Способ получения 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11 ,05,9]додекана

Изобретение относится к способу получения 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, включающего каталитическое гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана с использованием отработанного катализатора, подачу водорода под давлением, в котором гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана осуществляют в смеси с катализатором, отработанным на стадии каталитического гидрирования 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, в течение 10-40 минут, при этом отношение 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана к отработанному катализатору составляет 3,0-5,0, а подачу водорода при проведении гидрирования осуществляют при достижении реакционной массой температуры 85-99°С. Технический результат: разработан способ получения 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, позволяющий упростить процесс, сократить время его проведения при одновременном обеспечении повышения выхода и чистоты целевого продукта за счет оптимизации характеристик используемых реагентов и условий их введения в процесс. 2 пр.

Реферат

Изобретение относится к органической химии, а именно к способу получения 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана (ТАДА), используемого в качестве прекурсора в синтезе известного высокоэнергетического взрывчатого вещества 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана (CL-20, ГАВ).

Из уровня техники известен способ получения ТАДА по патенту РФ №2146676 (опубл. 20.03.2000 г.), включающий каталитическое гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексааза-тетрацикло[5,5,0,03,11,05,9]додекана (ДБТА), подачу водорода под давлением.

Известный способ обладает рядом недостатков: однократное использование катализатора, что обусловливает необходимость проведения стадии разделения ДБТА и отработанного катализатора, предусматривающей такие операции, как растворение, выделение, фильтрацию и сушку; использование чрезмерно большого количества катализатора (нагрузка на катализатор составляет 1,45); высокое содержание палладия в катализаторе - 10%; использование в качестве реакционного растворителя концентрированной уксусной кислоты, что снижает безопасность процесса, а также дорогостоящего диэтиленгликольдиметилового эфира; высокий массовый модуль по растворителю - 24-50; проведение процесса под высоким давлением водорода - 0,9 МПа, после чего осуществляют нагрев реакционной массы до 90°С; продолжительность гидрирования составляет 60 минут.

При этом следует отметить, что наилучший результат при воплощении известного способа получен при использовании смеси уксусной кислоты и диэтиленгликольдиметилового эфира - выход ТАДА с чистотой 99,0% в пересчете на ДБТА - 95%, а при использовании только уксусной кислоты выход ТАДА с чистотой 99,0% в пересчете на ДБТА составляет всего 87%.

Известный способ недостаточно эффективен, имеет низкую технологичность и реализуется при нерациональном использовании реагентов.

Из уровня техники известен принятый за прототип способ получения ТАДА (Сысолятин С.В., Малыхин В.В. «Оптимизация получения тетраацетилгексаазаизовюрцитана», Ползуновский вестник №3, 2013 г., с. 40-42), включающий каталитическое гидрирование ДБТА с использованием отработанного катализатора, подачу водорода под давлением.

К недостаткам прототипа следует отнести: раздельную загрузку ДБТА и катализатора, что при реализации способа в промышленных условиях приведет к насыщенности его технологическими операциями; высокая нагрузка на катализатор, которая составляет 10 г ДБТА на 1 г катализатора в сочетании с длительным ведением гидрирования (180-300 минут), что нетехнологично; проведение процесса гидрирования ДБТА при достаточно низкой температуре (70-75°С), что увеличивает длительность процесса; недостаточно высокий выход ТАДА в пересчете на ДБТА - 90-92% с чистотой 98%.

Способ по прототипу недостаточно эффективен, имеет низкую технологичность и предусматривает недостаточно рациональное использование реагентов.

Задачей предлагаемого технического решения является создание эффективного с повышенной технологичностью способа получения ТАДА, позволяющего упростить процесс, сократить время его проведения при одновременном обеспечении повышения выхода и чистоты целевого продукта за счет оптимизации характеристик используемых реагентов и условий их введения в процесс.

Поставленная задача решается предлагаемым способом получения ТАДА, включающим каталитическое гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана с использованием отработанного катализатора, подачу водорода под давлением. Особенность заключается в том, что гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана осуществляют в смеси с катализатором, отработанным на стадии каталитического гидрирования 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, в течение 10-40 минут, при этом отношение 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана к отработанному катализатору составляет 3,0-5,0, а подачу водорода при проведении гидрирования осуществляют при достижении реакционной массой температуры 85-99°С.

Заявляемое техническое решение отличается от прототипа возможностью использования отработанного на стадии гидрирования 2,4,8,0,12-гексабензил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана (ГБ) при получении ДБТА катализатора далее на стадии получения ТАДА путем гидрирования ДБТА (в прототипе отработанный на стадии получения ТАДА катализатор используют на этой же стадии до 15 раз); меньшим временем гидрирования ДБТА - 10-40 минут при меньшей нагрузке на катализатор - 3,0-5,0 г ДБТА на 1 г катализатора (в прототипе процесс длится 180-300 минут при нагрузке 10 г ДБТА на 1 г катализатора); иной последовательностью между нагревом реакционной массы и подачей водорода - сначала ведут нагрев реакционной массы до температуры 85-99°С, а затем подают водород (в прототипе - вначале подают водород, а затем осуществляют нагрев реакционной массы до 70-75°С).

Именно совокупность отличительных от прототипа признаков с остальными существенными признаками позволила достичь вышеуказанный технический результат, который невозможно получить при реализации изобретения по прототипу в силу его технологических особенностей.

Заявляемые пределы нагрузки на катализатор, продолжительности и температуры гидрирования ДБТА являются оптимальными.

Использование температуры ниже 85°С приводит к недостаточному удалению примесей с поверхности отработанного катализатора, а использование температуры выше 99°С нецелесообразно, так как чистота и выход целевого продукта не увеличиваются, а время реакции не сокращается.

Продолжительность реакции гидрирования ДБТА зависит от нагрузки на катализатор.

Если нагрузка меньше 3,0, то расход катализатора увеличивается без увеличения скорости реакции.

Если нагрузка больше 5,0, то расход катализатора снижается, но время реакции гидрирования ДБТА значительно увеличивается.

Сведения, подтверждающие возможность осуществления способа получения ТАДА

Пример 1. В автоклав загружают 49,74 г ДБТА, полученного при каталитическом гидрировании 80 г ГБ с использованием 8,5 г катализатора Pd/C в смеси 240 мл диметилформамида, 120 мл уксусного ангидрида, 1,44 мл бромбензола, содержащего 8,5 г отработанного катализатора, соответствующего нагрузке 5,0, 129,65 г 98% уксусной кислоты и 161,1 г дистиллированной воды. Автоклав закрывают и включают нагрев. По достижении температуры реакционной массы 85°С автоклав продувают 3 раза азотом, 3 раза водородом. Затем подают рабочее давление водорода 0,5 МПа и включают перемешивание - 800 об/мин. Гидрирование осуществляют в течение 40 минут. Затем катализатор отфильтровывают, а реакционную массу частично упаривают на роторном испарителе. К упаренной массе приливают диметилформамид и перемешивают. Кристаллический продукт отфильтровывают, промывают ацетоном и сушат на воздухе. Выход ТАДА в пересчете на ДБТА составляет 95%, чистота продукта 99,7% (по ВЭЖХ).

Пример 2. В автоклав загружают 54,24 г ДБТА, полученного при каталитическом гидрировании 80 г ГБ с использованием 13 г катализатора Pd/C в смеси 240 мл диметилформамида, 120 мл уксусного ангидрида, 1,44 мл бромбензола, содержащего 13 г отработанного катализатора, соответствующего нагрузке 3,0, 129,65 г 98% уксусной кислоты и 161,1 г дистиллированной воды. Автоклав закрывают и включают нагрев. По достижении температуры реакционной массы 99°С автоклав продувают 3 раза азотом, 3 раза водородом. Затем подают рабочее давление водорода 0,5 МПа и включают перемешивание - 800 об/мин. Гидрирование осуществляют в течении 10 минут. Затем катализатор отфильтровывают, а реакционную массу частично упаривают на роторном испарителе. К упаренной массе приливают диметилформамид и перемешивают. Кристаллический продукт отфильтровывают, промывают ацетоном и сушат на воздухе. Выход ТАДА в пересчете на ДБТА составляет 95%, чистота продукта 99,7% (по ВЭЖХ).

ВЭЖХ проводили на приборе «Agilent 1200» с УФ-детектором; колонка 2,1×150 мм, сорбент - «Zorbax SB-18», фр. 5 μm. Элюент MeCN - вода подкисленная 0,2% Н3РО4.

Таким образом, предлагаемое техническое решение практически реализуемо, пригодно к масштабированию в промышленных условиях и позволяет решить поставленную задачу.

Способ получения 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, включающий каталитическое гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана с использованием отработанного катализатора, подачу водорода под давлением, отличающийся тем, что гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана осуществляют в смеси с катализатором, отработанным на стадии каталитического гидрирования 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, в течение 10-40 минут, при этом отношение 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана к отработанному катализатору составляет 3,0-5,0, а подачу водорода при проведении гидрирования осуществляют при достижении реакционной массой температуры 85-99°C.