разностей между парами радиопеленгов, наиболее близким к 90 градусам, и определение координат наземного источника радиоизлучения как точки пересечения линий положения наземного источника радиоизлучения.

Недостатками ближайшего аналога способа определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата являются низкая точность определения координат наземных источников радиоизлучения и большие вычислительные затраты при радиопеленговании с борта летательного аппарата, которые обусловлены следующими факторами.

Во-первых, линии положения наземного источника радиоизлучения определяются как линии пересечения каждой полуплоскости положения наземного источника радиоизлучения с поверхностью Земли, что при отклонении поверхности Земли от плоскости, изрезанности рельефа земной поверхности в зоне радиопеленгования и заданной априорно известной кусочно-постоянной аппроксимации поверхности Земли приводит к погрешностям определения линий положения и высоким вычислительным затратам при их определении.

Во-вторых, определение координат наземного источника радиоизлучения осуществляется путем определения координат точки пересечения пар вышеупомянутых пересекающихся линий положения наземного источника радиоизлучения, что при наличии вышеупомянутых погрешностей пересекающихся линий положения, отклонении поверхности Земли от плоскости, изрезанности рельефа земной поверхности в зоне радиопеленгации и заданной априорно известной кусочно-постоянной аппроксимации поверхности Земли приводит к погрешностям определения координат наземного источника радиоизлучения и высоким вычислительным затратам при их определении.

В-третьих, при формировании двух и более независимых пар пересекающихся полуплоскостей положения наземного источника радиоизлучения, соответствующих наименьшим значениям дисперсий круговых (радиальных) ошибок единичных оценок координат наземного ИРИ, не учитывают зависимости значений дисперсий круговых (радиальных) ошибок единичных оценок координат наземного ИРИ от углов между парами пересекающихся полуплоскостей положения наземного источника радиоизлучения, углов между линиями пересечения пар пересекающихся полуплоскостей положения наземного источника радиоизлучения и поверхностью Земли и углов между каждой из полуплоскостей пары пересекающихся полуплоскостей положения наземного источника радиоизлучения и местной вертикалью поверхности Земли, а также - от углов возвышения и углов места наземного источника радиоизлучения, что приводит к формированию независимых пар пересекающихся полуплоскостей положения наземного источника радиоизлучения, не соответствующих наименьшим значениям дисперсий круговых (радиальных) ошибок единичных оценок координат наземного ИРИ, и, соответственно, к снижению точности определения координат при многократном радиопеленговании с разных точек траектории движения ЛА.

В-четвертых, в случае определения двух и более пересекающихся линий положения наземного источника радиоизлучения при проведении весовой обработки полученных данных при определении весов отсчетов, выбираемых обратно пропорциональными значениям дисперсий составляющих линейных ошибок единичных оценок координат наземного ИРИ по осям абсцисс и ординат нормальной земной системы координат, не учитывают зависимости значений дисперсий составляющих линейных ошибок единичных оценок координат наземного ИРИ по осям абсцисс и ординат нормальной земной системы координат от углов между парами пересекающихся полуплоскостей положения наземного источника радиоизлучения, углов между линиями пересечения пар пересекающихся полуплоскостей положения наземного источника радиоизлучения и поверхностью Земли и углов между каждой из полуплоскостей пары пересекающихся полуплоскостей положения наземного источника радиоизлучения и местной вертикалью поверхности Земли, а также - от углов возвышения и углов места наземного источника радиоизлучения, что приводит к определению весов отсчетов, значения которых не соответствуют обратно пропорциональными значениям дисперсий составляющих линейных ошибок единичных оценок координат наземного ИРИ по осям абсцисс и ординат нормальной земной системы координат, и, соответственно, к снижению точности определения координат при многократном радиопеленговании с разных точек траектории движения ЛА.

Указанные недостатки приводят к снижению качества определения координат наземных источников радиоизлучения при радиопеленговании с борта летательного аппарата и ограничению области применения радиопеленгационных средств, размещаемых на ЛА.

Решаемая изобретением задача - повышение качества определения координат наземных источников радиоизлучения при радиопеленговании с борта летательного аппарата и расширение области применения радиопеленгационных средств, размещаемых на ЛА.

Поставленная задача решается за счет достижения технического результата, заключающегося в повышении точности определения координат наземных источников радиоизлучения и снижении вычислительных затрат при радиопеленговании с борта летательного аппарата.

Данный технический результат достигается тем, что в известном способе определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата, включающем радиоприем радиосигналов бортовой пеленгаторной антенной, частотную селекцию радиосигналов, определение линий радиопеленгов в азимутальной плоскости бортовой пеленгаторной антенны, регистрацию полученных данных периодически отсчетами, формирование по результатам регистрации полученных данных и с использованием соответствующей отсчетам априорно известной текущей информации о координатах фазового центра бортовой пеленгаторной антенны и угловой ориентации продольной, поперечной и нормальной осевых линий бортовой пеленгаторной антенны в нормальной земной прямоугольной системе координат не менее одной независимой пары пересекающихся полуплоскостей положения наземного источника радиоизлучения, ортогональных азимутальной плоскости бортовой пеленгаторной антенны, проходящих через каждую полученную линию радиопеленга и ограниченных нормальной осевой линией бортовой пеленгаторной антенны, причем при формировании двух и более независимых пар пересекающихся полуплоскостей положения наземного источника радиоизлучения выбирают пары независимых отсчетов данных, соответствующих наименьшим расстояниям от фазового центра бортовой пеленгаторной антенны до наземного источника радиоизлучения, и проводят весовую обработку выбранных пар независимых отсчетов данных, которая зависит от значений радиопеленгов, соответствующих выбранным парам независимых отсчетов данных, и увеличивает веса выбранных пар независимых отсчетов данных, соответствующих наименьшим расстояниям от фазового центра бортовой пеленгаторной антенны до наземного источника радиоизлучения,

согласно изобретению, введены операции формирования нормалей к полуплоскостям положения наземного источника радиоизлучения, определения не менее одной линии положения наземного источника радиоизлучения как линии пересечения независимой пары пересекающихся полуплоскостей положения наземного источника радиоизлучения, параметры которой определяют из условия ортогональности к нормалям независимой пары пересекающихся полуплоскостей положения наземного источника радиоизлучения, и определения координат наземного источника радиоизлучения как точки пересечения линии положения наземного источника радиоизлучения с поверхностью Земли, причем в случае определения двух и более линий положения, соответствующих двум и более независимым парам пересекающихся полуплоскостей положения наземного источника радиоизлучения, выбирают пары независимых отсчетов данных, дополнительно соответствующих независимым парам пересекающихся полуплоскостей положения наземного источника радиоизлучения, наиболее близким к взаимно ортогональным полуплоскостям и обеспечивающим углы пересечения линий положения наземного источника радиоизлучения с поверхностью Земли, наиболее близкие к нормали к поверхности Земли в зоне радиопеленгования, при которых нормали к соответствующим независимым парам пересекающихся полуплоскостей положения наземного источника радиоизлучения расположены в плоскостях, наиболее близких к горизонтальной плоскости, и, наконец, при которых соответствующие пары модулей углов возвышения наземного источника радиоизлучения наиболее близки к максимальным значениям, а соответствующие пары модулей углов места наземного источника радиоизлучения наиболее близки к минимальным значениям, причем при проведении весовой обработки выбранных пар независимых отсчетов данных дополнительно увеличивают веса выбранных пар независимых отсчетов данных, при которых соответствующие независимые пары пересекающихся полуплоскостей положения наземного источника радиоизлучения наиболее близки к взаимно ортогональным полуплоскостям и обеспечивают углы пересечения линий положения наземного источника радиоизлучения с поверхностью Земли, наиболее близкие к нормали к поверхности Земли в зоне радиопеленгования, при которых нормали к соответствующим независимым парам пересекающихся полуплоскостей положения наземного источника радиоизлучения расположены в плоскостях, наиболее близких к горизонтальной плоскости, и, наконец, при которых соответствующие пары модулей углов возвышения наземного источника радиоизлучения наиболее близки к максимальным значениям, а соответствующие пары модулей углов места наземного источника радиоизлучения наиболее близки к минимальным значениям.

При этом в заявляемом способе определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата точку пересечения линии положения наземного источника радиоизлучения с поверхностью Земли определяют с использованием итерационной процедуры ее поиска, причем шаг сходимости итерационной процедуры и минимальное число шагов итерационной процедуры выбирают зависящими от изрезанности рельефа поверхности Земли в зоне радиопеленгования, априорно известной заданной точности определения координат наземного источника радиоизлучения и угла между линией положения наземного источника радиоизлучения и местной вертикалью поверхности Земли.

Решение поставленной задачи с достижением технического результата обусловлено следующим.

В предложенном способе определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата, в отличие от известного:

во-первых, линии положения наземного источника радиоизлучения определяются в аналитическом виде как линии пересечения соответствующих пар пересекающихся полуплоскостей положения наземного источника радиоизлучения, параметры которых определяются из условия ортогональности к нормалям вышеупомянутых пар пересекающихся полуплоскостей положения наземного источника радиоизлучения, и, вследствие этого, не зависят от параметров поверхности Земли, за счет чего повышается точность их определения при одновременном снижении вычислительных затрат;

во-вторых, определение координат наземного источника радиоизлучения осуществляется путем определения координат точки пересечения линии положения наземного источника радиоизлучения, параметры которой заданы в аналитическом виде, с поверхностью Земли, что при заданной априорно известной кусочно-постоянной аппроксимации поверхности Земли позволяет повысить точность определения координат наземного источника радиоизлучения при одновременном снижении вычислительных затрат;

в-третьих, при формировании двух и более независимых пар пересекающихся полуплоскостей положения наземного источника радиоизлучения выбирают пары независимых отсчетов данных, которые дополнительно соответствуют не значениям модуля разности между парой радиопеленгов, наиболее близким к 90 градусам, а дополнительно соответствуют независимым парам пересекающихся полуплоскостей положения наземного источника радиоизлучения, наиболее близким к взаимно ортогональным полуплоскостям, обеспечивающим углы пересечения линий положения наземного источника радиоизлучения с поверхностью Земли, наиболее близкие к нормали к поверхности Земли в зоне радиопеленгования, имеющим нормали, расположенные в плоскостях, наиболее близких к горизонтальной плоскости, и при которых модули углов возвышения наземного источника радиоизлучения характеризуются максимальными значениями, а модули углов места наземного источника радиоизлучения характеризуются минимальными значениями, что позволяет из общего числа несовпадающих пар пересекающихся полуплоскостей положения наземного ИРИ выбрать совокупность независимых пар пересекающихся полуплоскостей положения наземного ИРИ, для которых дисперсии круговых (радиальных) ошибок единичных оценок координат наземного ИРИ имеют минимальные значения, и за счет этого повысить точность определения координат при многократном радиопеленговании с разных точек траектории движения ЛА;

в-четвертых, в случае определения двух и более линий положения наземного источника радиоизлучения при проведении весовой обработки полученных данных дополнительно увеличивают не веса отсчетов, соответствующих значениям модуля разности между парой радиопеленгов, наиболее близким к 90 градусам, а веса отсчетов, при которых соответствующие независимые пары пересекающихся полуплоскостей положения наземного источника радиоизлучения наиболее близки к взаимно ортогональным полуплоскостям и обеспечивают углы пересечения линий положения наземного источника радиоизлучения с поверхностью Земли, наиболее близкие к нормали к поверхности Земли в зоне радиопеленгования, при которых нормали к парам пересекающихся полуплоскостей положения наземного источника радиоизлучения расположены в плоскостях, наиболее близких к горизонтальной плоскости, и, наконец, при которых соответствующие независимым парам отсчетов модули углов возвышения наземного источника радиоизлучения характеризуются максимальными значениями, а модули углов места наземного источника радиоизлучения характеризуются минимальными значениями, что за счет увеличения вклада отсчетов, характеризуемых меньшими значениями дисперсий составляющих линейных ошибок единичных оценок координат наземного ИРИ по осям абсцисс и ординат нормальной земной системы координат, позволяет повысить точность определения координат наземного ИРИ при многократном радиопеленговании с разных точек траектории движения ЛА.

Кроме того, в заявляемом способе определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата в отличие от известного точку пересечения линии положения наземного источника радиоизлучения с поверхностью Земли определяют с использованием итерационной процедуры поиска вышеупомянутой точки при кусочно-постоянной аппроксимации поверхности Земли с шагом сходимости итерационной процедуры, и, соответственно, с минимальным числом шагов итерационной процедуры, которые выбираются в зависимости от изрезанности рельефа поверхности Земли в зоне радиопеленгации, априорно известной заданной точности определения координат наземного ИРИ, характеризуемой круговой (радиальной) средней квадратической ошибкой определения координат наземного ИРИ, и угла между линией положения наземного источника радиоизлучения и местной вертикалью поверхности Земли, что позволяет повысить точность определения координат наземного ИРИ при одновременном снижении вычислительных затрат.

Указанные преимущества, а также особенности настоящего изобретения поясняются лучшим вариантом его осуществления со ссылками на прилагаемые фигуры.

Фиг. 1 изображает функциональную схему устройства определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата, реализующего предлагаемый способ.

Фиг. 2 - системы координат при радиопеленговании с борта летательного аппарата.

Фиг. 3 - процесс построения линии положения наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата.

Фиг. 4 - структурную схему общего алгоритма определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата.

Фиг. 5 - структурную схему алгоритма вычисления единичной оценки координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата.

Устройство определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата (фиг. 1), реализующее предлагаемый способ, содержит бортовую пеленгаторную антенну 1, включающую в своем составе Н антенных элементов 1.1, 1.2, …, Н, обеспечивающих возможность формирования в ее азимутальной плоскости Н пересекающихся диаграмм направленности (амплитудных или фазовых), с числом Н антенных элементов, не меньшем трех, позволяющим в круговом азимутальном секторе 360° однозначно измерять азимут наземного ИРИ и, соответственно, однозначно формировать линию радиопеленга наземного ИРИ в азимутальной плоскости бортовой пеленгаторной антенны 1. Устройство, кроме того, имеет радиоприемный блок 2, выполненный Н-канальным с идентичными каналами и возможностью частотной селекции и измерения параметров (амплитуд или фаз) сигналов в каждом канале, вычислитель азимута 3, выполненный с возможностью определения в пределах от 0 до 360° азимута наземного ИРИ по измеренным значениям параметров (амплитуд или фаз) сигналов в каждом канале и априорно заданным параметрам вычислений, блок 4 определения угловой ориентации бортовой пеленгаторной антенны, выполненный с возможностью определения угловой ориентации продольной, поперечной и нормальной осевых линий бортовой пеленгаторной антенны в нормальной земной системе координат в виде углов курса, тангажа и крена, блок 5 определения координат фазового центра бортовой пеленгаторной антенны, выполненный с возможностью определения абсциссы, ординаты и аппликаты фазового центра бортовой пеленгаторной антенны в нормальной земной системе координат, блок 6 определения полуплоскости положения и формирования нормали к полуплоскости положения, выполненный с возможностью определения координат единичного вектора азимутальной линии полуплоскости положения и нормали к полуплоскости положения в нормальной земной подвижной системе координат, запоминающее устройство 7 координат единичных векторов азимутальных линий полуплоскостей положения и координат нормалей к полуплоскостям положения, блок 8 вычисления параметров линии положения, выполненный с возможностью вычисления параметров линии положения как параметров линии пересечения несовпадающей пары пересекающихся полуплоскостей положения наземного ИРИ, определяемых из условия ортогональности к нормалям несовпадающей пары пересекающихся полуплоскостей положения наземного ИРИ, в виде координат вектора, находящегося на линии положения, в нормальной земной подвижной системе координат, и с возможностью вычисления координат точки начального приближения координат наземного ИРИ в нормальной земной системе координат, запоминающее устройство 9 параметров линий положения, вычислитель 10 единичной оценки координат наземного ИРИ, выполненный с возможностью вычисления координат наземного ИРИ в нормальной земной системе координат как координат точки пересечения линии положения наземного источника радиоизлучения с поверхностью Земли, которые определяются с использованием итерационной процедуры их поиска, шаг сходимости и минимальное число шагов которой выбирают зависящими от изрезанности рельефа поверхности Земли в зоне радиопеленгования, априорно известной заданной точности определения координат наземного ИРИ и угла между линией положения наземного ИРИ и местной вертикалью поверхности Земли, вычислитель 11 дисперсий единичной оценки координат наземного ИРИ, выполненный с возможностью вычислений дисперсии круговой (радиальной) ошибки единичной оценки координат наземного ИРИ и дисперсий составляющих линейных ошибок единичной оценки координат наземного ИРИ по осям абсцисс и ординат нормальной земной системы координат, запоминающее устройство 12 единичных оценок координат наземного ИРИ, запоминающее устройство 13 дисперсий единичных оценок координат наземного ИРИ, вычислитель 14 координат наземного ИРИ, выполненный с возможностью выбора линий положения, соответствующих независимым парам пересекающихся полуплоскостей положения и характеризуемых наименьшими дисперсиями круговых (радиальных) ошибок единичных оценок координат наземного ИРИ, вычисления весовых коэффициентов и вычисления координат наземного ИРИ с учетом полученных значений весовых коэффициентов, модуль 15 картографирования и индикации и модуль 16 программного управления, синхронизирующий работу радиоприемного блока 2, вычислителя азимута 3, блока 4 определения угловой ориентации бортовой пеленгаторной антенны, блока 5 определения координат фазового центра бортовой пеленгаторной антенны, блока 6 определения полуплоскости положения и формирования нормали к полуплоскости положения, запоминающего устройства 7 параметров единичных векторов азимутальных линий полуплоскостей положения и нормалей к полуплоскостям положения, блока 8 вычисления параметров линии положения, запоминающего устройства 9 параметров линий положения, вычислителя 10 единичной оценки координат наземного ИРИ, вычислителя 11 дисперсий единичной оценки координат наземного ИРИ, запоминающего устройства 12 единичных оценок координат наземного ИРИ, запоминающего устройства 13 дисперсий единичных оценок координат наземного ИРИ, вычислителя 14 координат наземного ИРИ и модуля 15 картографирования и индикации.

При этом выходы антенных элементов 1.1, 1.2, …, 1.Н, служащие выходами бортовой пеленгаторной антенны 1, подсоединены к входам соответствующих каналов радиоприемного блока 2. Выходы каналов радиоприемного блока 2 подсоединены к соответствующим входам вычислителя азимута 3. Выход вычислителя азимута 3 подсоединен к объединенным первым входам блока 6 определения полуплоскости положения и формирования нормали к полуплоскости положения и вычислителя 11 дисперсий единичной оценки координат наземного ИРИ. Первый, второй и третий выходы блока 4 определения угловой ориентации бортовой пеленгаторной антенны подсоединены соответственно к объединенным второму входу блока 6 определения полуплоскости положения и формирования нормали к полуплоскости положения и четвертому входу вычислителя 11 дисперсий единичной оценки координат наземного ИРИ, объединенным третьему входу блока 6 определения полуплоскости положения и формирования нормали к полуплоскости положения и пятому входу вычислителя 11 дисперсий единичной оценки координат наземного ИРИ и объединенным четвертому входу блока 6 определения полуплоскости положения и формирования нормали к полуплоскости положения и шестому входу вычислителя 11 дисперсий единичной оценки координат наземного ИРИ. Первый и второй выходы блока 6 определения полуплоскости положения и формирования нормали к полуплоскости положения подсоединены соответственно к первому и второму входам запоминающего устройства 7 параметров единичных векторов азимутальных линий полуплоскостей положения и нормалей к полуплоскостям положения. Первый и второй выходы запоминающего устройства 7 параметров единичных векторов азимутальных линий полуплоскостей положения и нормалей к полуплоскостям положения подсоединены соответственно к первому входу блока 8 вычисления параметров линии положения и объединенным второму входу блока 8 вычисления параметров линии положения и третьему входу вычислителя 11 дисперсий единичной оценки координат наземного ИРИ. Выход блока 5 определения координат фазового центра бортовой пеленгаторной антенны подсоединен к объединенным третьему входу блока 8 вычисления параметров линии положения и седьмому входу вычислителя 11 дисперсий единичной оценки координат наземного ИРИ. Первый и второй выходы блока 8 вычисления параметров линии положения подсоединены соответственно к первому и второму входам запоминающего устройства 9 параметров линий положения, первый и второй выходы которого подсоединены соответственно к первому и второму входам вычислителя 10 единичной оценки координат наземного ИРИ, выход которого подсоединен к объединенным второму входу вычислителя 11 дисперсий единичной оценки координат наземного ИРИ и входу запоминающего устройства 12 единичных оценок координат наземного ИРИ. Первый, второй и третий выходы вычислителя 11 дисперсий единичной оценки координат наземного ИРИ подсоединены соответственно к первому, второму и третьему входам запоминающего устройства 13 дисперсий единичных оценок координат наземного ИРИ. Выход запоминающего устройства 12 единичных оценок координат наземного ИРИ и первый, второй и третий выходы запоминающего устройства 13 дисперсий единичных оценок координат наземного ИРИ подсоединены соответственно к первому, второму, третьему и четвертому входам вычислителя 14 координат наземного ИРИ, выход которого подсоединен к входу модуля 15 картографирования и индикации. Выход модуля 16 программного управления через управляющую шину подсоединен к управляющим входам радиоприемного блока 2, вычислителя азимута 3, блока 4 определения угловой ориентации бортовой пеленгаторной антенны, блока 5 определения координат фазового центра бортовой пеленгаторной антенны, блока 6 определения полуплоскости положения и формирования нормали к полуплоскости положения, запоминающего устройства 7 параметров единичных векторов азимутальных линий полуплоскостей положения и нормалей к полуплоскостям положения, блока 8 вычисления параметров линии положения, запоминающего устройства 9 параметров линий положения, вычислителя 10 единичной оценки координат наземного ИРИ, вычислителя 11 дисперсий единичной оценки координат наземного ИРИ, запоминающего устройства 12 единичных оценок координат наземного ИРИ, запоминающего устройства 13 дисперсий единичных оценок координат наземного ИРИ, вычислителя 14 координат наземного ИРИ и модуля 15 картографирования и индикации. Выход модуля 15 картографирования и индикации служит выходной шиной устройства определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата для формирования координат наземного источника радиоизлучения в нормальной земной системе координат.

Способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата реализуется следующим образом.

Координаты наземного ИРИ определяются в нормальной земной прямоугольной декартовой системе координат [6. ГОСТ 20058-80 Динамика летательных аппаратов в атмосфере. Термины, определения и обозначения]; [7. ГОСТ 22268-76 Геодезия. Термины и определения]. Отображение координат наземных ИРИ осуществляется на топографических картах местности, представляющих собой отображение поверхности З