Устройство фотоэлектрического преобразования и система формирования изображений
Иллюстрации
Показать всеИзобретение относится к устройству фотоэлектрического преобразования и к системе формирования изображений. Устройство фотоэлектрического преобразования согласно изобретению включает в себя пиксел, который включает в себя блок фотоэлектрического преобразования, транзистор сброса и усилительный транзистор, который выводит сигнал из блока фотоэлектрического преобразования. Блок фотоэлектрического преобразования включает в себя первый электрод, второй электрод, слой фотоэлектрического преобразования и изолирующий слой, расположенный между слоем фотоэлектрического преобразования и вторым электродом. Блок фотоэлектрического преобразования попеременно выполняет операцию накопления и операцию разряда в соответствии с напряжением между первым электродом и вторым электродом. В период между двумя последовательными операциями разряда из множества операций разряда, операция сброса, при которой транзистор сброса сбрасывает напряжение на втором электроде, выполняется многократно. Изобретение обеспечивает улучшение динамического диапазона. 2 н. и 18 з.п. ф-лы, 21 ил.
Реферат
УРОВЕНЬ ТЕХНИКИ
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Настоящее раскрытие сущности относится к устройству фотоэлектрического преобразования и к системе формирования изображений.
ОПИСАНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
[0002] Устройства фотоэлектрического преобразования со структурой "металл-диэлектрик-полупроводник" (MIS) предложены в качестве устройств фотоэлектрического преобразования, используемых для датчиков изображений камер. В устройстве фотоэлектрического преобразования, проиллюстрированном на фиг. 1 в WO2012/004923 (в дальнейшем называемом "патентным документом 1"), прозрачный электрод располагается поверх пленки для фотоэлектрического преобразования, и пиксельный электрод располагается ниже пленки для фотоэлектрического преобразования. Изолирующая пленка располагается между пленкой для фотоэлектрического преобразования и пиксельным электродом. Патентный документ 1 описывает предоставление возможности двойной коррелированной дискретизации с конфигурацией, описанной выше, обеспечивающей достижение уменьшения шума.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0003] Устройство фотоэлектрического преобразования согласно примерному варианту осуществления включает в себя блок фотоэлектрического преобразования, который включает в себя первый электрод, второй электрод, слой фотоэлектрического преобразования, расположенный между первым электродом и вторым электродом, и изолирующий слой, расположенный между слоем фотоэлектрического преобразования и вторым электродом. Устройство фотоэлектрического преобразования включает в себя блок усиления, электрически подключенный ко второму электроду и выполненный с возможностью выводить сигнал, сформированный посредством блока фотоэлектрического преобразования, и блок сброса, выполненный с возможностью сбрасывать напряжение на втором электроде. Устройство фотоэлектрического преобразования попеременно выполняет операцию накопления для накопления сигнального заряда в блоке фотоэлектрического преобразования и операцию разряда для разряда сигнального заряда, накопленного при операции накопления, из блока фотоэлектрического преобразования, в соответствии с напряжением между первым электродом и вторым электродом. В период от первой операции разряда до второй операции разряда после первой операции разряда из множества операций разряда, полученных в результате многократного выполнения операции разряда, блок сброса выполняет первую операцию сброса для сброса напряжения на втором электроде и вторую операцию сброса для сброса напряжения на втором электроде после первой операции сброса.
[0004] Дополнительные признаки настоящего изобретения должны становиться очевидными из нижеприведенного описания примерных вариантов осуществления со ссылкой на прилагаемые чертежи.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0005] Фиг. 1A является принципиальной схемой конфигурации пиксела устройства фотоэлектрического преобразования согласно первому примерному варианту осуществления, а фиг. 1B и 1C являются схемами, иллюстрирующими эквивалентные схемы блока фотоэлектрического преобразования устройства фотоэлектрического преобразования.
[0006] Фиг. 2 является принципиальной схемой общей конфигурации устройства фотоэлектрического преобразования.
[0007] Фиг. 3 является схемой, иллюстрирующей эквивалентную схему для схемы столбцов устройства фотоэлектрического преобразования.
[0008] Фиг. 4 является принципиальной схемой планарной структуры устройства фотоэлектрического преобразования.
[0009] Фиг. 5A и 5B являются принципиальными схемами структуры в поперечном сечении устройства фотоэлектрического преобразования.
[0010] Фиг. 6A-6F являются принципиальными схемами потенциала блока фотоэлектрического преобразования устройства фотоэлектрического преобразования.
[0011] Фиг. 7 является схемой, иллюстрирующей временную диаграмму возбуждающих сигналов, используемых в устройстве фотоэлектрического преобразования.
[0012] Фиг. 8 является принципиальной схемой конфигурации пиксела устройства фотоэлектрического преобразования согласно второму примерному варианту осуществления.
[0013] Фиг. 9 является принципиальной схемой общей конфигурации устройства фотоэлектрического преобразования.
[0014] Фиг. 10 является принципиальной схемой планарной структуры устройства фотоэлектрического преобразования.
[0015] Фиг. 11 является принципиальной схемой структуры в поперечном сечении устройства фотоэлектрического преобразования.
[0016] Фиг. 12A-12F являются принципиальными схемами потенциала блока фотоэлектрического преобразования устройства фотоэлектрического преобразования.
[0017] Фиг. 13 является схемой, иллюстрирующей временную диаграмму возбуждающих сигналов, используемых в устройстве фотоэлектрического преобразования.
[0018] Фиг. 14 является принципиальной схемой конфигурации пиксела устройства фотоэлектрического преобразования согласно третьему примерному варианту осуществления.
[0019] Фиг. 15 является схемой, иллюстрирующей временную диаграмму возбуждающих сигналов, используемых в устройстве фотоэлектрического преобразования.
[0020] Фиг. 16 является принципиальной схемой конфигурации пиксела устройства фотоэлектрического преобразования согласно четвертому примерному варианту осуществления.
[0021] Фиг. 17 является схемой, иллюстрирующей временную диаграмму возбуждающих сигналов, используемых в устройстве фотоэлектрического преобразования.
[0022] Фиг. 18 является принципиальной схемой конфигурации пиксела устройства фотоэлектрического преобразования согласно пятому примерному варианту осуществления.
[0023] Фиг. 19 является схемой, иллюстрирующей временную диаграмму возбуждающих сигналов, используемых в устройстве фотоэлектрического преобразования.
[0024] Фиг. 20 является принципиальной схемой конфигурации пиксела устройства фотоэлектрического преобразования согласно шестому примерному варианту осуществления.
[0025] Фиг. 21 является блок-схемой системы формирования изображений согласно седьмому примерному варианту осуществления.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[0026] Некоторые примерные варианты осуществления предоставляют уменьшение эффекта компонента сигнала в предшествующем кадре.
[0027] Например, динамический диапазон может уменьшаться вследствие эффекта компонента сигнала в предшествующем кадре. Согласно патентному документу 1, до того как начинается накопление сигнального заряда, высокое напряжение прикладывается к прозрачному электроду, чтобы разряжать сигнальный заряд в пленке для фотоэлектрического преобразования. В это время, транзистор сброса поддерживается в отключенном состоянии. Таким образом, когда накопление сигнального заряда начинается, компонент сигнала в предшествующем кадре по-прежнему остается на входном узле блока усиления, включающего в себя пиксельный электрод. Это затрудняет приложение достаточного напряжения к пленке для фотоэлектрического преобразования, что может приводить к уменьшению величины сигнального заряда, который может накапливаться в пленке для фотоэлектрического преобразования, т.е. величины насыщения электрического заряда. Также имеется вероятность того, что напряжение на входном узле блока усиления может выходить за рамки диапазона, в котором входные-выходные характеристики блока усиления могут поддерживаться надлежащим образом. В любом случае, как следствие, может уменьшаться динамический диапазон.
[0028] Соответственно, некоторые примерные варианты осуществления предоставляют устройство фотоэлектрического преобразования, которое обеспечивает улучшение динамического диапазона.
[0029] Вариант осуществления настоящего изобретения предоставляет устройство фотоэлектрического преобразования. Пиксел, включенный в устройство фотоэлектрического преобразования, включает в себя блок фотоэлектрического преобразования и блок усиления, который усиливает сигнал, сформированный посредством блока фотоэлектрического преобразования. Устройство фотоэлектрического преобразования может включать в себя множество пикселов. В этом случае, устройство фотоэлектрического преобразования представляет собой, например, датчик изображений. Альтернативно, устройство фотоэлектрического преобразования может включать в себя только один пиксел. В этом случае, устройство фотоэлектрического преобразования представляет собой, например, оптический датчик. На фиг. 1A, пиксел 100, блок 101 фотоэлектрического преобразования и усилительный транзистор 104 проиллюстрированы в качестве примера.
[0030] Блок фотоэлектрического преобразования включает в себя первый электрод, второй электрод, слой фотоэлектрического преобразования, расположенный между первым электродом и вторым электродом, и изолирующий слой, расположенный между слоем фотоэлектрического преобразования и вторым электродом. На фиг. 1A, первый электрод 201, слой 205 фотоэлектрического преобразования, изолирующий слой 207 и второй электрод 209 проиллюстрированы в качестве примера.
[0031] Второй электрод электрически подключен к блоку усиления. Эта конфигурация предоставляет возможность блоку усиления выводить сигнал, сформированный посредством блока фотоэлектрического преобразования. Второй электрод и блок усиления могут замыкаться накоротко. Альтернативно, переключатель может располагаться в электрическом пути между вторым электродом и блоком усиления. На фиг. 1A, узел B, указывающий электрическое соединение между вторым электродом и блоком усиления, проиллюстрирован в качестве примера. Узел B выполнен с возможностью допускать перевод или задание в электрически высокоимпедансное состояние. Вследствие перевода узла B в электрически высокоимпедансное состояние, напряжение на узле B может изменяться в соответствии с электрическим зарядом, сформированным в блоке фотоэлектрического преобразования. Соответственно, сигнал, соответствующий электрическому заряду, сформированному в блоке фотоэлектрического преобразования, может вводиться в блок усиления.
[0032] Устройство фотоэлектрического преобразования дополнительно включает в себя блок сброса, который сбрасывает напряжение на втором электроде. Блок сброса представляет собой, например, транзистор сброса, электрически подключенный ко второму электроду. На фиг. 1A, транзистор 102 сброса проиллюстрирован в качестве примера. Блок сброса управляется таким образом, что переключаются включенное состояние и отключенное состояние блока сброса. Включение блока сброса дает возможность сброса напряжения на втором электроде до предварительно определенного напряжения (в дальнейшем называемого "напряжением сброса"). Переключатель может располагаться в электрическом пути между блоком сброса и вторым электродом.
[0033] Устройство фотоэлектрического преобразования выполняет операцию накопления для накопления сигнального заряда, сформированного посредством падающего света в блоке фотоэлектрического преобразования, и операцию разряда для разряда сигнального заряда, накопленного при операции накопления, из блока фотоэлектрического преобразования. Настройка второго электрода в электрически высокоимпедансное состояние, когда выполняется операция разряда, приводит к изменению напряжения на втором электроде в соответствии с величиной сигнального заряда, разряженного при операции разряда. Соответственно, посредством сброса напряжения на втором электроде и затем выполнения операции разряда, может получаться сигнал, соответствующий величине разряженного сигнального заряда.
[0034] В этом варианте осуществления, блок фотоэлектрического преобразования выполняет операцию накопления, описанную выше, и операцию разряда, описанную выше, в соответствии с напряжением между первым электродом и вторым электродом (в дальнейшем называемым "межэлектродным напряжением"). Напряжение (межэлектродное напряжение) между первым электродом и вторым электродом означает разность между электрическим потенциалом первого электрода и электрическим потенциалом второго электрода. В этом подробном описании, напряжения, за исключением межэлектродного напряжения, означают напряжения относительно напряжения на заземленном узле в качестве опорного напряжения (0 В), если не указано иное.
[0035] Чтобы избирательно выполнять операцию накопления и операцию разряда, межэлектродное напряжение управляется таким образом, что межэлектродное напряжение имеет противоположные полярности. Например, устройство фотоэлектрического преобразования, которое накапливает дырки в качестве сигнального заряда, выполняет операцию накопления посредством управления межэлектродным напряжением таким образом, что напряжение на первом электроде выше напряжения на втором электроде. Устройство фотоэлектрического преобразования затем выполняет операцию разряда посредством управления межэлектродным напряжением таким образом, что напряжение на первом электроде ниже напряжения на втором электроде. Устройство фотоэлектрического преобразования, которое накапливает электроны в качестве сигнального заряда, выполняет операцию накопления посредством управления межэлектродным напряжением таким образом, что напряжение на первом электроде ниже напряжения на втором электроде. Устройство фотоэлектрического преобразования затем выполняет операцию разряда посредством управления межэлектродным напряжением таким образом, что напряжение на первом электроде выше напряжения на втором электроде.
[0036] В некоторых вариантах осуществления, межэлектродное напряжение может управляться посредством управления напряжением на первом электроде. В некоторых других вариантах осуществления, межэлектродное напряжение может управляться посредством управления напряжением на втором узле, имеющем емкостную связь через первый конденсатор с первым узлом. Первый узел выполнен с возможностью включать в себя второй электрод или соединяться со вторым электродом через переключатель.
[0037] Блок фотоэлектрического преобразования попеременно выполняет операцию накопления и операцию разряда, описанные выше. Операция разряда выполняется многократно, и операция накопления выполняется многократно. Из операций разряда, выполняемых многократно, две последовательных операции разряда с одной операцией накопления между ними упоминаются в качестве первой операции разряда и второй операции разряда после первой операции разряда (называется просто в качестве "второй операции разряда") для удобства. В период от первой операции разряда до второй операции разряда блок сброса выполняет первую операцию сброса и вторую операцию сброса, которая выполняется после первой операции сброса. В каждой из первой и второй операций сброса напряжение на втором электроде сбрасывается до напряжения сброса. Первая операция сброса выполняется до того, как начинается одна операция накопления между первой и второй операциями разряда, либо выполняется в течение одной операции накопления. Помимо этого, по меньшей мере, вторая операция сброса выполняется в пределах периода, в течение которого выполняется одна операция накопления.
[0038] Эта конфигурация обеспечивает улучшение динамического диапазона. Через первую операцию сброса, компонент сигнала на основе сигнального заряда, накопленного в предыдущий период накопления, удаляется из узла, включающего в себя второй электрод. Это предоставляет возможность приложения достаточного межэлектродного напряжения к блоку фотоэлектрического преобразования, что приводит к увеличению величины насыщения электрического заряда в блоке фотоэлектрического преобразования. Следовательно, может улучшаться динамический диапазон.
[0039] Далее подробно описываются примерные варианты осуществления настоящего изобретения со ссылкой на чертежи. Изобретение не ограничено нижеприведенными примерными вариантами осуществления. Модификация, в которой конфигурация нижеприведенных примерных вариантов осуществления частично модифицирована без отступления от объема настоящего изобретения, также составляет примерный вариант осуществления настоящего изобретения. Дополнительно, пример, в котором часть конфигурации любого из нижеприведенных примерных вариантов осуществления добавляется в другой примерный вариант осуществления, или пример, в котором часть конфигурации любого из нижеприведенных примерных вариантов осуществления заменена частью конфигурации другого примерного варианта осуществления, также составляет примерный вариант осуществления настоящего изобретения.
ПЕРВЫЙ ПРИМЕРНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ
[0040] Фиг. 1A схематично иллюстрирует конфигурацию пиксела 100 устройства фотоэлектрического преобразования согласно этому примерному варианту осуществления. Пиксел 100 включает в себя блок 101 фотоэлектрического преобразования, транзистор 102 сброса, первый конденсатор 103, усилительный транзистор 104 и транзистор 105 выбора. Хотя только один пиксел 100 проиллюстрирован на фиг. 1A, устройство фотоэлектрического преобразования согласно этому примерному варианту осуществления включает в себя множество пикселов 100. Кроме того, на фиг. 1A схематично иллюстрируется структура в поперечном сечении блока 101 фотоэлектрического преобразования.
[0041] Блок 101 фотоэлектрического преобразования включает в себя первый электрод 201, блокирующий слой 203, слой 205 фотоэлектрического преобразования, изолирующий слой 207 и второй электрод 209. Первый электрод 201 включен в узел A, проиллюстрированный на фиг. 1A. Второй электрод 209 включен в узел B, проиллюстрированный на фиг. 1A. Первый электрод 201 соединен с блоком 110 подачи напряжения. Блок 110 подачи напряжения подает множество напряжений Vs на первый электрод 201 блока 101 фотоэлектрического преобразования. Эта конфигурация обеспечивает накопление сигнального заряда в блоке 101 фотоэлектрического преобразования и разряд сигнального заряда из блока 101 фотоэлектрического преобразования. Разряд сигнального заряда выполняется для того, чтобы считывать сигнал, сформированный посредством блока 101 фотоэлектрического преобразования.
[0042] Блок 110 подачи напряжения подает, по меньшей мере, первое напряжение Vs1 и второе напряжение Vs2, отличающееся от первого напряжения Vs1, на первый электрод 201 блока 101 фотоэлектрического преобразования. Если сигнальные заряды представляют собой дырки, второе напряжение Vs2 является напряжением ниже первого напряжения Vs1. Если сигнальные заряды представляют собой дырки, например, первое напряжение Vs1 равно 5 В, а второе напряжение Vs2 равно 0 В. Если сигнальные заряды представляют собой электроны, второе напряжение Vs2 является напряжением выше первого напряжения Vs1. Если сигнальные заряды представляют собой электроны, например, первое напряжение Vs1 равно 0 В, а второе напряжение Vs2 равно 5 В. В этом подробном описании, напряжение на заземленном узле равно 0 В в качестве опорного напряжения, если не указано иное.
[0043] Узел B, проиллюстрированный на фиг. 1A, включает в себя затвор усилительного транзистора 104. Усилительный транзистор 104 представляет собой блок усиления, и затвор усилительного транзистора 104 представляет собой входной узел блока усиления. Иными словами, второй электрод 209 блока 101 фотоэлектрического преобразования электрически подключен к блоку усиления. Эта конфигурация предоставляет возможность блоку усиления усиливать и выводить сигнал, сформированный посредством блока 101 фотоэлектрического преобразования.
[0044] Второй электрод 209 электрически подключен к первому контактному выводу первого конденсатора 103. В этом примерном варианте осуществления, первый контактный вывод первого конденсатора 103 включен в узел B. Иными словами, второй электрод 209 и первый контактный вывод первого конденсатора 103 замыкаются накоротко. Второй контактный вывод первого конденсатора 103 включен в узел C. Второй контактный вывод имеет емкостную связь с первым контактным выводом. Другими словами, узел C имеет емкостную связь с узлом B через первый конденсатор 103. Предварительно определенное напряжение подается на второй контактный вывод (узел C) первого конденсатора 103. В этом примерном варианте осуществления, второй контактный вывод (узел C) первого конденсатора 103 заземлен. Иными словами, напряжение в 0 В подается на второй контактный вывод первого конденсатора 103.
[0045] Сток транзистора 102 сброса соединен с узлом, на который подается напряжение Vres сброса. Исток транзистора 102 сброса соединен со вторым электродом 209 блока 101 фотоэлектрического преобразования и затвором усилительного транзистора 104. Эта конфигурация предоставляет возможность транзистору 102 сброса сбрасывать напряжение на узле B до напряжения Vres сброса. Иными словами, транзистор 102 сброса представляет собой блок сброса, который сбрасывает напряжение на втором электроде 209. Выключение транзистора 102 сброса переводит узел B, выполненный с возможностью включать в себя второй электрод 209 блока 101 фотоэлектрического преобразования, в электрически высокоимпедансное состояние.
[0046] В этом примерном варианте осуществления, соотношение абсолютных величин между напряжением Vs, подаваемым на первый электрод 201 блока 101 фотоэлектрического преобразования, и напряжением Vres сброса управляется таким образом, чтобы накапливать сигнальный заряд в блоке 101 фотоэлектрического преобразования и разряжать сигнальный заряд из блока 101 фотоэлектрического преобразования. Напряжение Vres сброса является промежуточным значением между первым напряжением Vs1 и вторым напряжением Vs2. Например, если сигнальные заряды представляют собой дырки, напряжение Vres сброса является напряжением ниже первого напряжения Vs1 и выше второго напряжения Vs2. Если сигнальные заряды представляют собой электроны, напряжение Vres сброса является напряжением выше первого напряжения Vs1 и ниже второго напряжения Vs2. В этом примерном варианте осуществления, напряжение Vres сброса равно 3,3 В. Напряжение Vres сброса ниже напряжения питания и выше напряжения, которое должно подаваться на заземленный узел.
[0047] Сток усилительного транзистора 104 соединен с узлом, на который подается напряжение питания. Исток усилительного транзистора 104 соединен с выходной линией 130 через транзистор 105 выбора. Источник 160 тока соединен с выходной линией 130. Усилительный транзистор 104 и источник 160 тока формируют схему истокового повторителя, и сигнал, сформированный посредством блока 101 фотоэлектрического преобразования, выводится в выходную линию 130. Схема 140 столбцов также соединена с выходной линией 130. Сигнал из пиксела 100, который выводится в выходную линию 130, вводится в схему 140 столбцов.
[0048] Фиг. 1B и 1C иллюстрируют примерные эквивалентные принципиальные схемы блока 101 фотоэлектрического преобразования. В этом примерном варианте осуществления, блок 101 фотоэлектрического преобразования включает в себя слой фотоэлектрического преобразования, выполненный с возможностью накапливать сигнальный заряд, и изолирующий слой. Соответственно, блок 101 фотоэлектрического преобразования включает в себя компонент емкости между первым электродом 201 и вторым электродом 209. В эквивалентных схемах, проиллюстрированных на фиг. 1B и 1C, компонент емкости представляется как второй конденсатор 111, расположенный между первым электродом 201 и вторым электродом 209 блока 101 фотоэлектрического преобразования. Фиг. 1B иллюстрирует примерный вариант осуществления, в котором блок 101 фотоэлектрического преобразования включает в себя блокирующий слой. Таким образом, блокирующий слой и слой фотоэлектрического преобразования проиллюстрированы с использованием схемного обозначения диода 112. Фиг. 1C иллюстрирует примерный вариант осуществления, в котором слой фотоэлектрического преобразования не включает в себя блокирующий слой. Таким образом, слой фотоэлектрического преобразования проиллюстрирован с использованием схемного обозначения резистора 113. Структура блока 101 фотоэлектрического преобразования описывается ниже.
[0049] Фиг. 2 является принципиальной схемой общей схемной конфигурации устройства фотоэлектрического преобразования согласно этому примерному варианту осуществления. Частям, имеющим функции, практически идентичные функциям частей на фиг. 1A, назначаются идентичные ссылочные позиции.
[0050] Фиг. 2 иллюстрирует 16 пикселов 100, размещенных в матрице из четырех строк и четырех столбцов. Множество пикселов 100, включенных в каждый столбец, соединено с одной выходной линией 130. Схема 120 формирователя сигналов управления строками подает возбуждающий сигнал pRES и возбуждающий сигнал pSEL на пикселы 100. Возбуждающий сигнал pRES подается на затворы транзисторов 102 сброса. Возбуждающий сигнал pSEL подается на затворы транзисторов 105 выбора. Транзисторы 102 сброса и транзисторы 105 выбора управляются посредством возбуждающих сигналов, описанных выше. Множество пикселов 100, включенных в каждую строку, соединено с общей линией возбуждающих сигналов. Линия возбуждающих сигналов представляет собой линию межсоединений, которая передает возбуждающий сигнал pRES, возбуждающий сигнал pSEL и т.п. На фиг. 2, знаки, указывающие строки, к примеру, (n) и (n+1), назначаются для того, чтобы отличать возбуждающие сигналы, которые должны подаваться в разные строки. То же применимо к другим чертежам.
[0051] Фиг. 2 схематично иллюстрирует планарную структуру первых электродов 201 блоков 101 фотоэлектрического преобразования. Как проиллюстрировано на фиг. 2, блоки 101 фотоэлектрического преобразования множества пикселов 100, включенных в каждую строку, выполнены с возможностью включать в себя общий первый электрод 201. Как описано выше, блок 110 подачи напряжения подает напряжение Vs на первые электроды 201. В этом примерном варианте осуществления, первый электрод 201 располагается для каждой строки. Таким образом, схема 120 формирователя сигналов управления строками выбирает строку, на которую напряжение Vs подается из блока 110 подачи напряжения. Знаки, указывающие строки, к примеру, (n) и (n+1), назначаются для того, чтобы отличать напряжения Vs, которые должны подаваться на разные строки.
[0052] В этом примерном варианте осуществления, конфигурация, описанная выше, предоставляет возможность возбуждения множества пикселов 100 по строкам.
[0053] Выходные линии 130, соответственно, соединены со схемами 140 столбцов. Схема 150 формирователя сигналов управления столбцами возбуждает схемы 140 столбцов постолбцово. В частности, схема 150 формирователя сигналов управления столбцами подает возбуждающий сигнал CSEL во множество схем 140 столбцов. Знаки, указывающие столбцы, к примеру, (m) и (m+1), назначаются для того, чтобы отличать возбуждающие сигналы, которые должны подаваться на разные столбцы. То же применимо к другим чертежам. Эта конфигурация предоставляет возможность сигналам, считываемым параллельно для соответствующих строк, последовательно выводиться в блок 170 вывода.
[0054] Ниже подробно описываются схемы 140 столбцов. Фиг. 3 иллюстрирует эквивалентную схему для схем 140 столбцов в m-м столбце и (m+1)-м столбце. Схемы 140 столбцов в остальных столбцах не проиллюстрированы.
[0055] Сигнал на каждой из выходных линий 130 усиливается посредством столбцового усилителя 301. Выходной узел столбцового усилителя 301 соединен с конденсатором CTS через S/H-переключатель 303. Выходной узел столбцового усилителя 301 также соединен с конденсатором CTN через S/H-переключатель 305. S/H-переключатель 303 и S/H-переключатель 305 управляются посредством возбуждающего сигнала pTS и возбуждающего сигнала pTN, соответственно. Эта конфигурация обеспечивает возможность хранения шумового сигнала, включающего в себя шум при сбросе, и оптического сигнала из каждого из пикселов 100. Соответственно, устройство фотоэлектрического преобразования согласно этому примерному варианту осуществления обеспечивает двойную коррелированную дискретизацию.
[0056] Конденсаторы CTS соединены с горизонтальной выходной линией 311 через горизонтальные переключатели 307 переноса. Конденсаторы CTN соединены с горизонтальной выходной линией 313 через горизонтальные переключатели 309 переноса. Горизонтальные переключатели 307 и 309 переноса управляются посредством возбуждающего сигнала CSEL из схемы 150 формирователя сигналов управления столбцами.
[0057] Как горизонтальная выходная линия 311, так и горизонтальная выходная линия 313 соединены с блоком 170 вывода. Блок 170 вывода выводит разность между сигналом на горизонтальной выходной линии 311 и сигналом на горизонтальной выходной линии 313 в блок 180 аналого-цифрового преобразования. Блок 180 аналого-цифрового преобразования преобразует входной аналоговый сигнал в цифровой сигнал.
[0058] Каждая из схем 140 столбцов может представлять собой схему аналого-цифрового преобразования. В этом случае, схема аналого-цифрового преобразования включает в себя блок хранения, который хранит цифровой сигнал, такой как запоминающее устройство или счетчик. Блок хранения хранит цифровые сигналы, в которые преобразуются шумовой сигнал и оптический сигнал.
[0059] Далее описываются планарная структура и структура в поперечном сечении устройства фотоэлектрического преобразования согласно этому примерному варианту осуществления. Фиг. 4 схематично иллюстрирует планарную структуру устройства фотоэлектрического преобразования. Фиг. 5A и 5B схематично иллюстрируют структуру в поперечном сечении устройства фотоэлектрического преобразования. Фиг. 4 иллюстрирует четыре пиксела 100, размещенные в матрице из двух строк и двух столбцов. Поперечное сечение, проиллюстрированное на фиг. 5A, соответствует поперечному сечению вдоль линии VA-VA на фиг. 4. Поперечное сечение, проиллюстрированное на фиг. 5B, соответствует поперечному сечению вдоль линии VB-VB на фиг. 4. Частям, имеющим функции, практически идентичные функциям частей на фиг. 1A, назначаются идентичные ссылочные позиции. Следует отметить, что для того, чтобы указывать транзистор, ссылочная позиция назначается его электроду затвора. Дополнительно, проводящему элементу, формирующему линию возбуждающих сигналов, назначается ссылочная позиция, идентичная ссылочной позиции возбуждающего сигнала, подаваемого в линию возбуждающих сигналов. Например, проводящий элемент с назначенной ссылочной позицией pRES формирует линию возбуждающих сигналов для подачи возбуждающего сигнала pRES.
[0060] Устройство фотоэлектрического преобразования включает в себя полупроводниковую подложку 200. Различные полупроводниковые области, к примеру, области истока и области стока пиксельных транзисторов, располагаются на полупроводниковой подложке 200. Примеры пиксельных транзисторов включают в себя транзистор 102 сброса, усилительный транзистор 104 и транзистор 105 выбора. Электроды затвора пиксельных транзисторов и множество слоев 202 межсоединений, включающих в себя проводящие элементы, которые формируют линии межсоединений, располагаются на полупроводниковой подложке 200. Блоки 101 фотоэлектрического преобразования располагаются поверх слоев 202 межсоединений.
[0061] Как проиллюстрировано на фиг. 5A и фиг. 5B, блок 101 фотоэлектрического преобразования каждого из пикселов 100 включает в себя первый электрод 201 (общий электрод), блокирующий слой 203, слой 205 фотоэлектрического преобразования, изолирующий слой 207 и второй электрод 209 (пиксельный электрод). Слой 205 фотоэлектрического преобразования располагается между первым электродом 201 и вторым электродом 209. Блокирующий слой 203 располагается между первым электродом 201 и слоем 205 фотоэлектрического преобразования. Блокирующий слой 203 предоставляется для того, чтобы предотвращать инжекцию электрического заряда с типом проводимости, идентичным типу проводимости сигнального заряда, накопленного в слое 205 фотоэлектрического преобразования, в слой 205 фотоэлектрического преобразования из первого электрода 201. Изолирующий слой 207 располагается между слоем 205 фотоэлектрического преобразования и вторым электродом 209.
[0062] Как проиллюстрировано на фиг. 2, первые электроды 201 электрически изолированы по строкам. С другой стороны, как проиллюстрировано на фиг. 5A, первые электроды 201 множества пикселов 100, включенных в каждую строку, состоят из общего проводящего элемента. По этой причине, первые электроды 201 также упоминаются как общие электроды. Планарная структура первых электродов 201 проиллюстрирована на фиг. 2, и первые электроды 201 не проиллюстрированы на фиг. 4.
[0063] Как проиллюстрировано на фиг. 4 и фиг. 5A, второй электрод 209 каждого из пикселов 100 электрически изолирован от вторых электродов 209 другого из пикселов 100. По этой причине, вторые электроды 209 также упоминаются как отдельные электроды. Блокирующий слой 203, слой 205 фотоэлектрического преобразования и изолирующий слой 207 располагаются непрерывно через множество пикселов 100. Таким образом, блокирующий слой 203, слой 205 фотоэлектрического преобразования и изолирующий слой 207 не проиллюстрированы на фиг. 4.
[0064] Как проиллюстрировано на фиг. 4, фиг. 5A и фиг. 5B, каждый из первых конденсаторов 103 включает в себя верхний электрод 211 и нижний электрод 213. Верхний электрод 211 и нижний электрод 213 обращены друг к другу, при этом диэлектрик размещен между ними. Эта конфигурация предоставляет высокую конструктивную гибкость по значению емкости первого конденсатора 103 по следующим причинам. Технология производства полупроводников, к примеру, литография, упрощает определение плоских форм верхнего электрода 211 и нижнего электрода 213. Первый конденсатор 103 может иметь любую другую структуру. В другом примере, первый конденсатор 103 может представлять собой конденсатор с p-n-переходом, имеющий большее значение емкости, чем предварительно определенное значение.
[0065] Дополнительно, верхний электрод 211 и нижний электрод 213 первого конденсатора 103 располагаются в слое межсоединений ниже второго электрода 209 блока 101 фотоэлектрического преобразования. Верхний электрод 211 и нижний электрод 213, по меньшей мере, частично перекрывают первый электрод 201 или второй электрод 209 при виде сверху. Эта конфигурация позволяет уменьшать размер пиксела 100. Кроме того, каждый из верхнего электрода 211 и нижнего электрода 213 включает в себя часть, которая не перекрывает транзистор 102 сброса или усилительный транзистор 104.
[0066] В этом примерном варианте осуществления, каждый из первых конденсаторов 103 представляет собой, например, конденсатор со структурой "металл-диэлектрик-металл" (MIM). В частности, верхний электрод 211 и нижний электрод 213 состоят из проводящего элемента, такого как металл. Альтернативно, каждый из первых конденсаторов 103 может представлять собой конденсатор со структурой "поликремний-диэлектрик-поликремний" (PIP). В частности, верхний электрод 211 и нижний электрод 213 состоят из поликристаллического кремния. Альтернативно, каждый из первых конденсаторов 103 может представлять собой конденсатор со структурой "металл-оксид-полупроводник" (MOS). В частности, верхний электрод 211 состоит из проводящего элемента, такого как металл или поликристаллический кремний, а нижний электрод 213 состоит из полупроводниковой области.
[0067] Как проиллюстрировано на фиг. 5A и фиг. 5B, второй электрод 209 каждого из блоков 101 фотоэлектрического преобразования соединен с затвором усилительного транзистора 104 через проводящий элемент 219. Второй электрод 209 блока 101 фотоэлектрического преобразования также соединен с областью истока транзистора 102 сброса через проводящий элемент 219 и проводящий элемент 220. Дополнительно, второй электрод 209 соединен с верхним электродом 211 первого конденсатора 103 через проводящий элемент 219. Нижний электрод 213 первого конденсатора 103 соединен с полупроводниковой областью 217 через контактный штекер 215. Полупроводниковая область 217 заземлена.
[0068] Фиг. 5B иллюстрирует транзистор 102 сброса и электрод затвора усилительного транзистора 104. Изолирующая пленка 230 затвора располагается между электродом затвора и полупроводниковой подложкой 200. Области истока и области стока пиксельных транзисторов располагаются на полупроводниковой подложке 200. Поскольку полупроводниковая область 217 заземлена, полупроводниковая область 217 может быть электрически подключена к карману 240, в котором формируются области истока и области стока транзисторов, описанных выше.
[0069] Ниже подробно описывается конфигурация блока