Способ бесстандартной оценки количества фосфорорганического вещества в пробе

Иллюстрации

Показать все

Изобретение относится к исследованию или анализу материалов, в том числе фосфорорганических веществ (ФОВ), путем определения их химических или физических свойств, а именно путем разделения образцов материалов на составные части с использованием адсорбции, абсорбции, хроматографии и масс-спектрометрии, а более конкретно к способам идентификации и количественного определения фосфорорганических веществ методами хромато-масс-спектрометрии. Способ бесстандартной оценки количества фосфорорганического вещества в пробе заключается в подготовке анализируемой пробы, вводе подготовленной пробы в испаритель хроматографа, разделении пробы в хроматографической капиллярной колонке, регистрации сигнала масс-спектрометрического детектора и установлении градуировочной зависимости. Причем при установлении градуировочной зависимости определяют зависимость масс-спектральной характеристики детектора с цилиндрической ионной ловушкой от массы анализируемого фосфорорганического вещества. Далее выделяют диапазоны массы для характеристичных ионов с массовыми числами, равными [М+1]+ и [2М+1]+, где М - молекулярная масса вещества, а также для иона, являющегося характеристичным ионом для анализируемого фосфорорганического вещества при использовании ионизации электронным ударом. Затем в каждом диапазоне масс устанавливают корреляционные зависимости изменения интенсивности нехарактеристичных ионов данного диапазона масс от массы. Далее оценивают количество вещества в пробе, используя установленные корреляционные зависимости. Техническим результатом является расширение функциональных возможностей мобильного хромато-масс-спектрометра и повышение уровня безопасности проведения процесса анализа за счет снижения риска поражения персонала химической лаборатории фосфорорганическими отравляющими веществами при проведении градуировки детектора. 2 табл., 5 ил.

Реферат

Изобретение относится к исследованию или анализу материалов, в том числе фосфорорганических веществ (ФОВ), путем определения их химических или физических свойств, а именно путем разделения образцов материалов на составные части с использованием адсорбции, абсорбции, хроматографии и масс-спектрометрии, а более конкретно к способам идентификации и количественного определения фосфорорганических веществ методами хромато-масс-спектрометрии (ХМС).

Изобретение может быть использовано при проведении экологического контроля воздуха на объектах по хранению и уничтожению химического оружия в рамках мероприятий по выполнению Конвенции о запрещении разработки, производства, накопления и применения химического оружия и о его уничтожении (далее Конвенция) [1].

Важной задачей при проведении химического контроля в местах возникновения чрезвычайных ситуаций является установление факта применения противником неизвестных токсичных химикатов.

Для оперативного реагирования на возникновение чрезвычайных ситуаций, связанных с применением отравляющих веществ и промышленных токсичных химикатов, в Российской Федерации, как и в других зарубежных странах, большое внимание уделяется разработке и внедрению мобильных химических лабораторий [2]. Преимущество данных лабораторий заключается в том, что их можно быстро развернуть в районах боевых действий, техногенных катастроф, стихийных бедствий и в местах совершения терактов.

В войсках РХБ защиты Российской Федерации для обеспечения химической безопасности международных спортивных, политических и других крупных мероприятий в мобильных лабораториях используются мобильные хромато-масс-спектрометры «Griffin-460».

Актуальность разработки обусловлена тем, что наряду с установлением факта применения того или иного токсичного химиката немаловажную роль играет задача по установлению их количественного содержания [3, 4]. Опираясь на данные количественного анализа, принимаются решения по проведению мероприятий специальной обработки местности, зданий и сооружений, оборудования и имущества, вооружения и военной техники.

Однако в процессе апробации прибора «Griffin-460» в лабораторных условиях и при анализе литературных данных [6] было установлено, что для одного и того же вещества масс-спектр изменяется в зависимости от его массы в анализируемой пробе, что связано со спецификой ионизации при использовании цилиндрической ионной ловушки. Это затрудняет процессы идентификации и количественного определения вещества по масс-спектральным данным этого прибора, а также исключает возможность использования стандартных методов количественного определения, таких как, например, метод абсолютной градуировки масс-детектора с использованием стандарта определяемого вещества.

Наиболее близким к предлагаемому способу является «Способ определения фосфорорганических веществ», описанный в патенте №2313086 РФ авторов Новикова C.B. и Козлова О.В. [7].

Способ включает подготовку растворов веществ-эталонов для получения градуировочной зависимости детектора, подготовку анализируемой пробы, ввод подготовленной пробы в испаритель хроматографа, разделение пробы в хроматографической капиллярной колонке, регистрацию масс-селективным детектором в режиме сканирования в выбранном диапазоне и определение концентрации фосфорорганических веществ путем сравнения зарегистрированных масс-спектров пробы и масс-спектров веществ-эталонов. Согласно предложению в качестве вещества-эталона используют смесь Ο,Ο,Ο-триметилфосфата, Ο,Ο-диметил-О-этилфосфата, Ο,Ο-диметил-О-изопропилфосфата, O,O-диметил-О-бутилфосфата и Ο,Ο,Ο-триэтилфосфата в соотношении 0,2:0,015:0,05:0,005:1, а концентрацию фосфорорганических веществ определяют по градуировочной зависимости наиболее интенсивного иона в Ο,Ο,Ο-триметилфосфате, Ο,Ο-диметил-О-этилфосфате, Ο,Ο-диметил-О-изопропилфосфате, Ο,Ο-диметил-О-бутилфосфате и Ο,Ο,Ο-триэтилфосфате.

Выбор Ο,Ο,Ο-триметилфосфата, Ο,Ο-диметил-О-этилфосфата, Ο,Ο-диметил-О-изопропилфосфата, Ο,Ο-диметил-О-бутилфосфата и Ο,Ο,Ο-триэтилфосфата в качестве веществ-эталонов обусловлен тем, что значения характеристик удерживания наиболее близки к характеристикам удерживания фосфорорганических веществ и фрагментация веществ обоих классов под действием электронного удара идет по аналогичным направлениям.

Несомненными достоинствами способа, ближайшего из аналогов, является высокие чувствительность (1,0⋅10-8 мг) и достоверность определения, а также использование в качестве градуировочной смеси веществ третьего-четвертого класса опасности, а не самих анализируемых ФОВ.

Однако этот способ, разработанный в условиях ионизации электронным ударом и детектирования в режиме сканирования выбранных ионов, неприменим при использовании мобильного хромато-масс-спектрометра «Griffin-460» с цилиндрической ионной ловушкой, так как масс-спектр изменяется в зависимости от количества анализируемого вещества.

Поэтому задачей настоящего изобретения является разработка бесстандартного способа оценки количества фосфорорганического вещества в пробе для мобильного хромато-масс-спектрометра «Griffin-460» с цилиндрической ионной ловушкой. Это особенно важно для мобильных лабораторий, поскольку необходимость иметь в наличии стандартные образцы ФОВ влечет за собой необходимость оборудования специального места для хранения ФОВ, а также наличия спецтранспорта и оформления разрешений для их транспортировки по территории субъектов Российской Федерации [5], что требует значительных временных и материальных затрат.

Решение поставленной задачи предполагает технический результат, заключающийся в расширении функциональных возможностей мобильного хромато-масс-спектрометра и повышении уровня безопасности проведения процесса анализа за счет снижения риска поражения персонала химической лаборатории фосфорорганическими отравляющими веществами при проведении градуировки детектора.

Поставленная задача решается тем, что в способе бесстандартной оценки количества фосфорорганического вещества в пробе, заключающемся в подготовке анализируемой пробы, вводе подготовленной пробы в испаритель хроматографа, разделении пробы в хроматографической капиллярной колонке, регистрации сигнала масс-спектрометрического детектора и установлении градуировочной зависимости, согласно предлагаемому техническому решению при установлении градуировочной зависимости определяют зависимость масс-спектральной характеристики детектора с цилиндрической ионной ловушкой от массы анализируемого фосфорорганического вещества; выделяют диапазоны массы для характеристичных ионов с массовыми числами, равными [М+1]+ и [2М+1]+, где М - молекулярная масса вещества, а также для иона, являющегося характеристичным ионом для анализируемого фосфорорганического вещества при использовании ионизации электронным ударом; в каждом диапазоне масс устанавливают корреляционные зависимости изменения интенсивности нехарактеристичных ионов данного диапазона масс от массы; оценивают количество вещества в пробе, используя установленные корреляционные зависимости.

Таким образом, поскольку в мобильном хромато-масс-спектрометре «Griffin-460» масс-спектр меняется в зависимости от количества вещества, что не позволяет использовать известные методы градуировки детектора по стандартам ФОВ при их количественном определении, при установлении градуировочной зависимости в предлагаемой пробе определяют зависимость масс-спектральной характеристики от массы и в каждом выделенном диапазоне масс устанавливают корреляционную зависимость интенсивности нехаректеристичного пика-иона от массы. Это позволяет недостаток прибора превратить в возможность расширения его функциональных возможностей и избежать использования ФОВ-стандартов.

При разработке способа были проведены следующие экспериментально-теоретические исследования.

В работе [6] сообщается, что в отличие от стандартных ХМС с электронным ударом 70 эВ в ХМС «Griffin-460» ионизация молекул осуществляется энергией в 13,8 эВ, что приводит к образованию псевдомолекулярных ионов [М+1]+ и [2М+1]+. В то же время в отличие от химической ионизации в масс-спектрах, регистрируемых на ХМС «Griffin-460», наблюдаются пики-ионы, характерные для воздействия на молекулу пучка электронов в 70 эВ.

На фигуре 1 представлен механизм димеризации нейтрально заряженной молекулы ФОВ типа О-алкилалкилфторфосфоната (О-ААФФ) и [М+1]+ [6].

Процессы, происходящие при мягкой ионизации в цилиндрической ионной ловушке ограниченного объема, зависят от количества анализируемого вещества, что и вызывает искажение масс-спектра. На фигуре 2 приведены масс-спектры одного из ФОВ на примере О-ААФФ (зомана) для различного количества введенного вещества. Как видно на фигуре 2, масс-спектры сильно изменяются в зависимости от анализируемой массы вещества. В масс-спектре появляются псевдомолекулярные ионы, кроме того, изменяются соотношения интенсивностей регистрируемых ион-фрагментов. Искажение масс-спектральных данных существенно осложняет решение задач идентификации и количественного анализа.

При изучении литературных данных и по результатам собственных исследований нами была замечена закономерность в изменении пиков-ионов на масс-спектрах. На фигуре 3 представлен графический вид изменения интенсивностей пиков-ионов 99 а.е.м. и псевдомолекулярного иона [2М+1]+ в зависимости от количества введенного вещества на примере О-алкилалкилфторфосфонатов [8].

Как видно на фигуре 3, пик иона с массовым числом, m/z, равным 99 а.е.м., характерный для О-алкилалкилфторфосфонатов, уменьшается в зависимости от анализируемой массы исследуемого вещества, при этом псевдомолекулярный ион [2М+1]+ увеличивается. Отметим, что изменения интенсивности пика иона с массовым числом, m/z, равным 99 а.е.м., и для псевдомолекулярного иона подчиняются прямо пропорциональной зависимости от массы вещества.

Аналогичная картина имеет место и для вещества типа VX; отличие будет заключаться в массовом числе иона, характеристичного при ионизации электронным ударом, составляющем 114 а.е.м.

Наличие диапазонов массы, для которых наблюдается постоянство интенсивности характеристичного иона и линейная зависимость интенсивности нехарактеристичного иона в этом диапазоне от массы вещества, позволяет в выделенных диапазонах использовать линейную зависимость по нехарактеристичному иону для расчета массы анализируемого вещества. Дополнительную информацию несет псевдомолекулярный ион с массовым числом, равным [М+1]+.

Изучение зависимостей интенсивности всех трех ионов от массы вещества позволит, выделяя диапазоны характеристичных ионов, рассмотреть весь диапазон масс и получить градуировочные зависимости по нехарактеристичным ионам в каждом диапазоне массы.

Пример осуществления способа

В качестве примера осуществления способа рассмотрим возможность оценки количества зарина в пробе. Пробу зарина вводят в испаритель хроматографа, разделяют на хроматографической капиллярной колонке и регистрируют сигнал масс-детектора «Griffin-460» с цилиндрической ионной ловушкой. На фигуре 4 приведены масс-спектры зарина для различного количества введенного вещества. Как видно на фигуре 4, характер спектра изменяется в зависимости от количества введенного вещества.

Согласно предлагаемому техническому решению при установлении градуировочной зависимости определяют зависимость масс-спектральной характеристики детектора от массы зарина, введенного в испаритель. На фигуре 5 приведены зависимости изменения интенсивности пиков ионов с массовыми числами, равными [М+1]+ и [2М+1]+, где М - молекулярная масса вещества, а также для иона, являющегося характеристичным ионом для зарина при использовании ионизации электронным ударом. Как видно на фигуре 5, это ионы с массовыми числами 141,281 и 99 а.е.м. соответственно.

Далее выделяют диапазоны масс зарина, в которых интенсивности рассматриваемых ионов составляет 100%, то есть они являются характеристичными. Как видно на фигуре 5, интенсивность иона с массовым числом, равным 99 а.е.м., имеет значение 100% в диапазоне масс зарина от 1 до 11 нг. С увеличением массы зарина его интенсивность убывает, но при этом возрастает интенсивность иона с массовым числом, равным 281 а.е.м., которая достигает максимального значения 100% при массе зарина, равной 57 нг.

В диапазоне масс от 11 до 57 нг характеристичным является псевдомолекулярный ион с массовым числом, равным 141 а.е.м. Можно предположить, что пик иона с m/z=141 а.е.м является промежуточным, или компенсационным, и образуется именно в момент изменения интенсивности характеристичного пика с m/z=99 а.е.м, поскольку в приведенном масс-спектре не может отсутствовать характеристичный ион [8].

Это объясняет стремительное увеличение интенсивности до 100% пика иона с m/z=141 а.е.м. в диапазоне масс зарина от 1 до 11 нг.

Таким образом, можно выделить три диапазона масс зарина: первый - от 1 до 11 нг, для которого характеристичным ионом является ион с массовым числом, равным 99 а.е.м., второй - от 11 до 57 нг, в котором псевдомолекулярный ион с массовым числом, равным 141 а.е.м., является характеристичным, а третий - от 57 до 150 нг, интенсивность 100% имеет псевдомолекулярный ион с массовым числом 281 а.е.м.

После этого в каждом диапазоне масс зарина устанавливают корреляционные зависимости интенсивности нехарактеристичных ионов в данном диапазоне масс от массы зарина. Для первого диапазона масс нехарактеристичным является ион с массовым числом, равным 141 а.е.м.; для второго - ионы с массовыми числами, равными 99 и 281 а.е.м., для третьего диапазона - ион с массовым числом, равным 141 а.е.м.

В таблице 1 приведены математические выражения для установленных зависимостей.

Математические выражения, приведенные в таблице 1, используют для оценки количества зарина в пробе.

Для проверки работоспособности способа были приготовлены рабочие пробы с массой зарина от 1 до 150 нг. В таблице 2 приведены результаты определения массы зарина в рабочих пробах по предлагаемому способу.

Как видно из данных, приведенных в таблице 2, разработанный способ бесстандартной оценки массы фосфорорганического вещества, несмотря на большую погрешность для минимального значения массы, позволяет оценивать массу зарина без использования стандартных токсичных образцов сравнения, что повышает безопасность проведения анализа и расширяет функциональные возможности мобильного хромато-масс-спектрометра «Griffin-460» с цилиндрической ионной ловушкой.

В результате проведенных исследований было показано, что при увеличении массы зарина от 150 до 1000 нг интенсивность пика иона с массовым числом, равным m/z=141 а.е.м., продолжает убывать до 5%. Однако на данном этапе работы мы ограничиваемся диапазоном анализируемой массы зарина от 1 до 150 нг.

Известно, что пороговая концентрация зарина в воздухе составляет 5⋅10-4 мг/л при экспозиции вдыхаемого воздуха, равной 1 минуте. В ХМС «Griffin-460» для отбора проб воздуха используется пробоотборное устройство X-Sorber, в котором с помощью встроенного насоса осуществляется просасывание воздуха через сорбционную трубку. За одну минуту максимально можно отобрать 0,67 л воздуха. Как правило, отбор пробы воздуха с помощью X-Sorber осуществляется в течение времени до 30 секунд. Соответственно при сорбции паров зарина в воздухе на уровне пороговой концентрации масса зарина будет составлять не более 160 нг.

Поэтому выбранный диапазон массы зарина от 1 до 150 нг позволит при проведении специального химического контроля определять в воздухе зарин на уровне от 150 ПДКрз до значения пороговой концентрации.

Литература

1. Конвенция о запрещении разработки, производства, накопления и применения химического оружия и о его уничтожении. - М.: Комитет по конвенциальным проблемам химического и биологического оружия при Президенте Российской Федерации, 1994. - 133 с.

2. Царёв А. Мобильные радиационные, химические и биологические лаборатории зарубежных стран [Текст] / А. Царёв // Зарубежное военное обозрение. - 2012. - №9. - С. 41-48.

3. Золотова Ю.А. Основы аналитической химии: Книга 1. Общие вопросы. Методы разделения [Текст] / Ю.А. Золотов - М.: Высшая школа, 1999 - 351 с.

4. Vindevogel J. Introduction to MEKC, in: Chromatographic Methods [Текст] / J. Vindevogel, P. Sandra - Heidelberg, 1992. - 354 c.

5. Федеральный закон №76 «Об уничтожении химического оружия» от 02.02.97 г.

6. Patterson G.Е. Miniature Cylindrical Ion Trap Mass Spectrometer [Текст] / G. Patterson, A. Guymon, L. Riter [и др.] // Anal. Chem. - 2002. - V. 74. - P. 6145-6153.

7 Пат. №2313086 РФ МКИ G01N 30/72. Способ определения фосфорорганических веществ [Текст] / Новиков Сергей Васильевич (RU), Козлов Олег Владимирович (RU) Заявл. 02.07.2006. Опубл. 20.12.2007.

8. Карасек Ф. Введение в хромато-масс-спектрометрию [Текст] / пер. с англ. / Ф. Карасек, Р. Клемент. - М.: Мир, 1993. - 237 с.

Способ бесстандартной оценки количества фосфорорганического вещества в пробе, заключающийся в подготовке анализируемой пробы, вводе подготовленной пробы в испаритель хроматографа, разделении пробы в хроматографической капиллярной колонке, регистрации сигнала масс-спектрометрического детектора и установлении градуировочной зависимости, отличающийся тем, что при установлении градуировочной зависимости определяют зависимость масс-спектральной характеристики детектора с цилиндрической ионной ловушкой от массы анализируемого фосфорорганического вещества; выделяют диапазоны массы для характеристичных ионов с массовыми числами, равными [М+1]+ и [2М+1]+, где М - молекулярная масса вещества, а также для иона, являющегося характеристичным ионом для анализируемого фосфорорганического вещества при использовании ионизации электронным ударом; в каждом диапазоне масс устанавливают корреляционные зависимости изменения интенсивности нехарактеристичных ионов данного диапазона масс от массы; оценивают количество вещества в пробе, используя установленные корреляционные зависимости.