Обогревательная установка

Иллюстрации

Показать все

Обогревательная установка содержит воздушное впускное отверстие, по меньшей мере одно воздушное выпускное отверстие, импеллер, электродвигатель, вращающий импеллер, интерфейс пользователя, позволяющий пользователю выбирать скорость вращения электродвигателя, и по меньшей мере один нагревательный узел, содержащий по меньшей мере один нагревательный элемент с положительным температурным коэффициентом, для нагревания воздуха, проходящего от воздушного впускного отверстия к соответствующему воздушному выпускному отверстию. Величина тока, потребляемого по меньшей мере одним нагревательным узлом, обнаруживается, а скорость вращения электродвигателя управляется независимо от скорости вращения, заданной пользователем, с учетом параметров тока, потребляемого по меньшей мере одним из нагревательных узлов. 2 н. и 38 з.п. ф-лы, 12 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к обогревательной установке. По одному из предпочтительных вариантов осуществления настоящее изобретение относится к тепловентилятору для создания потока теплого воздуха в комнате, кабинете или бытовом помещении.

Уровень техники, предшествующий изобретению

Традиционный бытовой вентилятор обычно включает в себя комплект лопастей или лопаток, вращательно установленных вокруг оси, и приводную установку, приводящую во вращение комплект лопастей для создания воздушного потока. Перемещение и циркуляция воздушного потока создает «охлаждение ветром» или бриз, в результате чего пользователь испытывает эффект охлаждения по мере того как тепло отводится за счет конвекции и испарения.

Подобные вентиляторы бывают разного размера и разной формы. Например, потолочный вентилятор может иметь диаметр по меньшей мере в 1 метр и обычно подвешивается на потолке для создания нисходящего потока воздуха для охлаждения комнаты. В свою очередь настольные вентиляторы зачастую имеют диаметр около 30 см и обычно являются свободностоящими и переносными. Напольные стоечные вентиляторы содержат удлиненную, вертикальную оболочку высотой примерно 1 м и вмещают в себя один или несколько комплектов вращающихся лопастей для создания воздушного потока. Колебательный механизм может использоваться для вращения выпускного отверстия стоечного вентилятора таким образом, чтобы воздушный поток распределялся на широкой площади комнаты.

Тепловентиляторы, в целом, содержат несколько нагревательных элементов, расположенных сзади или спереди от вращающихся лопастей, позволяя пользователю нагревать воздушный поток, создаваемый вращающимися лопастями. Нагревательные элементы обычно выполнены в виде теплоизлучающих катушек или ребер. Регулируемый термостат или несколько фиксированных положений выходной мощности используются для того чтобы пользователь мог регулировать температуру воздушного потока, выбрасываемого из тепловентилятора.

Недостаток компоновки подобного типа заключается в том, что воздушный поток, создаваемый вращающимися лопастями тепловентилятора, в целом, является неравномерным. Это происходит из-за неровностей на поверхности лопастей или на обращенной наружу поверхности тепловентилятора. Величина подобных неровностей может колебаться от модели к модели или даже от одного индивидуального тепловентилятора к другому. В результате подобных неровностей создается турбулентный или «порывистый» воздушный поток, который может ощущаться в виде воздушных импульсов, которые могут вызывать дискомфорт у пользователя. Другой недостаток, вызываемый турбулентностью воздушного потока, заключается в том, что эффект обогрева от тепловентилятора быстро уменьшается по мере увеличения расстояния.

При бытовом использовании, ввиду ограниченного пространства, желательно, чтобы устройства были как можно более компактными и имели минимальный размер. Нежелательно, чтобы у устройства были выступающие части или чтобы пользователь мог прикасаться к любым подвижным частям, таким как лопасти. Обычно лопасти и теплоизлучающие катушки тепловентиляторов закрыты решеткой или оболочкой с отверстиями, исключающими травмирование пользователя в случае контакта с подвижными лопастями или теплоизлучающими катушками, однако это может затруднять очистку подобных закрытых деталей. Поэтому внутри оболочки и на теплоизлучающих катушках, в перерывах между эксплуатацией тепловентиляторов, может скапливаться пыль или другие загрязнения. При включении теплоизлучающих катушек температура внешних поверхностей катушек может быстро увеличиваться, в особенности, если катушки имеют высокую выходную мощность, вплоть до температуры свыше 700°С. Поэтому часть пыли, осевшей на катушках в перерывах между эксплуатацией тепловентилятора, может сгорать, в результате чего в течение некоторого времени тепловентилятор выделяет неприятный запах.

В WO 2012/017219 описан тепловентилятор, в котором лопасти для нагнетания воздуха из тепловентилятора не закрыты решеткой. Вместо этого тепловентилятор содержит основание, внутри которого находится работающий от электродвигателя импеллер для затягивания в основание первичного воздушного потока, и кольцевое сопло, соединенное с основанием, содержащее кольцевую горловину, через которую первичный воздух выбрасывается из вентилятора. Сопло определяет центральное отверстие, через которое воздух из локальной среды узла вентилятора затягивается первичным воздушным потоком, выбрасываемым из горловины, усиливая первичный воздушный поток для создания воздушной струи. Использование лопастного вентилятора для выброса воздушной струи из тепловентилятора позволяет создавать и направлять по комнате или на пользователя относительно равномерную воздушную струю. Внутри сопла находится множество нагревателей для нагрева первичного воздушного потока перед его выбросом из горловины. За счет размещения нагревателей внутри сопла пользователь защищен от горячих внешних поверхностей нагревателей.

Каждый нагреватель содержит ряд нагревательных элементов, изготовленных из керамического материала с положительным температурным коэффициентом (ПТК). Ряд нагревательных элементов расположен в виде прослойки между двумя теплоизлучающими компонентами, каждый из которых содержит массив из теплоизлучающих ребер, находящихся внутри рамы. Ребра изготовлены из алюминия или иного материала с высокой теплопроводностью.

Краткое изложение сущности изобретения

По первому аспекту настоящим изобретением предлагается обогревательная установка, содержащая воздушное впускное отверстие, по меньшей мере одно воздушное выпускное отверстие, импеллер, электродвигатель, приводящий во вращение импеллер для затягивания воздуха через воздушное впускное отверстие, интерфейс пользователя, позволяющий пользователю выбирать скорость вращения электродвигателя из диапазона доступных для выбора значений, по меньшей мере один нагревательный узел, содержащий по меньшей мере один нагревательный элемент с положительным температурным коэффициентом (ПТК), средства обнаружения тока для обнаружения величины тока, потребляемого по меньшей мере одним нагревательным узлом, и средства управления для управления скоростью вращения электродвигателя независимо от скорости вращения, задаваемой пользователем, с учетом параметров тока, потребляемого по меньшей мере одним нагревательным узлом.

Мы заметили, что электропитание, потребляемое нагревательным узлом, который включает в себя нагревательный элемент ПТК, варьируется в зависимости от расхода воздушного потока, проходящего через нагревательный узел, а, следовательно, от скорости вращения электродвигателя, приводящего во вращение импеллер для создания воздушного потока. Таким образом, настоящее изобретение позволяет управлять электропитанием, потребляемым нагревательным элементом, за счет мониторинга или обнаружения иным образом величины тока, потребляемого одним или несколькими нагревательными узлами обогревательной установки, и управления скоростью вращения электродвигателя с учетом параметров измеряемой величины тока, независимо как от скорости электродвигателя, так и от параметров воздушного потока, задаваемых пользователем. Это позволяет управлять расходом электропитания, потребляемого обогревательной установкой, таким образом, чтобы он не выходил за пределы диапазона заданной номинальной мощности.

Параметром тока, потребляемого по меньшей мере одним нагревательным узлом, может быть один из следующих параметров: величина тока, разница между обнаруженной величиной и заранее заданным значением или темп изменения обнаруженной величины тока.

Интерфейс пользователя позволяет пользователю выбирать из несколько разных, заранее заложенных значений скорость вращения электродвигателя, а, следовательно, расход воздуха, выбрасываемого по меньшей мере из одного воздушного выпускного отверстия. Обогревательная установка предпочтительно имеет по меньшей мере пять разных, задаваемых пользователем значений скорости вращения электродвигателя, более предпочтительно по меньшей мере восемь разных задаваемых пользователем значений. По одному из предпочтительных примеров в интерфейсе пользователя имеется десять разных уровней скорости, а пользователь, при помощи интерфейса пользователя, может выбирать уровни от «1» до «10». В целях максимального увеличения количества скоростей вращения, которые может задавать пользователь, электродвигатель предпочтительно выполнен в виде электродвигателя постоянного тока. Интерфейс пользователя может содержать одну или несколько кнопок, либо циферблатов или сенсорный экран, позволяющих пользователю выбирать необходимые параметры скорости. Как вариант или как дополнение, интерфейс пользователя может содержать пульт дистанционного управления для передачи сигналов с информацией о параметрах скорости, заданной пользователем. Уровень 1 может соответствовать относительно низкой скорости вращения электродвигателя, например, в диапазоне от 4000 до 5000 об/мин, тогда как уровень 10 может соответствовать относительно высокой скорости вращения электродвигателя, например, в диапазоне от 6000 до 7000 об/мин. Пользователь, таким образом, может выбирать скорость вращения электродвигателя при помощи интерфейса пользователя; пользователь может никогда не узнать о фактической скорости вращения электродвигателя, а лишь видеть, что выбор более высокого параметра увеличивает расход воздуха, выбрасываемого из установки.

Средства обнаружения тока могут быть выполнены в виде схемы управления обогревателем, которая предпочтительно выполнена в виде узла печатной платы и которая содержит комплект схем для измерения подаваемого тока. Схема управления нагревателем также может содержать симистор для управления по меньшей мере одним нагревательным элементом с ПТК и термистор для обнаружения температуры воздушного потока, затягиваемого в обогревательную установку.

Средства управления могут быть снабжены главной управляющей схемой, которая предпочтительно выполнена в виде узла отдельной печатной платы. Главная управляющая схема предпочтительно содержит микроконтроллер или микропроцессорное устройство, блок питания, запитываемый от источника питания, например, от источника сетевого питания и драйвер электродвигателя, предпочтительно бесщеточного электродвигателя постоянного тока, для управления скоростью вращения электродвигателя. Главная управляющая схема выполнена с возможностью приема сигналов от комплекта схем для обнаружения подаваемого тока с информацией о величине тока, потребляемого по меньшей мере одним нагревательным узлом, и управления скоростью вращения электродвигателем в зависимости от данных сигналов. Интерфейс пользователя предпочтительно содержит схему управления интерфейсом пользователя, также предпочтительно выполненную в виде отдельной печатной платы, для передачи на главную управляющую схему сигналов с информацией о заданных пользователем параметрах скорости. Схема управления интерфейсом пользователя также может передавать на главную управляющую схему сигналы с информацией о параметрах требуемой температуры, заданных пользователем.

В первом рабочем режиме, средства управления предпочтительно выполнены с возможностью корректировки скорости ω вращения электродвигателя независимо от скорости ωS, задаваемой пользователем. Средства управления предпочтительно выполнены с возможностью запуска подобного первого рабочего режима после включения по меньшей мере одного нагревательного узла. В конце подобного первого рабочего режима средства управления предпочтительно выполнены с возможностью установки скорости вращения электродвигателя в зависимости от параметров скорости, задаваемых пользователем.

Во время первого рабочего режима средства управления предпочтительно выполнены с возможностью управления скоростью вращения электродвигателя в зависимости от обнаруженной величины тока, потребляемого по меньшей мере одним нагревательным узлом. После включения по меньшей мере одного нагревательного узла, подобный ток является пусковым током, потребляемым по меньшей мере одним нагревательным узлом.

Во время первого рабочего периода средства управления предпочтительно выполнены с возможностью установления скорости вращения электродвигателя в одном, не задаваемом пользователем, диапазоне значений скорости вращения электродвигателя, в зависимости от обнаруженной величины тока, потребляемого по меньшей мере одним нагревательным узлом. Подобный, не задаваемый пользователем диапазон, может совпадать или не совпадать с задаваемым пользователем диапазоном значений скорости вращения электродвигателя, но предпочтительно содержит более низкие значения скорости вращения электродвигателя, чем те, которые могут задаваться пользователем. Другими словами, если скорость ωS вращения, задаваемая пользователем, находится в диапазоне от ω1 до ω2, где ω12, то не задаваемый пользователем диапазон значений может находиться в диапазоне от ω3 до ω4, где ω31, а ω4<ω. В одном из примеров скорость ωS вращения, задаваемая пользователем, находится в диапазоне от 4800 до 6750 об/мин, тогда как диапазон скоростей вращения, не задаваемых пользователем, находится в диапазоне от 1000 до 4800 об/мин. В другом примере скорость ωS вращения, задаваемая пользователем, находится в диапазоне от 4000 до 6000 об/мин, тогда как диапазон скоростей вращения, не задаваемых пользователем, находится в диапазоне от 1000 до 4000 об/мин. Диапазоны могут выбираться в зависимости от величины подаваемого напряжения.

Как отмечалось выше, во время первого рабочего периода скорость вращения электродвигателя устанавливается в зависимости от обнаруженного пускового тока. По мере увеличения обнаруженного тока средства управления предпочтительно могут увеличивать скорость ω вращения электродвигателя до более высокого значения, выбираемого из диапазона значений, не задаваемых пользователем. Средства управления предпочтительно выполнены с возможностью поддержания, во время первого рабочего периода, скорости вращения электродвигателя с максимальным значением ω4, в пределах диапазона значений скорости вращения электродвигателя, не задаваемых пользователем, если обнаруженная величина I тока, потребляемого по меньшей мере одним нагревательным узлом, будет выше верхнего значения Imax1, задаваемого для данного первого рабочего режима средствами управления. Величина Imax1 предпочтительно устанавливается с учетом подаваемого напряжения и предпочтительно задается, в зависимости от подаваемого напряжения, в диапазоне от 5 до 8 А.

По завершении первого рабочего периода средства управления предпочтительно выполнены с возможностью переключения во второй рабочий режим, который начинается после того как скорость вращения электродвигателя устанавливается на заданное пользователем значение. Средства управления предпочтительно выполнены с возможностью переключения из первого рабочего режима во второй рабочий режим в зависимости от одного из следующих факторов: темпа изменения величины тока, потребляемого по меньшей мере одним нагревательным узлом, или величины тока, потребляемого по меньшей мере одним нагревательным узлом.

Средства управления могут быть выполнены с возможностью переключения из первого рабочего режима во второй рабочий режим, если темп dI/dt изменения величины тока, потребляемого по меньшей мере одним нагревательным узлом, окажется ниже заданного значения. Во время первого рабочего периода ток, потребляемый по меньшей мере одним нагревательным узлом, предпочтительно обнаруживается через определенные интервалы, например каждые 0.5 секунды, и между последовательными обнаружениями тока измеряется изменение величины тока, потребляемого по меньшей мере одним нагревательным узлом. Если в течение определенного количества последовательных замеров изменение величины тока оказывается ниже заданного значения, то средства управления предпочтительно могут переключаться из первого рабочего режима во второй рабочий режим. Величина подобного заданного значения может находиться в диапазоне от 0.1 до 0.25 А за интервал, а количество последовательных замеров может находиться в диапазоне от 10 до 25. Величина заданного значения и количество последовательных замеров могут выбираться в зависимости от подаваемого напряжения. Например, при подаваемом напряжении менее 200 В средства управления могут переключаться из первого рабочего режима во второй рабочий режим, если темп изменения величины тока, потребляемого по меньшей мере одним нагревательным узлом, не превышает 0.2 А на протяжении 20 последовательных замеров, осуществляемых с интервалом в 0.5 секунды. В другом примере, при подаваемом напряжении свыше 200 В средства управления могут переключаться из первого рабочего режима во второй рабочий режим, если темп изменения величины тока, потребляемого по меньшей мере одним нагревательным узлом, не превышает 0.15 А на протяжении 14 последовательных замеров, осуществляемых с интервалом в 0.5 секунды.

Вне зависимости от текущего темпа изменения величины тока, потребляемого по меньшей мере одним нагревательным узлом, средства управления могут быть выполнены с возможностью переключения из первого рабочего режима во второй рабочий режим, если величина тока, потребляемого по меньшей мере одним нагревательным узлом, оказывается выше верхнего предельного значения тока ImaX2, причем Imax2>Imax1. Величина Imax2 также предпочтительно устанавливается с учетом подаваемого напряжения и предпочтительно задается, в зависимости от подаваемого напряжения, в диапазоне от 8.9 до 13.1 А.

Средства управления предпочтительно выполнены с возможностью корректирования скорости вращения электродвигателя во время второго рабочего периода в зависимости от обнаруженной величины тока, потребляемого по меньшей мере одним нагревательным узлом, предпочтительно путем изменения скорости вращения электродвигателя с заданного пользователем значения, в зависимости от обнаруженной величины тока, потребляемого по меньшей мере одним нагревательным узлом. Если обнаруженная величина тока, потребляемого по меньшей мере одним нагревательным узлом, оказывается выше верхнего предельного значения тока Imax2, то тогда средства управления предпочтительно могут уменьшать скорость вращения электродвигателя с заданной пользователем величины до более низкой скорости вращения.

Например, если электродвигатель вращается со скоростью, соответствующей 7 уровню скорости, заданной пользователем, которая может соответствовать скорости вращения в 6150 об/мин, то средства управления предпочтительно могут уменьшать скорость вращения электродвигателя с этой скорости до более низкой скорости, например, до 6000 об/мин. Уменьшение скорости вращения электродвигателя предпочтительно меньше разницы между текущей, задаваемой пользователем скоростью вращения, и следующей, более низкой, задаваемой пользователем скоростью вращения. В приведенном выше примере скорость вращения, соответствующая 6 уровню скорости, задаваемой пользователем, составляет 5925 об/мин. В том случае, если не происходит уменьшения обнаруживаемой величины тока, потребляемого по меньшей мере одним нагревательным узлом, до величины, которая ниже верхнего предельного значения тока, средства управления предпочтительно продолжают снижать скорость вращения электродвигателя поступательно, до тех пор, пока обнаруживаемая величина тока, потребляемого по меньшей мере одним нагревательным узлом, не опустится ниже верхнего предельного значения тока. Степень, до которой средства управления снижают скорость вращения электродвигателя, предпочтительно является разной для каждой из задаваемых пользователем скоростей вращения электродвигателя. Например, снижение скорости вращения электродвигателя предпочтительно является относительно большим, если задаваемая пользователем скорость вращения является относительно большой, и предпочтительно является относительно небольшим, если задаваемая пользователем скорость вращения является относительно малой.

В том случае, если и обнаруживаемая величина тока, потребляемого по меньшей мере одним нагревательным узлом, оказывается выше верхнего предельного значения тока, и скорость вращения электродвигателя приближается или достигла минимального значения ω1, в диапазоне задаваемых пользователем значений, средства управления предпочтительно могут выключать как по меньшей мере один нагревательный узел, так и электродвигатель. Интерфейс пользователя может включаться средствами управления для отображения сообщений об ошибках или информирования пользователя иным образом о том, что установка находится в подобном состоянии.

В том случае, если происходит снижение скорости вращения электродвигателя во время второго рабочего периода, средства управления предпочтительно могут увеличивать скорость вращения электродвигателя вновь до скорости вращения, заданной пользователем, если обнаруживаемая величина тока, потребляемого по меньшей мере одним нагревательным узлом, опускается до нижнего предельного значения тока Imin2 тока, причем Imin2<Imax2. Величина Imin2 также предпочтительно устанавливается с учетом подаваемого напряжения и предпочтительно задается, в зависимости от подаваемого напряжения, в диапазоне от 8.5 до 12.7 А. При возврате скорости вращения электродвигателя обратно до заданной пользователем скорости вращения, средства управления предпочтительно выполнены с возможностью отмены предшествующего инкрементального увеличения скорости вращения электродвигателя.

Установка предпочтительно содержит средства обнаружения напряжения для обнаружения величины подаваемого напряжения, а средства управления предпочтительно выполнены с возможностью переключения из второго рабочего режима в третий рабочий режим, если обнаруживаемая величина напряжения, подаваемого на установку, оказывается ниже нижнего предельного значения напряжения, а обнаруживаемая величина тока, потребляемого по меньшей мере одним нагревательным узлом, оказывается ниже заданного значения. Подобное заданное значение предпочтительно совпадает с заданным значением, мониторинг которого осуществляется во время первого рабочего режима.

Во время третьего рабочего режима средства управления предпочтительно выполнены с возможностью установления скорости вращения электродвигателя в одном, не задаваемом пользователем, диапазоне значений скорости вращения электродвигателя с учетом обнаруживаемой величины тока, потребляемого по меньшей мере одним нагревательным узлом. Данный диапазон значений предпочтительно совпадает с тем, в котором средства управления устанавливают скорость вращения электродвигателя во время первого рабочего режима. Если обнаруживаемая величина тока, потребляемого по меньшей мере одним нагревательным узлом, становится выше заданного значения, то средства управления предпочтительно могут переключаться из третьего рабочего режима обратно в первый рабочий режим.

Обогревательная установка предпочтительно выполнена в виде переносного тепловентилятора, однако обогревательная установка также может быть по меньшей мере частью стационарной обогревательной установки, обогревательной установки транспортного средства или системы воздушного кондиционирования.

По меньшей мере одно воздушное выпускное отверстие предпочтительно содержит множество воздушных выпускных отверстий, а по меньшей мере один нагревательный узел предпочтительно содержит множество нагревательных узлов, каждый из которых содержит по меньшей мере один нагревательный элемент с положительным температурным коэффициентом (ПТК) для нагрева воздуха, проходящего от воздушного впускного отверстия на соответствующее воздушное выпускное отверстие. Воздушные выпускные отверстия могут находиться на противоположных сторонах канала, по которому воздух затягивается воздухом, выбрасываемым из воздушных выпускных отверстий.

По второму аспекту настоящим изобретением предлагается способ управления обогревательной установкой, содержащей воздушное впускное отверстие, по меньшей мере одно воздушное выпускное отверстие, импеллер, электродвигатель, приводящий во вращение импеллер для затягивания воздуха через воздушное впускное отверстие, интерфейс пользователя, позволяющий пользователю выбирать скорость вращения электродвигателя из диапазона доступных для выбора значений, и по меньшей мере один нагревательный узел, содержащий по меньшей мере один нагревательный элемент с положительным температурным коэффициентом (ПТК), способ включает в себя этапы обнаружения величины тока, потребляемого по меньшей мере одним нагревательным узлом, и управления скоростью вращения электродвигателя независимо от скорости вращения, задаваемой пользователем, с учетом параметров обнаруживаемой величины тока, потребляемого по меньшей мере одним нагревательным узлом.

Признаки, рассмотренные выше для первого аспекта изобретения, в равной мере применимы для второго аспекта изобретения и наоборот.

Краткое описание чертежей

Далее, в качестве примера, будет рассмотрен один из вариантов осуществления настоящего изобретения, со ссылкой на прилагаемые чертежи, где:

На фиг. 1 показан вид спереди, в перспективе, сверху обогревательной установки;

На фиг. 2 показан вид спереди обогревательной установки;

На фиг. 3 показан вид в сечении вдоль линии В-В по фиг. 2;

На фиг. 4 показано изображение в развернутом виде сопла обогревательной установки;

На фиг. 5 показан вид спереди, в перспективе шасси обогревателя сопла;

На фиг. 6 показан вид спереди, в перспективе, снизу шасси обогревателя, соединенного с внутренней секцией оболочки сопла;

На фиг. 7 показан укрупненный вид области X по фиг. 6;

На фиг. 8 показан укрупненный вид области Y по фиг. 1;

На фиг. 9 показан вид в сечении вдоль линии А-А по фиг. 2;

На фиг. 10 показан укрупненный вид области Z по фиг. 9;

На фиг. 11 показан вид в сечении сопла вдоль линии С-С по фиг. 9; и

На фиг. 12 показан схематический вид системы управления обогревательной установкой.

Подробное описание изобретения

На фигурах 1 и 2 показаны виды снаружи обогревательной установки 10. Обогревательная установка 10 выполнена в виде переносного тепловентилятора. Обогревательная установка 10 содержит корпус 12, содержащий воздушное впускное отверстие 14, через которое первичный воздушный поток входит в обогревательную установку 10, и сопло в виде кольцевой оболочки, установленной на корпусе 12, а также содержащий по меньшей мере одно воздушное выпускное отверстие 18 для выброса первичного воздушного потока из обогревательной установки 10.

Корпус 12 содержит, по существу, цилиндрическую основную секцию 20 корпуса, установленную на, по существу, цилиндрическую нижнюю секцию 22 корпуса. Основная секция 20 корпуса и нижняя секция 22 корпуса предпочтительно имеют, по существу, одинаковый внешний диаметр таким образом, чтобы внешняя поверхность верхней секции 20 корпуса была, по существу, заподлицо с внешней поверхностью нижней секции 22 корпуса. По данному варианту осуществления высота корпуса 12 составляет от 100 до 300 мм, а диаметр - от 100 до 200 мм.

Основная секция 20 корпуса содержит воздушное впускное отверстие 14, через которое первичный воздушный поток входит в обогревательную установку 10. По данному варианту осуществления воздушное впускное отверстие 14 содержит массив апертур, образованных в основной секции 20 корпуса. Как вариант, воздушное впускное отверстие 14 может содержать одну или несколько решеток или сеток, установленных внутри окошек, образованных в основной секции 20 корпуса. Основная секция 20 корпуса открыта с ее верхнего торца (как это показано), образуя воздушное выпускное отверстие 23, через которое первичный воздушный поток удаляется из корпуса 12.

Основная секция 20 корпуса может быть наклонена относительно нижней секции 22 корпуса для регулирования направления, в котором первичный воздушный поток выбрасывается из обогревательной установки 10. Например, верхняя поверхность нижней секции 22 корпуса и нижняя поверхность основной секции 20 корпуса могут быть снабжены взаимосоединяемыми элементами, которые позволяют основной секции 20 корпуса перемещаться относительно нижней секции 22 корпуса. Например, нижняя секция 22 корпуса и основная секция 20 корпуса могут содержать фиксирующие L-образные элементы.

Нижняя секция 22 корпуса содержит интерфейс пользователя обогревательной установки 10. Со ссылкой на фиг. 12 интерфейс пользователя содержит множество нажимаемых пользователем кнопок 24, 26, 28, 30, позволяющих пользователю управлять различными функциями обогревательной установки 10, дисплей 32, расположенный между кнопками, предоставляющий пользователю, например, визуальную информацию по температурным параметрам обогревательной установки 10, и схему 33 управления интерфейсом пользователя, соединенную с кнопками 24, 26, 28, 30 и дисплеем 32. Нижняя секция 22 корпуса также включает в себя окошко 34, через которое сигналы с пульта 35 дистанционного управления (схематически показанного на фиг. 12) передаются на обогревательную установку 10. Нижняя секция 22 корпуса установлена на основание 36, зацепляющееся с поверхностью, на которой находится обогревательная установка 10. Основание 36 включает в себя необязательную плиту 38 основания, которая предпочтительно имеет диаметр в диапазоне от 200 до 300 мм.

Сопло 16 имеет кольцевую форму, проходящую вокруг центральной оси X, определяя отверстие 40. Воздушные выпускные отверстия 18 для выброса первичного воздушного потока из обогревательной установки 10 расположены в задней части сопла 16 и предназначены для направления первичного воздушного потока в сторону передней части сопла 16, через отверстие 40. В данном примере сопло 16 определяет удлиненное отверстие 40, высота которого больше его ширины, а воздушные выпускные отверстия 18 расположены на оппозитных удлиненных сторонах отверстия 40. В данном примере максимальная высота отверстия 40 находится в диапазоне от 300 до 400 мм, тогда как максимальная ширина отверстия 40 находится в диапазоне от 100 до 200 мм.

Внутренняя кольцевая окружность сопла 16 содержит поверхность 42 Коанда, расположенную рядом с воздушными выпускными отверстиями 18, над которой находится по меньшей мере часть воздушных выпускных отверстий, предназначенных для направления воздуха, выбрасываемого из обогревательной установки 10, рассеивающую поверхность 44, расположенную по ходу после поверхности 42 Коанда, и направляющую поверхность 46, расположенную по ходу после рассеивающей поверхности 44. Рассеивающая поверхность 44 выполнена таким образом, что она сходит на конус от центральной оси X отверстия 38. Угол, противолежащий между рассеивающей поверхностью 44 и центральной осью X отверстия 40, находится в диапазоне от 5 до 25° и в данном примере равен примерно 7°. Направляющая поверхность 46 предпочтительно расположена, по существу, параллельно центральной оси X отверстия 38, представляя собой, по существу, плоскую и, по существу, гладкую поверхность для воздушного потока, выбрасываемого из горловины 40. Визуально привлекательная конусная поверхность 48 расположена по ходу после направляющей поверхности 46, оканчиваясь кромочной поверхностью 50, расположенной, по существу, перпендикулярно центральной оси X отверстия 40. Угол, противолежащий между конусной поверхностью 48 и центральной осью X отверстия 40, предпочтительно равен примерно 45°.

На фиг. 3 показан вид корпуса 12 в сечении. Нижняя секция 22 корпуса вмещает главную схему управления, обозначенную, в целом, позицией 52, которая соединена со схемой 33 управления интерфейсом пользователя. Главная управляющая схема 52 содержит микропроцессор 53, который схематически изображен на фиг. 12 и который в данном примере является 8-битовым микропроцессором Renesas R8C/2L. Схема 33 управления интерфейсом пользователя содержит датчик 54, принимающий сигналы с пульта 35 дистанционного управления. Датчик 54 находится сзади окошка 34. В результате использования кнопок 24, 26, 28, 30 пульта 35 дистанционного управления схема 33 управления интерфейсом пользователя может передавать соответствующие сигналы на главную управляющую схему 52 для управления различными функциями обогревательной установки 10. Дисплей 32 находится внутри нижней секции 22 корпуса и может подсвечивать часть нижней секции 22 корпуса. Нижняя секция 22 корпуса предпочтительно изготовлена из светопропускающего пластика, который позволяет пользователю видеть дисплей 32.

Нижняя секция 22 корпуса также вмещает механизм, в целом, обозначенный позицией 56, для колебания нижней секции 22 корпуса относительно основания 36. Главная управляющая схема 52 содержит схему 57 управления колебательным электродвигателем, приводящую в действие колебательный механизм. Функционирование колебательного механизма 56 управляется главной управляющей схемой 52 после получения соответствующего управляющего сигнала с пульта 35 дистанционного управления или после нажатия кнопки 30. Диапазон каждого цикла колебаний нижней секции 22 корпуса относительно основания 36 предпочтительно составляет от 60° до 120° и в данном варианте осуществления равен 80°. По данному варианту осуществления колебательный механизм 56 может совершать примерно от 3 до 5 циклов колебаний в минуту. Кабель 58 сетевого питания, подающий электропитание на обогревательную установку 10, проходит через отверстие, образованное в основании 36. Кабель 58 соединен с вилкой 60. Главная управляющая схема 52 содержит блок 61 подачи питания, соединенный с кабелем 58, и схему 62 обнаружения подаваемого питания для обнаружения величины подаваемого напряжения.

Основная секция 20 корпуса вмещает импеллер 64, затягивающий первичный воздушный поток через воздушное впускное отверстие 14 в корпус 12. Предпочтительно импеллер 64 выполнен в виде импеллера для смешанного потока. Импеллер 64 соединен с поворотным валом 66, выходящим из электродвигателя 68. По данному варианту осуществления электродвигатель 68 является бесщеточным электродвигателем постоянного тока, скорость которого может изменяться драйвером 69 бесщеточного электродвигателя постоянного тока главной управляющей схемы 52 после нажатия пользователем кнопки 26 и/или получения сигнала с пульта 35 дистанционного управления.

Интерфейс пользователя позволяет пользователю выбирать одну из нескольких разных, заранее установленных скоростей вращения электродвигателя 68. В данном примере в интерфейсе пользователя имеется десять разных уровней скорости, а пользователь может выбирать уровни с «1» по «10» при помощи пульта 35 дистанционного управления или путем нажатия кнопки 26 на корпусе 12. При изменении скорости пользователем, выбранный уровень скорости может отображаться на дисплее 32. Каждый уровень скорости, выбираемый пользователем, соответствует определенной скорости вращения электродвигателя 68 из диапазона значений, задаваемых пользователем. Задаваемый пользователем диапазон значений увеличивается с относительно низкой, задаваемой пользователем скорости ω1 вращения электродвигателя 68, соответствующей уровню 1, до относительно высокой, задаваемой пользователем скорости ωS вращения электродвигателя 68, соответствующей уровню 10. Величина задаваемой пользователем скорости ωS вращения электродвигателя 68, соответствующая каждому уровню скорости, может меняться в зависимости от напряжения, подаваемого на обогревательную установку 10. Для подаваемого напряжения в 100 В ω1 = 4000 об/мин, а ω2 = 6000 об/мин, тогда как для подаваемого напряжения в 120 В, 230 В или 240 В ω1 = 4800 об/мин, а ω2 = 6750 об/мин.

Электродвигатель 68 расположен внутри моторного отсека, содержащего верхний участок 70, соединенный с нижним участком 72. На