Способ оценки влажности окружающей среды (варианты)

Иллюстрации

Показать все

Предложены способы для оценки значения влажности окружающей среды, используемого для определения образования конденсата в охладителе наддувочного воздуха. Значение влажности окружающей среды определяют по пороговым значениям эффективности охладителя наддувочного воздуха и скорости работы стеклоочистителя. Значение влажности используют для расчета количества конденсата в охладителе наддувочного воздуха и управления системами двигателя для уменьшения образования конденсата и пропусков зажигания в двигателе. Техническим результатом является повышение точности отслеживания уровня конденсата. 3 н. и 17 з.п. ф-лы, 4 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к системам и способам для оценки влажности окружающей среды с использованием эффективности охладителя наддувочного воздуха, расположенного в системе двигателя.

УРОВЕНЬ ТЕХНИКИ

Двигатели с турбонаддувом могут использовать охладитель наддувочного воздуха (САС) для охлаждения сжатого воздуха из турбонагнетателя перед тем, как сжатый воздух поступает в двигатель. Конденсат может формироваться в САС, в зависимости от величины охлаждения и влажности всасываемого воздуха, в особенности во время влажных или дождливых погодных условий, так как всасываемый воздух охлаждается ниже температуры конденсации воды. Когда всасываемый воздух включает в себя подвергнутые рециркуляции выхлопные газы, конденсат может становиться кислотным и подвергать коррозии корпус САС. Коррозия может приводить к утечкам между зарядом воздуха, атмосферой и возможно хладагентом в случае водно-воздушных охладителей. Конденсат может накапливаться в САС, а затем, втягиваться в двигатель за раз в течение промежутков времени повышенного массового расхода воздуха, увеличивая вероятность пропусков зажигания в двигателе.

Другие попытки принять меры в ответ на образование конденсата включают в себя ограничение всасываемого воздуха через САС или ограничения потока охлаждающего окружающего воздуха в САС. Один из примерных подходов показан Крейгом и другими в US 6 408 831. В нем, температура всасываемого воздуха управляется системой ограничения потока окружающего воздуха и системой ограничения потока всасываемого воздуха. Охладитель определяет положение этих ограничительных устройств в ответ на температуру окружающей среды, а также температуру и влажность атмосферы.

Однако авторы в материалах настоящего описания выявили потенциальные проблемы у таких систем. Более точно, вышеприведенные системы управления в ответ на температуру и влажность окружающего воздуха могут уменьшать конденсат в некоторых ситуациях; однако, эти переменные могут не точно отслеживать уровень конденсата в САС. Дополнительно, не все транспортные средства могут быть оборудованы датчиками влажности. Таким образом, системы управления, как описано выше, могут регулироваться с использованием других переменных, которые могут не точно оценивать образование конденсата САС. Поэтому, образование конденсата и пропуски зажигания в двигателе могут не снижаться в достаточной мере.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

В одном из примеров, проблемы, описанные выше, могут быть преодолены способом оценки влажности окружающей среды, включающий в себя этапы, на которых:

регулируют рабочий параметр в ответ на оцененное количество конденсата в охладителе наддувочного воздуха, и

определяют оцененное количество конденсата в охладителе наддувочного воздуха на основании каждого из влажности окружающей среды, температуры окружающей среды, температуры на выпуске охладителя наддувочного воздуха, давления в охладителе наддувочного воздуха и массового расхода воздуха через охладитель наддувочного воздуха, причем влажность окружающей среды определена на основании значения эффективности охладителя наддувочного воздуха.

В одном из вариантов предложен способ, в котором значение эффективности охладителя наддувочного воздуха определяют на основании температуры на впуске и выпуске охладителя наддувочного воздуха, когда скорость транспортного средства находится выше пороговой скорости движения.

В одном из вариантов предложен способ, в котором влажность окружающей среды оценивают верхним значением влажности, когда значение эффективности охладителя наддувочного воздуха больше, чем пороговое значение, и нижним значением влажности, когда значение эффективности охладителя наддувочного воздуха меньше, чем пороговое значение.

В одном из вариантов предложен способ, в котором влажность окружающей среды оценивают верхним значением влажности, когда скорость работы стеклоочистителя находится выше пороговой скорости работы.

В одном из вариантов предложен способ, в котором верхним значением влажности является по существу 100%, а нижнее значение влажности меньше, чем верхнее значение влажности.

В одном из вариантов предложен способ, в котором рабочий параметр регулируют в ответ на оцененное количество конденсата, большее чем пороговый уровень.

В одном из вариантов предложен способ, в котором регулировка рабочего параметра включает в себя этап, на котором регулируют одно или более из системы заслонок облицовки радиатора, электрического вентилятора и потока воздуха через охладитель наддувочного воздуха.

В одном из вариантов предложен способ, в котором поток воздуха через охладитель наддувочного воздуха регулируют посредством одного или более из того, что увеличивают открывание впускного дросселя, регулируют клапан охладителя наддувочного воздуха переменного объема и осуществляют переключение с понижением передачи трансмиссии.

В одном из вариантов предложен способ, в котором регулировка рабочего параметра включает в себя этап, на котором инициируют продувку конденсата охладителя наддувочного воздуха в ответ на оцененное количество конденсата в охладителе наддувочного воздуха, причем инициирование продувки конденсата включает в себя этап, на котором увеличивают воздушный поток через охладитель наддувочного воздуха для извлечения конденсата изнутри охладителя наддувочного воздуха в двигатель.

В одном из вариантов предложен способ, в котором регулировка рабочего параметра включает в себя этап, на котором управляют операциями переключения с понижением передачи трансмиссии для уменьшения пропусков зажигания в двигателе в ответ на оцененное количество конденсата в охладителе наддувочного воздуха.

В одном из вариантов предложен способ, в котором величину эффективности охладителя наддувочного воздуха оценивают на основании скорости работы стеклоочистителя.

В одном из вариантов предложен способ, в котором скорость работы стеклоочистителя дополнительно коррелируют со значением эффективности охладителя наддувочного воздуха, при этом пороговое значение скорости работы стеклоочистителя используют для оценки значения влажности для расчета количества конденсата в охладителе наддувочного воздуха и последующего управления рабочим параметром.

В одном из дополнительных аспектов предложен способ оценки влажности окружающей среды, включающий в себя этапы, на которых:

при первом условии, когда значение эффективности охладителя наддувочного воздуха больше, чем пороговое значение, устанавливают состояние высокой влажности, определяют уровень конденсата в охладителе наддувочного воздуха на основании каждого из состояния высокой влажности, температуры окружающей среды, температуры на выпуске охладителя наддувочного воздуха, давления в охладителе наддувочного воздуха и массового расхода воздуха через охладитель наддувочного воздуха и регулируют рабочие параметры двигателя в ответ на определяемый уровень конденсата; и

при втором условии, когда значение эффективности охладителя наддувочного воздуха меньше, чем пороговое значение, устанавливают состояние низкой влажности, определяют уровень конденсата в охладителе наддувочного воздуха на основании каждого из состояния низкой влажности, температуры окружающей среды, температуры на выпуске охладителя наддувочного воздуха, давления в охладителе наддувочного воздуха и массового расхода воздуха через охладитель наддувочного воздуха, и регулируют рабочие параметры двигателя в ответ на определяемый уровень конденсата, причем уровень конденсата представляет собой количество конденсата в охладителе наддувочного воздуха.

В одном из вариантов предложен способ, в котором состояние высокой влажности составляет 100%, а состояние низкой влажности меньше, чем 100%.

В одном из вариантов предложен способ, в котором рабочие параметры двигателя включают в себя одно или более из системы заслонок облицовки радиатора, электрического вентилятора, охладителя наддувочного воздуха переменного объема, операции продувки охладителя наддувочного воздуха, открывания дросселя для управления расходом воздуха и операций переключения с понижением передачи.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором в ответ на скорость работы стеклоочистителя выше порогового значения, подтверждают состояние высокой влажности.

В одном из вариантов предложен способ, в котором значение эффективности охладителя наддувочного воздуха оценивают на основании скорости транспортного средства в пределах диапазона пороговых значений и одного из температуры на впуске и выпуске охладителя наддувочного воздуха и скорости работы стеклоочистителя.

В одном из вариантов предложен способ, в котором значение эффективности охладителя наддувочного воздуха возрастает с понижением температуры на выпуске охладителя наддувочного воздуха и повышением скорости работы стеклоочистителя.

В одном из еще дополнительных аспектов предложен способ оценки влажности окружающей среды, включающий в себя этапы, на которых:

определяют оцененное количество конденсата в охладителе наддувочного воздуха на основании каждого из влажности окружающей среды, температуры окружающей среды, температуры на выпуске охладителя наддувочного воздуха, давления в охладителе наддувочного воздуха и массового расхода воздуха через охладитель наддувочного воздуха, и

регулируют рабочее состояние в ответ на оцененное количество конденсата, причем влажность окружающей среды определяют на основании значения эффективности охладителя наддувочного воздуха и состоянии стеклоочистителя.

В одном из вариантов предложен способ, в котором регулировка включает в себя этап, на котором уменьшают образование конденсата посредством одного или более из того, что уменьшают открывание системы заслонок облицовки радиатора, снижают скорость вращения электрического вентилятора, инициируют процедуры продувки, управляют операциями переключения с понижением передачи, и управляют массовым расходом воздуха степенью открывания дросселя, при этом определяемая влажность окружающей среды увеличивается по мере того, как повышается значение эффективности охладителя наддувочного воздуха и скорость работы стеклоочистителя.

Таким образом, более точный уровень конденсата в САС может определяться и использоваться для управления другими системами двигателя, чтобы уменьшать образование конденсата и пропуски зажигания в двигателе.

В качестве одного из примеров, в ответ на уровень конденсата в CAC, могут регулироваться рабочие параметры двигателя. Регулировка рабочих параметров двигателя может включать в себя регулировку системы заслонок облицовки радиатора, электрического вентилятора и потока воздуха через CAC. Поток воздуха через CAC может регулироваться посредством увеличения открывания впускного дросселя, регулировки клапана CAC с переменным объемом и/или переключения с понижением передачи трансмиссии. Количество конденсата в CAC также может использоваться для инициации операций продувки конденсата CAC и управления операциями переключения с понижением передачи трансмиссии, чтобы уменьшать пропуски зажигания в двигателе. Уровень конденсата в CAC может быть основан на влажности окружающей среды, которая может определяться по эффективности CAC. В одном из примеров, когда эффективность CAC больше, чем пороговое значение, может устанавливаться более высокое значение влажности, подразумевая наличие дождя. В еще одном примере, когда эффективность CAC меньше, чем пороговое значение, может устанавливаться более низкое значение влажности. Верхнее значение влажности по существу может иметь значение 100% наряду с тем, что нижнее значение влажности может быть меньшим, чем верхнее значение влажности. Эффективность CAC может быть основана на температуре на впуске и выпуске CAC, такой как когда скорость транспортного средства больше, чем пороговое значение, чтобы обеспечивать достаточный поток через CAC. Дополнительно, значение влажности может оцениваться верхним значением влажности, когда скорость работы переднего стеклоочистителя находится выше пороговой скорости работы.

Следует понимать, что раскрытие изобретения, приведенное выше, представлено для ознакомления с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Не предполагается идентифицировать ключевые или существенные признаки заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен вариантами осуществления, которые исключают какие-либо недостатки, отмеченные выше или в любой части этого описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 - схематичное изображение примерной системы двигателя, включающей в себя охладитель наддувочного воздуха.

Фиг. 2 показывает блок-схему последовательности операций способа, иллюстрирующую способ определения уровня конденсата в охладителе наддувочного воздуха.

Фиг. 3 представляет способ оценки значения влажности, используемого в модели конденсации.

Фиг. 4 показывает примерные регулировки исполнительных механизмов двигателя в ответ на уровни конденсата на основании значения влажности, логически выведенного из эффективности CAC и скорости работы стеклоочистителя.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Последующее описание относится к системам и способам для оценки влажности окружающей среды с использованием эффективности охладителя наддувочного воздуха (CAC), расположенного в системе двигателя, такой как система по фиг. 1. Значения влажности окружающей среды могут использоваться в модели конденсации, показанной на фиг. 2, для определения образования конденсата в CAC. Информация об образовании конденсата затем может использоваться для регулировки исполнительных механизмов двигателя и инициации процедур управления двигателем, чтобы уменьшать образование конденсата и пропуски зажигания в двигателе. Модель конденсации может модифицироваться способом определения более точного значения влажности, таким как способ на фиг. 3. Скорость работы переднего стеклоочистителя может использоваться для подтверждения высоких значений влажности и вынесения суждения о наличии дождя. Фиг. 4 представляет примерные регулировки исполнительных механизмов двигателя в ответ на образование конденсата на основании значения влажности, логически выведенного из эффективности CAC и скорости работы стеклоочистителя.

Фиг. 1 показывает примерный вариант осуществления системы 100 двигателя в моторном транспортном средстве 102, проиллюстрированном схематично. Система 100 двигателя может быть включена в транспортное средство, такое как дорожное транспортное средство, в числе других транспортных средств. Несмотря на то, что примерные применения системы 100 двигателя будут описаны со ссылкой на транспортное средство, должно быть принято во внимание, что могут использоваться различные типы двигателей и силовых установок транспортного средства, включая легковые автомобили, грузовики и т.д.

В изображенном варианте осуществления, двигатель является двигателем с наддувом, присоединенным к турбонагнетателю 13, включающему в себя компрессор, приводимый в движение турбиной 16. Более точно, свежий воздух вводится по впускному каналу 42 в двигатель 10 через воздушный фильтр 11 и втекает в компрессор 14. Компрессор может быть пригодным компрессором всасываемого воздуха, таким как компрессор нагнетателя с приводом от электродвигателя или с приводом от ведущего вала. В системе 100 двигателя, компрессор показан в качестве компрессора турбонагнетателя, механически присоединенного к турбине 16 через вал 19, турбина 16 приводится в движение расширяющимися выхлопными газами двигателя. В одном из вариантов осуществления, компрессор и турбина могут быть соединены в пределах двухспирального турбонагнетателя. В еще одном варианте осуществления, турбонагнетатель может быть турбонагнетателем с изменяемой геометрией (VGT), где геометрия турбины активно меняется в зависимости от скорости вращения двигателя и других условий работы.

Как показано на фиг. 1, компрессор 14 присоединен через охладитель 18 наддувочного воздуха (CAC) к дроссельному клапану 20. CAC, например, может быть теплообменником из воздуха в воздух или из воздуха в воду. Дроссельный клапан 20 присоединен к впускному коллектору 22 двигателя. Из компрессора, горячий сжатый воздух поступает на впуск CAC 18, остывает, по мере того, как он проходит через CAC, а затем, выходит, чтобы проходить через дроссельный клапан во впускной коллектор. Поток 116 окружающего воздуха извне транспортного средства может поступать в двигатель 10 через облицовку 112 радиатора в передней части транспортного средства и проходить через CAC, чтобы помогать охлаждению наддувочного воздуха. Конденсат может формироваться и накапливаться в CAC, когда понижается температура окружающего воздуха, или во время влажных или дождливых погодных условий, где наддувочный воздух охлаждается ниже температуры конденсации воды. Когда наддувочный воздух включает в себя подвергнутые рециркуляции выхлопные газы, конденсат может становиться кислотным и подвергать коррозии корпус CAC. Коррозия может приводить к утечкам между зарядом воздуха, атмосферой и возможно хладагентом в случае водно-воздушных охладителей. Дополнительно, конденсат может накапливаться на дне CAC, а затем, втягиваться в двигатель за раз во время разгона (или нажатия педали акселератора), увеличивая вероятность пропусков зажигания в двигателе. Таким образом, как конкретизировано в материалах настоящего описания со ссылкой на фиг. 2-4, образование конденсата в CAC может рассчитываться и использоваться для регулировки других компонентов системы двигателя, чтобы бороться с образованием конденсата и снижать вероятность пропусков зажигания в двигателе.

CAC 18 также может быть CAC переменного объема. В этом случае, CAC 18 может включать в себя клапан для избирательной модуляции количества и скорости потока всасываемого воздуха, проходящего через охладитель 18 наддувочного воздуха, в ответ на образование конденсата внутри охладителя наддувочного воздуха, а также условия нагрузки двигателя. Посредством регулировки клапана, поток воздуха через разные секции CAC может увеличиваться, продувая конденсат из таких секций CAC. Поток воздуха через CAC дополнительно может увеличиваться посредством увеличения открывания дроссельного клапана 20.

Различные процедуры продувки могут быть реализованы для удаления конденсата из CAC. Посредством увеличения потока воздуха через CAC, конденсат может выметаться изнутри CAC и в двигатель. CAC может автоматически продуваться в условиях движения транспортного средства, которые увеличивают массовый расход воздуха и поток воздуха через CAC, таких как нажатие педали акселератора. Переключение с понижением передачи трансмиссии также может увеличивать поток воздуха (дополнительно описано ниже со ссылкой на систему 150 трансмиссии). При событии замедления, конденсат может продуваться из CAC увеличением потока воздуха посредством открывания дросселя и/или переключения с понижением передачи трансмиссии. Посредством переключения с понижением передачи трансмиссии при событии замедления, скорость вращения двигателя может увеличиваться, усиливая поток воздуха. Таким образом, конденсат может продуваться из CAC при событии замедления, уменьшая вероятность пропусков зажигания в двигателе. В еще одном примере, конденсат может продуваться из CAC с использованием периодического проактивного цикла очистки от конденсата. Цикл очистки может выполняться в ответ на уровень конденсата в CAC и другие системные переменные. Во время цикла очистки, поток воздуха через CAC может усиливаться для продувки конденсата наряду с тем, что исполнительные механизмы двигателя регулируются для поддержания крутящего момента и улучшения рабочих характеристик двигателя.

В варианте осуществления, показанном на фиг. 1, давление воздушного заряда внутри впускного коллектора считывается датчиком 24 давления воздуха в коллекторе (MAP), а давление наддува считывается датчиком 124 давления наддува. Перепускной клапан компрессора (не показан) может быть присоединен последовательно между впуском и выпуском компрессора 14. Перепускной клапан компрессора может быть нормально закрытым клапаном, выполненным с возможностью открывания в выбранных условиях работы, чтобы сбрасывать избыточное давление наддува. Например, перепускной клапан компрессора может открываться в условиях замедления скорости вращения двигателя для предотвращения помпажа компрессора.

Впускной коллектор 22 присоединен к ряду камер 31 сгорания через ряд впускных клапанов (не показаны). Каждая камера сгорания двигателя 10 может включать в себя стенки камеры сгорания с поршнем (не показан), расположенными в них. Поршни могут быть присоединены к коленчатому валу 140, так чтобы возвратно-поступательное движение поршня преобразовывалось во вращательное движение коленчатого вала. Коленчатый вал 140 может быть присоединен к по меньшей мере одному ведущему колесу транспортного средства через промежуточную систему 150 трансмиссии. Система 150 трансмиссии может включать в себя автоматическую трансмиссию с многочисленными фиксированными передачами, имеющую множество дискретных передаточных отношений, муфт и т.д. В одном из примеров, трансмиссия может иметь только 8 дискретных передач переднего хода и 1 передачу заднего хода. Кроме того, стартерный электродвигатель может быть присоединен к коленчатому валу 140 через маховик, чтобы давать возможность операции запуска двигателя 10.

Крутящий момент на выпуске двигателя может передаваться на гидротрансформатор (не показан), чтобы приводить в движение систему 150 автоматической трансмиссии. Кроме того, одна или более муфт могут приводиться в зацепление, в том числе, муфта 154 переднего хода, для приведения в движение автомобиля. В одном из примеров, гидротрансформатор может указываться ссылкой как компонент системы 150 трансмиссии. Кроме того, система 150 трансмиссии может включать в себя множество передаточных муфт 152, которые могут приводиться в зацепление по необходимости, чтобы активировать множество постоянных передаточных отношений трансмиссии. Более точно, посредством регулировки включения множества передаточных муфт 152, трансмиссия может переключаться между более высокой передачей (то есть, передачей с более низким передаточным отношением) и более низкой передачей (то есть, передачей с более высоким передаточным отношением). По существу, разность передаточных отношений вводит в действие более низкое умножение крутящего момента на трансмиссии, когда на более высокой передаче, наряду с предоставлением возможности более высокого умножения крутящего момента на трансмиссии, когда на более низкой передаче. Транспортное средство может обладать шестью имеющимися в распоряжении передачами, где передача трансмиссии шесть (шестая передача трансмиссии) является высшей имеющейся в распоряжении передачей, а передача трансмиссии один (первая передача трансмиссии) является низшей имеющейся в распоряжении передачей. В других вариантах осуществления, транспортное средство может иметь больше или меньше, чем шесть имеющихся в распоряжении передач.

Контроллер может менять передачу трансмиссии (например, переключать с повышением или переключать с понижением передачу трансмиссии), чтобы регулировать величину крутящего момента, передаваемого через трансмиссию и гидротрансформатор на колеса 156 транспортного средства (то есть, крутящий момент на выпускном валу двигателя). По мере того, как транспортное средство осуществляет переключение с понижением передачи трансмиссии, скорость вращения двигателя возрастает. Это, наряду с сопутствующим открыванием дросселя, увеличивает массовый расход воздуха (например, массовый поток воздуха или массовый расход воздуха) через двигатель. По существу, на более низких передачах, массовый расход воздуха возрастает. Массовый расход воздуха может дополнительно увеличиваться во время многочисленных переключений с понижением передачи. Контроллер может измерять массовый расход воздуха по датчику 120 массового расхода воздуха (MAF), который может почти соответствовать потоку воздуха через охладитель наддувочного воздуха. По существу, возрастает массовый расход воздуха, поток воздуха через CAC усиливается. Контроллер затем может использовать эту информацию для управления другими компонентами и процессами двигателя, такими как переключение передачи.

Камеры 31 сгорания, кроме того, присоединены к выпускному коллектору 36 через ряд выпускных клапанов (не показаны). В изображенном варианте осуществления, показан одиночный выпускной коллектор 36. Однако в других вариантах осуществления, выпускной коллектор может включать в себя множество секций выпускного коллектора. Конфигурации, имеющие множество секций выпускного коллектора могут давать выходящему потоку из разных камер сгорания возможность направляться в разные местоположения в системе двигателя. Универсальный датчик 126 кислорода выхлопных газов (UEGO) показан присоединенным к выпускному коллектору 36 выше по потоку от турбины 16. В качестве альтернативы, двухрежимный датчик кислорода выхлопных газов может использоваться вместо датчика 126 UEGO.

Как показано на фиг. 1, выхлопные газы из одной или более секций выпускного коллектора направляются в турбину 16, чтобы приводить в движение турбину. Когда требуется уменьшенный крутящий момент турбины, некоторое количество выхлопных газов взамен может направляться через регулятор давления наддува (не показан), обходя турбину. Объединенный поток из турбины и регулятора давления наддува затем протекает через устройство 70 снижения токсичности выхлопных газов. Вообще, одно или более устройств 70 снижения токсичности выхлопных газов могут включать в себя один или более каталитических нейтрализаторов последующей очистки выхлопных газов, выполненных с возможностью каталитически очищать поток выхлопных газов, тем самым, снижать количество одного или более веществ в потоке выхлопных газов.

Все или часть очищенных выхлопных газов из устройства 70 снижения токсичности выхлопных газов могут выбрасываться в атмосферу через выхлопную трубу 35. В зависимости от условий работы, однако, некоторая часть выхлопных газов может взамен отводиться в канал 51 EGR через охладитель 50 EGR и клапан 52 EGR на впуск компрессора 14. Таким образом, компрессор выполнен с возможностью допускать выхлопные газы, отведенные ниже по потоку от турбины 16. Клапан EGR может открываться, чтобы допускать регулируемое количество охлажденных выхлопных газов на впуск компрессора для требуемых рабочих характеристик сгорания и снижения токсичности выхлопных газов. Таким образом, система 100 двигателя выполнена с возможностью выдачи внешнего EGR низкого давления (LP). Вращение компрессора, в дополнение к относительно длинному пути протекания EGR LP в системе 100 двигателя, обеспечивает превосходную гомогенизацию выхлопных газов в заряде всасываемого воздуха. Кроме того, расположение точек отбора и смешивания EGR обеспечивает эффективное охлаждение выхлопных газов для повышенной имеющейся в распоряжении массы EGR и улучшенных рабочих характеристик.

Моторное транспортное средство 102 дополнительно включает в себя систему 104 охлаждения, которая осуществляет циркуляцию хладагента через двигатель 10 внутреннего сгорания, чтобы поглощать потерянное тепло, и распределяет нагретый хладагент по радиатору 80 и/или сердцевине 90 обогревателя посредством магистралей 82 и 84 хладагента, соответственно. В частности, фиг. 1 показывает систему 104 охлаждения, присоединенную к двигателю 10 и осуществляющую циркуляцию хладагента двигателя из двигателя 10 в радиатор 80 через водяной насос 86 с приводом от двигателя и обратно в двигатель 10 через магистраль 82 хладагента. Водяной насос 86 с приводом от двигателя может быть присоединен к двигателю через привод 88 вспомогательных устройств передней части (FEAD) и вращаться пропорционально скорости вращения двигателя посредством ремня, цепи и т.д. Более точно, водяной насос 86 с приводом от двигателя осуществляет циркуляцию хладагента через каналы в блоке цилиндров, головке блока цилиндров двигателя и т.д., для поглощения тепла двигателя, которое затем переносится через радиатор 80 в окружающий воздух. В примере, где водяной насос 86 с приводом от двигателя является центробежным насосом, создаваемое давление (и результирующий поток) может быть пропорциональным скорости вращения коленчатого вала, которая, в примере по фиг. 1, прямо пропорциональна скорости вращения двигателя. В еще одном примере, может использоваться насос с приводом от электродвигателя, который может регулироваться независимо от вращения двигателя. Температура хладагента может стабилизироваться управляемым термостатом клапаном 38, расположенным в магистрали 82 охлаждения, который может удерживаться закрытым до тех пор, пока хладагент не достигает пороговой температуры.

Система 100 двигателя может включать в себя электрический вентилятор 92 для направления потока охлаждающего воздуха по направлению в CAC 18, систему 104 охлаждения двигателя или другие компоненты системы двигателя. В некоторых вариантах осуществления, электрический вентилятор 92 может быть охлаждающим вентилятором двигателя. Охлаждающий вентилятор двигателя может быть присоединен к радиатору 80, чтобы поддерживать поток воздуха через радиатор 80, когда моторное транспортное средство 102 медленно движется или останавливается, в то время как работает двигатель. Скорость работы или направление вентилятора могут управляться контроллером 12. В одном из примеров, охлаждающий вентилятор двигателя также может направлять поток охлаждающего воздуха в направлении CAC 18. В качестве альтернативы, электрический вентилятор 92 может быть присоединен к системе привода вспомогательных устройств двигателя, приводимых в движение коленчатым валом двигателя. В других вариантах осуществления, электрический вентилятор 92 может действовать в качестве выделенного вентилятора CAC. В этом варианте осуществления, электрический вентилятор может быть присоединен к CAC или расположен в местоположении, чтобы направлять поток воздуха непосредственно в направлении CAC. В еще одном другом варианте осуществления, может быть два или более электрических вентилятора. Например, один может быть присоединен к радиатору (как показано) для охлаждения двигателя, наряду с тем, что другой может быть присоединен где-нибудь еще, чтобы направлять охлаждающий воздух непосредственно в направлении CAC. В этом примере, два или более электрических вентиляторов могут управляться порознь (например, с разными частотами вращения), чтобы обеспечивать охлаждение для своих соответствующих компонентов.

Хладагент может течь через магистраль 84 хладагента, как описано выше, и/или через магистраль 84 хладагента в сердцевину 90 обогревателя, где тепло может передаваться в пассажирское отделение 106, и хладагент течет назад в двигатель 10. В некоторых примерах, водяной насос 86 с приводом от двигателя может действовать для осуществления циркуляции хладагента через обе магистрали 82 и 84 хладагента.

Фиг. 1 дополнительно показывает систему 28 управления. Система 28 управления может быть функционально присоединена к различным компонентам системы 100 двигателя, чтобы выполнять управляющие процедуры и действия, описанные в материалах настоящего описания. Например, как показано на фиг. 1, система 28 управления может включать в себя электронный цифровой контроллер 12. Контроллер 12 может быть микрокомпьютером, включающим в себя микропроцессорный блок, порты ввода/вывода, электронный запоминающий носитель для хранения выполняемых программ и калибровочных значений, оперативное запоминающее устройство, энергонезависимую память и шину данных. Как изображено, контроллер 12 может принимать входные данные с множества датчиков 30, которые могут включать в себя пользовательские устройства ввода и/или датчики (такие как положение передачи трансмиссии, входной сигнал педали газа, входной сигнал тормоза, положение рычага управления трансмиссией, скорость транспортного средства, скорость вращения двигателя, массовый расход воздуха через двигатель, давление наддува температура окружающей среды, влажность окружающей среды, температура всасываемого воздуха, скорость работы вентилятора и т.д.), датчики системы охлаждения (такие как температура хладагента, скорость работы вентилятора, температура в пассажирском отделении, влажность окружающей среды и т.д.), датчики 18 CAC (такие как температура воздуха на выпуске CAC, температура и давление воздуха на выпуске CAC и т.д.) и другие. В дополнение, контроллер 12 может принимать данные из GPS 34 (глобальной системы определения местоположения) и/или устанавливаемой на транспортном средстве коммуникационной и развлекательной системы 26 моторного транспортного средства 102.

Устанавливаемая на транспортном средстве коммуникационная и развлекательная система 26 может поддерживать связь с устройством 40 беспроводной связи посредством различных протоколов беспроводной связи, таким как беспроводные сети, передачи вышек сотовой связи и/или их комбинации. Данные, полученные из устанавливаемой на транспортном средстве коммуникационной и развлекательной системы 26, могут включать в себя погодные условия реального времени и спрогнозированные погодные условия. Погодные условия, такие как температура, осадки (например, дождь, снег, град и т.д.) и влажность, могут получаться через различные приложения устройства беспроводной связи и веб-сайты с прогнозом погоды. Данные, полученные из устанавливаемой на транспортном средстве коммуникационной и развлекательной системе, могут включать в себя текущие и спрогнозированные погодные условия для текущего местоположения, а также будущих местоположений вдоль запланированного маршрута передвижения.

В других вариантах осуществления, присутствие дождя может подразумеваться по другим сигналам или датчикам (например, датчикам дождя). В одном из примеров, дождь может подразумеваться по сигналу включения/выключения переднего стеклоочистителя транспортного средства. Более точно, в одном из примеров, когда передние стеклоочистители включаются, сигнал может отправляться в контроллер 12, чтобы указывать на дождь. Контроллер может использовать эту информацию для прогнозирования вероятности образования конденсата в CAC и регулировки исполнительных механизмов транспортного средства, таких как электрический вентилятор 92 и/или система 110 заслонок облицовки радиатора.

Более того, контроллер 12 может поддерживать связь с различными исполнительными механизмами 32, которые могут включать в себя исполнительные механизмы двигателя (такие как топливные форсунки, электрически управляемую воздушную дроссельную заслонку, свечи зажигания и т.д.), исполнительные механизмы системы охлаждения (такие как вентиляционные отверстия обращения воздуха и/или клапаны дозирования воздуха в системе кондиционирования воздуха пассажирского отделения и т.д.), и другие. В некоторых примерах, запоминающий носитель может быть запрограммирован машинно-читаемыми данными, представляющими команды, приводимые в исполнение процессором для выполнения способов, описанных ниже, а также других вариантов, которые предвосхищены, но не описаны прямо.

Как отмечено в материалах настоящего описания, количество потерянного тепла, переносимого в хладагент из двигателя, может меняться в зависимости от условий работы, тем самым, оказывая влияние на количество тепла, передаваемого в потоки воздуха. Например, по мере того, как уменьшается крутящий момент на выходном валу двигателя или поток топлива, вырабатываемое количество потерянного тепла может пропорционально уменьшаться.

Моторное транспортное средство 102 дополн