Центробежнолитой составной валок и способ его изготовления

Иллюстрации

Показать все

Изобретение относится к составным валкам, используемым при прокатке. Центробежнолитой составной валок содержит внешний слой, полученный из чугуна, содержащего, мас.%: 2,7-3,5 C, 1,5-2,5 Si, 0,4-1,0 Mn, 3,7-5,1 Ni, 0,8-2,2 Cr, 1,5-4,5 Mo, 2,0-4,5 V и 0,5-2,0 Nb, остальное Fe и неизбежные примеси, причем массовое отношение Nb/V составляет 0,18-0,65, а массовое отношение Mo/V составляет 0,7-2,5, при этом структура чугуна включает в расчете на площадь 15-45% фазы цементита и 1-10% фазы графита, и внутренний слой, полученный из ковкого чугуна, металлургически связанного с внешним слоем; при этом подходящая для использования при прокатке область внешнего слоя глубиной, составляющей 10 мм и более, от поверхности не содержит сегрегированных дендритов бейнита и/или мартенсита, имеющих диаметры, составляющие 1,5 мм и более. 2 н. и 7 з.п. ф-лы, 9 табл., 7 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к составному валку, включающему внешний слой, полученный по способу центробежного литья, который монолитно связан в расплаве с ударно-вязким внутренним слоем, и способу его изготовления.

Уровень техники

Поскольку вследствие воздействия термической, механической нагрузки в результате контакта с прокатываемыми листами, ухудшения размеров, форм и качества поверхности прокатываемых листов валки для полосовых станов горячей прокатки подвергаются износу и формированию шероховатой поверхности на поверхностях своих внешних слоев, их необходимо периодически заменять. Бывшие в употреблении валки шлифуют для устранения износа и шероховатости поверхности, обусловленных прокаткой, а после этого используют для следующей прокатки. В случае кратковременности цикла такой замены валка прокатку часто прерывают, что в результате приводит к низкой производительности. В соответствии с этим, требуются валки, характеризующиеся хорошими износостойкостью и стойкостью к формированию шероховатой поверхности.

В полосовом стане горячей прокатки прокатываемый лист может подвергаться воздействию так называемой проблемы со складчатой прокаткой, при которой лист образует складки во время движения между клетями и в состоянии со складкой подвергается прокатке верхними и нижними валками. В частности, в клетях, располагающихся дальше по ходу технологического потока, например, в основном после пятой клети в прокатном стане чистовой прокатки, включающем семь клетей, такая проблема имеет тенденцию к возникновению вследствие высокой скорости прокатки.

Поскольку при наличии такой проблемы с прокаткой прокатываемый лист прилипает к поверхности внешнего слоя валка, на валок будет воздействовать избыточная термическая, механическая нагрузка, так что внешний слой валка может растрескаться. В случае продолжения использования растрескавшегося валка трещины, вероятно, будут распространяться, вызывая разрушение валка, которое называется изломом или выкрашиванием. В соответствии с этим, сразу после возникновения проблемы со складчатой прокаткой поверхность валка срезают для удаления трещин. Глубокие трещины требуют глубокого срезания, что в результате приводит к большой убыли валка и высокой стоимости валка. В соответствии с этим, желательными являются валки, характеризующиеся хорошим сопротивлением разрушению, которые подвергаются незначительному повреждению в результате растрескивания при наличии такой проблемы с прокаткой.

Таким образом, в располагающихся дальше по ходу технологического потока клетях в прокатном стане чистовой прокатки для достижения превосходного сопротивления разрушению (устойчивости в отношении заклинивания) используют валки из легированного мелкозернистого чугуна, содержащие графит. Однако, поскольку обычные валки из легированного мелкозернистого чугуна характеризуются неудовлетворительной износостойкостью и, таким образом, коротким сроком службы, замена и шлифование валков должны проводиться часто, что в результате приводит к низкой производительности. С другой стороны, стальные валки высокоскоростных прокатных станов, включающие внешние слои, имеющие составы, подобные составам сталей высокоскоростных инструментов, характеризуются высокой износостойкостью, но поскольку они не содержат графита, им свойственны заклинивание и большое растрескивание вследствие термических ударов во время возникновения проблемы со складчатой прокаткой. Поэтому стальные валки высокоскоростных прокатных станов не могут быть использованы в располагающихся дальше по ходу технологического потока клетях в прокатном стане чистовой прокатки. Таким образом, для валков из легированного мелкозернистого чугуна, использующихся в располагающихся дальше по ходу технологического потока клетях в прокатном стане чистовой горячей прокатки, требуется улучшение износостойкости.

В связи с такой потребностью в публикации JP 2005-105296 A описывается внешний слой для валка горячей прокатки, характеризующегося превосходными износостойкостью и стойкостью к формированию шероховатой поверхности, который имеет состав, содержащий в расчете на массу 2,5-3,5% C, 1,0-2,5% Si, 0,3-1% Mn, 3-5% Ni, 1,5-2,5% Cr, 1,0-4% Mo, 1,4-3,0% V, 0,1-0,5% Nb и 0,0005-0,2% B, остальное Fe и неизбежные примеси, и структура содержит 50000-1000000/мм2 мелкозернистых карбидов, имеющих максимальные длины 0,1-5 мкм, по меньшей мере, в части основы. Данный внешний слой валка изготавливают по способу центробежного литья при температуре литья 1320°C и центробежной силе 160 G.

Однако, как было установлено, в случае центробежного литья внешнего слоя из зернистого чугуна, содержащего увеличенное количество V-элемента, образующего твердый карбид в соответствии с описанием в публикации JP 2005-105296 A, будут вырастать подобные пятнышкам сегрегированные дендриты бейнита и/или мартенсита, достигающие в диаметре 1,5 мм и более, в области, составляющей по глубине приблизительно 10 мм и более от поверхности внешнего слоя. Подобные пятнышкам сегрегированные дендриты, содержащие меньше карбидов, подвергаются преимущественному износу в сопоставлении с окружающей структурой, и подобные пятнышкам подвергшиеся износу части переносятся на прокатываемый лист, ухудшая его качество. Такое подобное пятнышкам сегрегирование обуславливается сегрегированием при затвердевании в ходе центробежного литья. А именно, при затвердевании под действием центробежной силы закристаллизованные фазы низкоуглеродистого аустенита, образующие дендриты, имеют больший удельный вес в сопоставлении с тем, что имеет место для жидкой фазы, так что они под действием центробежной силы перемещаются в направлении стороны внешней поверхности. Крупные подобные пятнышкам сегрегированные дендриты образуются по следующему механизму: аустенитные фазы, закристаллизованные в расплаве, имеющем концентрацию углерода, увеличенную в результате миграции аустенитных фаз в направлении к стороне внешней поверхности, не могут перемещаться в концентрированном по углероду расплаве, имеющем увеличенную вязкость вследствие увеличения доли твердой фазы, так что они вырастают крупными и превращаются в бейнит и/или мартенсит. В соответствии с этим, в располагающихся дальше по ходу технологического потока клетях в прокатном стане чистовой прокатки составной валок, имеющий внешний слой из зернистого чугуна, который описывается в публикации JP 2005-105296 A, использован быть не может.

В публикации JP 6-335712 A описывается износостойкий, устойчивый к заклиниванию валок горячей прокатки, имеющий химический состав, содержащий в расчете на массу 2,0-4,0% C, 0,5-4,0% Si, 0,1-1,5% Mn, 2,0-6,0% Ni, 1,0-7,0% Cr и 2,0-8,0% V, остальное Fe и примесные элементы, и структура металла включает основу, 0,5-5% в расчете на площадь графита, 0,2-10% в расчете на площадь карбида MC и 10-40% в расчете на площадь цементита. В публикации JP 6-335712 A, кроме того, описывается то, что в дополнение к вышеупомянутым компонентам он может, кроме того, содержать в расчете на массу одного или нескольких представителей, выбираемых из 0,3-4,0% Mo, 1,0-10% Co, 1,0-10% Nb, 0,01-2,0% Ti, 0,002-0,2% B и 0,02-1,0% Cu. Однако даже данный валок включает подобные пятнышкам сегрегированные дендриты бейнита и/или мартенсита. Это, по-видимому, обуславливается тем, что в публикации JP 2005-105296 A аустенитная фаза, закристаллизованная во время центробежного литья, сегрегируется под действием центробежной силы.

В публикации JP 2004-323961 A описывается внешний слой для составного валка горячей прокатки, который имеет состав, содержащий 2,6-3,5 мас. % C, 1,5-2,5 мас. % Si, 0,2-1,5 мас. % Mn, 1,0-2,5 мас. % Cr, 1,0-3,0 мас. % Mo, 2,0-7,0 мас. % Ni, 1,3-2,5 мас. % V, 0,1-0,8 мас. % Nb, 0,020-0,2 мас. % B и один или оба элемента, выбранных из 0,05 мас. % и менее Ti и 0,1 мас. % и менее Al, остальное Fe и неизбежные примеси, и причем структура включает частицы графита, имеющие диаметры эквивалентных кругов, составляющие 20 мкм и более, на уровне 10/мм2 и более, при этом коэффициент сфероидизации частиц графита, имеющих диаметры эквивалентных кругов, составляющие 20 мкм и более, составляет 15-75%. Хотя в данной ссылке и предусматривается сегрегирование карбидов, в ней не описываются конкретно условия для композиции по V, Nb и Mo и условия изготовления для предотвращения образования подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита внутри внешнего слоя.

В публикации JP 2004-162104 A описывается внешний слой для составного валка горячей прокатки, имеющего состав, содержащий в расчете на массу 2,6-3,5% C, 1,0-2,5% Si, 0,2-1,5% Mn, 0,8-2,7% Cr, 1,0-3,0% Mo, 2,0-7,0% Ni, 1,3-2,5% V, 0,1-0,8% Nb и 0,020-0,2% B, и при этом количества C, Cr, Nb и V соответствуют следующим далее формулам от (1) до (3):

и

где каждый представитель, выбираемый из C, V, Nb и Cr, представляет собой количество (мас. %) каждого элемента, и, кроме того, содержащий один или оба элемента, выбранных из менее чем 0,05% Ti и 0,1% и менее Al, остальное Fe и неизбежные примеси. Хотя в данной ссылке и предусматривается сегрегирование карбидов, в ней не описываются конкретно условия для композиции по V, Nb и Mo и условия изготовления для предотвращения образования подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита во внешнем слое.

В публикации JP 2003-342669 A описывается внешний слой для валка горячей прокатки, демонстрирующего превосходные износостойкость, устойчивость в отношении заклинивания и сопротивление формированию шероховатой поверхности, который имеет состав, содержащий в расчете на массу 2,4-3,2% C, 0,9-2,5% Si, 0,2-1,5% Mn, 0,8-2,5% Cr, 1,2-4,0% Mo, 2,0-7,0% Ni, 1,5-2,7% V, 0,1-0,8% Nb, 0,020-0,2% B и 0,0006-0,040% редкоземельного металла, при этом количества C, Cr, Nb, V соответствуют следующим далее формулам от (1) до (3):

и

где каждый представитель, выбираемый из C, V, Nb и Cr, представляет собой количество (мас. %) каждого элемента, и, кроме того, содержащий один или оба элемента, выбранных из менее чем 0,05% Ti и 0,1% и менее Al, остальное Fe и неизбежные примеси, и причем структура включает графит. Хотя в данной ссылке и предусматривается сегрегирование карбидов, в ней не описываются конкретно условия для композиции по V, Nb и Mo и условия изготовления для предотвращения образования подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита во внешнем слое.

В публикации JP 2004-68142 A описывается внешний слой для валка горячей прокатки, демонстрирующего превосходные устойчивость в отношении заклинивания и износостойкость, который имеет состав, содержащий в расчете на массу 2,9-3,8% C, 0,8-2,0% Si, 0,2-1,5% Mn, 1,5-3,5% Cr, 0,8-3,5% Mo, 3,0-7,0% Ni, 1,0-3,5% V, 0,1-0,8% Nb, 0,020-0,2% B и 0,002-0,030% редкоземельного металла, при этом удовлетворяются следующие далее формулы (1) и (2):

и

где каждый представитель, выбираемый из C, V, Nb и Cr, представляет собой количество (мас. %) каждого элемента, остальное Fe и неизбежные примеси. Хотя в данной ссылке и предусматривается сегрегирование карбидов, в ней не описываются конкретно условия для композиции по V, Nb и Mo и условия изготовления для предотвращения образования подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита во внешнем слое.

В публикации JP 8-209299 A описывается валок горячей прокатки, характеризующийся высокой устойчивостью в отношении заклинивания, который содержит в расчете на массу 2,0-4,0% C, 1,0-5,0% Si, 0,1-2,0% Mn, 0,1-6,0% Cr, 0,1-6,0% Mo, 0,1-6,0% V и 1,0-8,0% Ni, остальное Fe и неизбежные примеси. Данный валок, кроме того, может содержать, по меньшей мере, один элемент, выбранный из 0,1-6,0% W, 0,1-4,0% Nb и 0,1-10,0% Co. Однако в данной ссылке не описываются ни сегрегирование карбида, ни условия для композиции по V, Nb и Mo и условия изготовления для предотвращения образования подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита во внешнем слое.

В публикации EP 1190108 B описывается способ изготовления составного валка, включающий (1) получение расплава, содержащего 2,0-3,5 мас. % C, 1,0-2,0 мас. % Si, 0,5-2,0 мас. % Mn, 1,0-3,0 мас. % Cr, 3,5-4,9 мас. % Ni и 0,20-2,9 мас. % Mo, остальное Fe и примеси, (2) растворение более, чем 0,5 мас. % и 5,9 мас. % и менее V, часть чего может быть замещена при использовании Nb и тому подобного в расплаве, (3) регулирование состава расплава таким образом, чтобы его затвердевание формировало бы мелкую структуру, включающую 1,0-3,0 об. % графита, 8-35 об. % эвтектического карбида и, по меньшей мере, 1 об. % карбида V, при этом баланс по существу составляет мартенсит, (4) выливание расплава в форму для центробежного литья и (5) термическую обработку полученного продукта. Однако в данной ссылке не описываются конкретно условия для композиции по V, Nb и Mo и условия изготовления для предотвращения образования подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита во внешнем слое.

В публикации JP 2004-82209 A описывается центробежнолитой составной валок горячей прокатки, включающий слой внешней оболочки, имеющий состав, содержащий в расчете на массу 3,0-4,0% C, 0,8-2,5% Si, 0,2-1,2% Mn, 3,0-5,0% Ni, 0,5-2,5% Cr, 0,1-3,0% Mo и 1,0-5,0% V, остальное Fe и неизбежные примеси, и внутренний слой, полученный из обычного чугуна или чугуна с шаровидным графитом, содержащих 2,5-4,0% C, при этом толщина T слоя внешней оболочки и радиус R внутреннего слоя соответствуют отношению, выражаемому формулой 0,03≤T/R≤0,5. Однако в данной ссылке совершенно не описываются условия для композиции по V, Nb и Mo и условия изготовления для предотвращения сегрегирования карбидов и образования подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита во внешнем слое.

В публикации JP 8-302444 A описывается внешний слой, отлитый при 1400°C и более для центробежнолитого валка, при этом внешний слой содержит 2,5-4,7% C, 0,8-3,2% Si, 0,1-2,0% Mn, 0,4-1,9% Cr, 0,6-5% Mo, 3,0-10,0% V и 0,6-7,0% Nb и соответствует следующим далее формулам от (1) до (4):

и

остальное Fe и неизбежные примеси, и включает гранулированный карбид, относящийся к типу MC, и графит. Хотя в данной ссылке и предусматривается сегрегирование карбидов, в ней не описываются конкретно условия для композиции по V, Nb и Mo и условия изготовления для предотвращения образования подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита во внешнем слое.

В качестве центробежнолитого валка, включающего внешний слой, полученный из зернистого чугуна, который не включает подобное пятнышкам сегрегирование, имеющее диаметры, составляющие 1,5 мм и более, в публикации JP 2001-321807 A описывается раскатной валок, включающий внешний слой, полученный из зернистого чугуна, содержащего 2,8-3,5 мас. % C, 1,5 мас. % и менее Si, 1,5 мас. % и менее Mn, 3-5 мас. % Ni, 1-3 мас. % Cr и менее чем 1,0 мас. % Mo, остальное по существу составляет Fe, причем 90% и более подобного пятнышкам сегрегирования, имеющего диаметры, составляющие 1,0 мм и более, имеют диаметры, меньшие, чем 2,0 мм, в области прокатки вплоть до глубины 20-30 мм. Внешний слой содержит 2,0 мас. % и менее в совокупности, по меньшей мере, одного элемента, выбираемого из группы, состоящей из 2,0 мас. % и менее V, 2,0 мас. % и менее Nb, 1,0 мас. % и менее Ti, 1,0 мас. % и менее Zr и 1,0 мас. % и менее Ta, и включает карбид, относящийся к типу M1C1. Однако, поскольку совокупное количество V и Nb составляет 2,0 мас. % и менее, образование подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита во внешнем слое в достаточной степени предотвращено быть не может.

Таким образом, трудно улучшить износостойкость валка из легированного мелкозернистого чугуна для получения центробежнолитого составного валка, характеризующегося хорошими как износостойкостью, так и сопротивлением разрушению при подавлении образования подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита.

Цель изобретения

В соответствии с этим, цель настоящего изобретения заключается в создании составного валка, включающего центробежнолитой внешний слой, характеризующийся превосходными износостойкостью и сопротивлением разрушению (устойчивостью в отношении заклинивания) и по существу не содержащий подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита, и способа его изготовления.

Краткое изложение изобретения

В результате проведения интенсивного исследования в свете вышеупомянутой цели было установлено, что (а) поскольку в способе центробежного литья зернистого чугуна, содержащего большие количества элементов, образующих карбид, тяжелая аустенитная фаза (γ-фаза) под действием центробежной силы перемещается в направлении стороны внешней поверхности, аустенитная фаза (γ-фаза), образующаяся в виде первичного кристалла в остающемся концентрированном по углероду расплаве (легкоплавком эвтектическом расплаве), удерживается в расплаве, имеющем увеличенную вязкость, вследствие уменьшения температуры и растет с образованием крупных дендритов, и что (b) для подавления перемещения γ-фазы в направлении стороны внешней поверхности и концентрирования на начальной стадии затвердевания необходимо регулировать не только количества V, Nb и Mo - элементов, образующих карбид, но также и массовые отношения Nb/V и Mo/V и контролировать температуру литья и центробежную силу во время центробежного литья. Настоящее изобретение было сделано на основании таких открытий.

Центробежнолитой составной валок настоящего изобретения включает внешний слой, полученный из чугуна, имеющего химический состав, содержащий в расчете на массу 2,7-3,5% C, 1,5-2,5% Si, 0,4-1,0% Mn, 3,7-5,1% Ni, 0,8-2,2% Cr, 1,5-4,5% Mo, 2,0-4,5% V и 0,5-2,0% Nb, остальное Fe и неизбежные примеси, причем массовое отношение Nb/V составляет 0,18-0,65, а массовое отношение Mo/V составляет 0,7-2,5, и при этом структура включает в расчете на площадь 15-45% фазы цементита и 1-10% фазы графита, и внутренний слой, полученный из чугуна, характеризующийся превосходной механической прочностью и металлургически связанный с внешним слоем; при этом подходящая для использования область внешнего слоя глубиной, составляющей 10 мм и более, от поверхности по существу не включает подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита, имеющих диаметры, составляющие 1,5 мм и более. Термин «подходящая для использования область внешнего слоя», использующийся в настоящем документе, обозначает область в направлении глубины внешнего слоя, подходящую для использования при прокатке, которую называют слоем прокатки.

Структура внешнего слоя предпочтительно включает в расчете на площадь 0,9-9,5% частиц графита, имеющих диаметры эквивалентных кругов, составляющие 5 мкм и более, 1-20% частиц карбида на основе V, имеющих диаметры эквивалентных кругов 1,5-50 мкм, и 0,3-15% в совокупности частиц карбида на основе Nb, имеющих диаметры эквивалентных кругов 1,5-100 мкм, и частиц карбида на основе Mo, имеющих диаметры эквивалентных кругов 1,5-100 мкм; при этом количество частиц карбида на основе V составляет 50-10000/мм2, и совокупное количество частиц карбида на основе Nb и частиц карбида на основе Mo составляет 50-10000/мм2.

Внешний слой может, кроме того, содержать в расчете на массу, по меньшей мере, одного представителя, выбираемого из группы, состоящей из 0,1-5,0% W, 0,01-5,0% Ti, 0,01-2,0% Al, 0,01-0,5% Zr, 0,001-0,5% B и 0,1-10,0% Co.

Химический состав внешнего слоя предпочтительно соответствует в расчете на массу условиям 1,7%≤C-(0,06Cr+0,063Mo+0,033W+0,2V+0,13Nb)≤2,7%, 1,8%≤C+Si/3+Ni/18-[(Mo+W+Nb)/15+(Cr+V)/3]≤2,8% и массовому отношению Mo/Cr 0,8-5,0.

Внешний слой предпочтительно имеет химический состав, содержащий 2,8-3,5% C, 1,5-2,3% Si, 0,5-1,0% Mn, 3,9-5,0% Ni, 0,9-1,9% Cr, 1,7-4,2% Mo, 2,0-4,0% V и 0,5-1,3% Nb, остальное Fe и неизбежные примеси; причем массовое отношение Nb/V составляет 0,2-0,6, а массовое отношение Mo/V составляет 0,7-2,0.

Внешний слой предпочтительно соответствует требованию того, что значение (V+1,2Nb) составляет 2,7-4,5 мас. %.

Внутренний слой предпочтительно получают из ковкого чугуна.

Способ настоящего изобретения для изготовления вышеупомянутого центробежнолитого составного валка включает заливку расплава для внешнего слоя, имеющего химический состав, содержащий в расчете на массу 2,7-3,5% С, 1,5-2,5% Si, 0,4-1,0% Mn, 3,7-5,1% Ni, 0,8-2,2% Cr, 1,5-4,5% Мо, 2,0-4,5% V и 0,5-2,0% Nb, остальное Fe и неизбежные примеси, причем массовое отношение Nb/V составляет 0,18-0,65, а массовое отношение Mo/V составляет 0,7-2,5, в форму для центробежного литья при температуре в диапазоне от его температуры начала выделения аустенита + 30°С до его температуры начала выделения аустенита + 180°С; и получение внешнего слоя под действием центробежной силы, характеризующейся числом ускорения свободного падения в диапазоне 60-150 G.

Форму для центробежного литья предпочтительно получают при использовании ковкого чугуна, имеющего толщину 120-450 мм.

Предпочитается, чтобы после нанесения на внутреннюю поверхность формы для центробежного литья покрытия из футеровочного материала толщиной 0,5-5 мм, который в основном содержит диоксид кремния, оксид алюминия, оксид магния или циркон, внешний слой получали бы по способу центробежного литья.

Краткое описание чертежей

Фиг. 1 представляет собой схематическое изображение, демонстрирующее установку для испытания на износ при прокатке.

Фиг. 2 представляет собой схематическое изображение, демонстрирующее установку для испытания на фрикционный термический удар.

Фиг. 3 представляет собой получаемую при использовании оптического микроскопа фотографию А, демонстрирующую структуру образца для испытания из примера 1, полученного на стадии 2.

Фиг. 4 представляет собой фотографию В для изображения в обратно-рассеянных электронах, демонстрирующую структуру образца для испытания из примера 1, полученного на стадии 3.

Фиг. 5 представляет собой получаемую при использовании оптического микроскопа фотографию C, демонстрирующую структуру образца для испытания из примера 1, полученного на стадии 5.

Фиг. 6 представляет собой получаемую при использовании оптического микроскопа фотографию D, демонстрирующую структуру образца для испытания из примера 1, полученного на стадии 7.

Фиг. 7 представляет собой получаемую при использовании оптического микроскопа фотографию E, демонстрирующую структуру образца для испытания из примера 1, полученного на стадии 9.

Описание предпочтительных вариантов осуществления

Варианты осуществления настоящего изобретения будут подробно разъясняться ниже без намерения ограничения, и в объем настоящего изобретения могут быть внесены различные модификации.

[1] Центробежнолитой составной валок

(А) Состав внешнего слоя

В центробежнолитом составном валке настоящего изобретения, включающем внешний слой, полученный по способу центробежного литья, и ударно-вязкий внутренний слой, монолитно связанный в расплаве с внешним слоем, внешний слой имеет следующий далее химический состав (мас. %).

(1) Обязательный состав

(а) С: 2,7-3,5 мас. %

С объединяется с V, Nb, Cr, Mo и W с образованием твердых карбидов, что вносит свой вклад в улучшение износостойкости внешнего слоя, и совместно с элементами, ускоряющими графитизацию, такими как Si и Ni, приводит к выделению графита в структуре, создавая внешний слой, характеризующийся устойчивостью в отношении заклинивания. В случае уровня содержания C, меньшего, чем 2,7 мас. %, выделение графита будет недостаточным, количество выделенных твердых карбидов будет чрезмерно малым для придания внешнему слою достаточной износостойкости.

Кроме того, в случае уровня содержания C, меньшего, чем 2,7 мас. %, будет иметь место большая разница температур между кристаллизацией аустенита и выделением эвтектического карбида, так что аустенит под действием центробежнолитой силы будет перемещаться изнутри наружу, что в результате приведет к концентрированию углерода в расплаве во внутренней части внешнего слоя. В результате в концентрированном по углероду расплаве образуются и вырастают крупные дендриты аустенита. Дендриты аустенита превращаются в бейнит и/или мартенсит, что в результате приводит к получению грубого сегрегирования, подобного пятнышкам. В настоящем изобретении гомогенность структуры определяют наличие или отсутствие грубого сегрегирования, подобного пятнышкам, имеющего диаметры, составляющие 1,5 мм и более. С другой стороны, в случае превышения уровнем содержания C 3,5 мас. % избыточно будет выделяться графит в форме нитей, что в результате приведет к получению ухудшенных механических свойств, таких как прочность. Избыточное выделение карбида формирует внешний слой, характеризующийся низкими ударной вязкостью и сопротивлением растрескиванию, что в результате приводит к получению глубоких трещин в результате прокатки и увеличенному повреждению на валке. Нижний предел для уровня содержания C предпочтительно составляет 2,8 мас. %, более предпочтительно 2,9 мас. %, наиболее предпочтительно 3,0 мас. %. Кроме того, верхний предел уровня содержания C предпочтительно составляет 3,5 мас. %, более предпочтительно 3,4 мас. %, наиболее предпочтительно 3,35 мас. %.

(b) Si: 1,5-2,5 мас. %

Si оказывает действие по раскислению расплава с восстановлением оксидных дефектов и ускорению графитизации, что вносит свой вклад в устойчивость в отношении заклинивания. Менее чем 1,5 мас. % Si оказывают недостаточное действие по раскислению расплава, а также неудовлетворительное действие по графитизации. С другой стороны, более, чем 2,5 мас. % Si делают основу сплава хрупкой, что, тем самым, образует внешний слой, характеризующийся низкой ударной вязкостью. Нижний предел уровня содержания Si предпочтительно составляет 1,5 мас. %, более предпочтительно 1,6 мас. %, наиболее предпочтительно 1,8 мас. %. Верхний предел уровня содержания Si предпочтительно составляет 2,3 мас. %, более предпочтительно 2,2 мас. %, наиболее предпочтительно 2,2 мас. %.

(c) Mn: 0,4-1,0 мас. %

Mn оказывает действие по раскислению расплава и фиксации S - примеси - в виде MnS. В случае уровня содержания Mn, меньшего, чем 0,4 мас. %, такие эффекты будут недостаточными. С другой стороны, даже несмотря на превышение уровнем содержания Mn 1,0 мас. % дальнейшее увеличение эффектов получено быть не может. Нижний предел уровня содержания Mn предпочтительно составляет 0,5 мас. %, более предпочтительно 0,6 мас. %, наиболее предпочтительно 0,75 мас. %. Верхний предел уровня содержания Mn предпочтительно составляет 1,0 мас. %, более предпочтительно 0,9 мас. %, наиболее предпочтительно 0,85 мас. %.

(d) Ni: 3,7-5,1 мас. %

Ni оказывает действие по выделению графита, что вносит свой вклад в устойчивость в отношении заклинивания. В случае уровня содержания Ni, меньшего, чем 3,7 мас. %, такие эффекты будут недостаточными. С другой стороны, более, чем 5,1 мас. % Ni делают аустенит чрезмерно стабильным, что делает превращение в бейнит или мартенсит невероятным. Нижний предел уровня содержания Ni предпочтительно составляет 3,9 мас. %, более предпочтительно 4,0 мас. %, наиболее предпочтительно 4,2 мас. %. Верхний предел уровня содержания Ni предпочтительно составляет 5,0 мас. %, более предпочтительно 4,8 мас. %, наиболее предпочтительно 4,4 мас. %.

(e) Cr: 0,8-2,2 мас. %

Cr представляет собой эффективный элемент для придания основе бейнита или мартенсита высокой твердости при сохранении, тем самым, износостойкости. В случае уровня содержания Cr, меньшего, чем 0,8 мас. %, такие эффекты будут недостаточными. С другой стороны, в случае превышения уровнем содержания Cr 2,2 мас. % легко образуются карбиды Cr (M7C3, M23C6), что в результате приведет к получению уменьшенных количеств карбида на основе V и карбида на основе Nb, вносящих свой вклад в износостойкость. Нижний предел уровня содержания Cr предпочтительно составляет 0,9 мас. %, более предпочтительно 1,0 мас. %, наиболее предпочтительно 1,1 мас. %. Верхний предел уровня содержания Cr предпочтительно составляет 2,0 мас. %, более предпочтительно 1,9 мас. %, наиболее предпочтительно 1,8 мас. %.

(f) Mo: 1,5-4,5 мас. %

Mo объединяется с C с образованием твердых карбидов Mo (M6C, M2C), что увеличивает твердость внешнего слоя и улучшает прокаливаемость основы сплава. Кроме того, Mo увеличивает удельный вес остающегося эвтектического расплава в процессе затвердевания расплавленного сплава, что, тем самым, предотвращает центробежное отделение первичного кристалла γ-фазы и подавляет сегрегирование подобных пятнышкам дендритов бейнита и/или мартенсита. Mo растворяется в карбидах MC с образованием ударно-вязких твердых карбидов MC, содержащих V и Nb, что, тем самым, улучшает износостойкость. В случае уровня содержания Mo, меньшего, чем 1,5 мас. %, такие эффекты будут недостаточными. С другой стороны, в случае уровня содержания Мо, большего, чем 4,5 мас. %, внешний слой будет характеризоваться неудовлетворительной ударной вязкостью и прочным белым затвердеванием, что, тем самым, предотвратит выделение графита. Нижний предел уровня содержания Мо предпочтительно составляет 1,7 мас. %, более предпочтительно 1,8 мас. %, наиболее предпочтительно 2,0 мас. %. Верхний предел уровня содержания Мо предпочтительно составляет 4,2 мас. %, более предпочтительно 4,1 мас. %, наиболее предпочтительно 3,9 мас. %.

(g) V: 2,0-4,5 мас. %

V представляет собой элемент, объединяющийся с C с образованием твердых карбидов на основе V (карбидов MC). «Карбидами на основе V» являются карбиды, в которых наибольшее количество элемента, объединяющегося с C, соответствует V. Карбиды на основе V не ограничиваются карбидами, содержащими только V, но могут содержать и элементы, отличные от V. Карбиды на основе V характеризуются твердостью по Виккерсу Hv 2500-3000 - наибольшей среди карбидов. В случае уровня содержания V, меньшего, чем 2,0 мас. %, количество выделенных карбидов MC будет недостаточным. С другой стороны, в случае уровня содержания V, большего, чем 4,5 мас. %, будут образовываться крупные карбиды MC, что в результате приведет к получению грубой структуры сплава, которая, вероятно, будет вызывать формирование шероховатой поверхности во время прокатки. Нижний предел уровня содержания V предпочтительно составляет 2,1 мас. %, более предпочтительно 2,2 мас. %, наиболее предпочтительно 2,3 мас. %. Верхний предел уровня содержания V предпочтительно составляет 4,0 мас. %, более предпочтительно 3,5 мас. %, наиболее предпочтительно 3,0 мас. %.

(h) Nb: 0,5-2,0 мас. %

Nb объединяется с C с образованием карбидов на основе Nb (карбидов MC). «Карбидами на основе Nb» являются карбиды, в которых наибольшее количество элемента, объединяющегося с C, соответствует Nb. Карбиды на основе Nb не ограничиваются карбидами, содержащими только Nb, но могут содержать и элементы, отличные от Nb. Nb при добавлении совместно с V и Mo растворяется в карбидах MC, обеспечивая упрочнение, тем самым, улучшая износостойкость внешнего слоя. Кроме того, Nb увеличивает удельный вес остающегося эвтектического расплава в процессе затвердевания расплавленного сплава и предотвращает центробежное отделение первичного кристалла γ-фазы, тем самым, подавляя сегрегирование подобных пятнышкам дендритов бейнита и/или мартенсита, которые образуются в результате превращения из аустенита. Вследствие наличия меньшего различия плотностей между карбидами MC на основе Nb и расплавом и между карбидами MC на основе V и расплавом Nb уменьшает сегрегирование карбидов MC в центробежнолитом внешнем слое. В случае уровня содержания Nb, меньшего, чем 0,5 мас. %, данные эффекты будут недостаточными. С другой стороны, более, чем 2,0 мас. % Nb обеспечивают получение прочного белого затвердевания, что предотвращает выделение графита и формирует более крупные карбиды МС и ускоряет их сегрегирование, тем самым, приводя к получению внешнего слоя, характеризующегося низким сопротивлением формированию шероховатой поверхности. Нижний предел уровня содержания Nb предпочтительно составляет 0,55 мас. %, более предпочтительно 0,6 мас. %, наиболее предпочтительно 0,65 мас. %, в частности, 0,7 мас. %. Верхний предел уровня содержания Nb предпочтительно составляет 1,3 мас. %, более предпочтительно 0,9 мас. %, наиболее предпочтительно 0,8 мас. %.

(i) Nb/V: 0,18-0,65, Mo/V: 0,7-2,5 и V+1,2Nb: 2,7-4,5

Поскольку любой представитель, выбираемый из V, Nb и Mo, оказывает действие по увеличению количества твердых карбидов MC, обязательных для износостойкости, совокупное количество данных элементов должно быть равным предварительно определенному уровню или большим его. V представляет собой элемент, уменьшающий удельный вес расплава, в то время как Nb и Mo представляют собой элементы, увеличивающие удельный вес расплава. В соответствии с этим, в отсутствие баланса между количеством V и количествами Nb и Mo имело бы место большое различие удельных весов между расплавом и аустенитом, так что под действием центробежной силы аустенит перемещался бы в направлении внешнего слоя, что в результате привело бы к получению значительной концентрации углерода. В результате, вероятно, будут сегрегироваться дендриты аустенита.

Поэтому необходимо, чтобы массовое отношение Nb/V составляло бы 0,18-0,65, массовое отношение Mo/V составляло бы 0,7-2,5, и значение (V+1,2Nb) составляло бы 2,7-4,5 мас. %. В случае попадания значений Nb/V, Mo/V и (V+1,2Nb) в пределы данных диапазонов в карбидах на основе V будут содержаться надлежащие количества Nb и Mo, так что более тяжелые карбиды будут гомогенно диспергироваться, что, тем самым, предотвращает образование подобных пятнышкам сегрегированных дендритов бейнита и/или мартенсита. Нижний предел массового отношения Nb/V предпочтительно составляет 0,2, более предпочтительно 0,21, наиболее предпочтительно 0,24. Верхний предел массового отношения Nb/V предпочтительно составляет 0,6, более предпочтительно 0,4, наиболее предпочтительно 0,30. Нижний предел массового отношения Mo/V предпочтительно составляет 0,7, более предпочтительно 0,8, наиболее предпочтительно 0,9. Верхний предел массового отношения Mo/V предпочтительно составляет 2,0, более предпочтительно 1,5, наиболее предпочтительно 1,4. Нижний предел значения (V+1,2Nb) предпочтительно составляет 2,7 мас. %, более предпочтительно 2,8 (масс.), наиболее предпочтительно 2,9 мас. %. Верхний предел значения (V+1,2Nb) предпочтительно составляет 4,2 мас. %, более предпочтительно 4,0 мас. %, наиболее предпочтительно 3,9 мас. %.

(2) Необязательный состав

Внешний слой центробежнолитого составного валка настоящего изобретения в дополнение к вышеупомянутым требованиям к обязательному составу предпочтительно соответствует следующим далее требованиям к составу, зависящим от областей применения.

(a) W: 0,1-5,0 мас. %

W объединяется с C с образованием твердых карбидов M6C и M2C, что вносит свой вклад в улучшение износостойкости внешнего слоя. Он также растворяется в карбидах MC, увеличивая их удельный вес, что в результате приводит к уменьшенному сегрегированию. Предпочтительное количество W составляет 0,1-5,0 мас. %. В случае уровня содержания W, меньшего, чем 0,1 мас. %, будут создаваться недостаточные эффекты. С другой стороны, в случае превышения уровнем содержания W 5,0 мас. % расплаву будет придаваться больший удельный вес, что, вероятно, приведет в результате к сегрегированию карбида. Верхний предел уровня содержания W более предпочтительно составляет 4,0 мас. %, наиболее предпочтительно 2,0 мас. %.

(b) Ti: 0,01-5,0 мас. %

Ti объединяется с N и O - элементами, предотвращающими графитизацию - с образованием оксинитридов. Оксинитриды, диспергированные в расплаве, образуют зародыши кристаллизации, формирующие более мелкие и более гомогенные карбиды MC. Предпочтительное количество Ti составляет 0,01-5,0 мас. %. В случае уровня содержания Ti, меньшего, чем 0,01 мас. %, будут создаваться недостаточные эффекты. С другой стороны, в случае превышения уровнем содержания Ti 5,0 мас. % расплав будет иметь увеличенную вязкость, что, вероятно, образует дефекты литья. В соответствии с этим, уровень содержания Ti предпочтительно составляет 0,01-5,0 мас. %. Верхний предел уровня содержания Ti более предпочтительно составляет 2,0 мас. %, наиболее предпочтительно 1,0 мас. %.

(c) Al: 0,01-2,0 мас. %

Al объединяется с N и O - элементами, предотвращающими графитизацию - с образованием оксинитридов. Оксинитриды, диспергированные в расплаве, образуют зародыши кристаллизации, что в результате приводит к гомогенному выделению мелких карбидов MC. В случае уровня содержания Al, меньшего, чем 0,01 мас. %, эффектов от