Композиции термореактивных смол с увеличенной ударной вязкостью

Иллюстрации

Показать все

Изобретение относится к блок-сополимеру, пригодному для упрочнения эпоксидной смолы, к отверждаемой полимерной композиции для армированных волокнами композитных материалов и к композитному материалу. Блок-сополимер имеет, по меньшей мере, один блок, полученный из термопластичного ароматического полимера (А), который имеет температуру стеклования (Tg), по меньшей мере, 150°С, и, по меньшей мере, один блок, полученный из полимера (В) с температурой стеклования в диапазоне от -130°С до +40°С. Полимер (А) растворим в предшественнике неотвержденной эпоксидной смолы и содержит один или более полиарилсульфонов, содержащих эфирсвязанные повторяющиеся звенья. Полимер (В) представляет собой насыщенный алифатический сложный полиэфир. Полимер (В) нерастворим в предшественнике неотвержденной эпоксидной смолы. Отверждаемая полимерная композиция содержит вышеуказанный блок-сополимер, один или более неотвержденных предшественников эпоксидной смолы и отверждающий агент. Композитный материал содержит углеволоконный армирующий агент и вышеуказанную полимерную композицию. Изобретение позволяет улучшить ударную вязкость эпоксидной смолы при относительно более низких концентрациях упрочняющего агента, а также улучшить свойства углеволоконных композитов. 3 н. и 15 з.п. ф-лы, 4 ил., 9 табл., 7 пр.

Реферат

Настоящее изобретение относится к применению блок-сополимеров для модификации свойств, таких как вязкость разрушения композиций термореактивных смол, в частности, многофункциональных композиций смол с высокой степенью сшивания. Настоящее изобретение особенно пригодно в композициях эпоксидных смол. Настоящее изобретение относится также к применению таких композиций термореактивных смол в армированных волокнами композитных материалах и для изготовления конструкционных деталей из таких композитных материалов.

Термореактивные материалы, такие как отвержденные эпоксидные смолы, известны своей тепловой и химической стойкостью. Они также демонстрируют хорошие механические свойства, но зачастую они недостаточно вязки и склонны к высокой хрупкости. Это особенно очевидно при увеличении плотности их сшивания или при увеличении функциональности мономера примерно вдвое. Были предприняты попытки упрочнения или укрепления эпоксидных смол и других термореактивных материалов, таких как бисмалеимидные смолы, бензоксазиновые смолы, цианатно-эфирные смолы, эпоксивиниловые эфирные смолы и ненасыщенные полиэфирные смолы, а также их смесей, путем внедрения в них различных эластомерных материалов.

В публикации WO 2007/009957 A1 описаны эпоксидные смолы, упрочненные частицами, состоящими из оболочки и ядра, из блок-сополимера и/или сополимера, при этом указанный блок-сополимер имеет, по меньшей мере, один метилметакрилатный блок. Оболочка полимерных частиц, состоящих из ядра и оболочки, может быть сделана из полистирола или полиметилметакрилата.

Армированные волокнами эпоксидные смолы, обладающие улучшенной клейкостью, драпируемостью и перемоточной способностью, были описаны в патенте США 6046257, при этом в эпоксидную смолу добавляют термопластичный эластомер на основе сложных полиэфиров или полиамидов.

В публикации WO-2006/077153-A описаны термореактивные смолы, содержащие модификатор ударопрочности, выбранный из диблок- или триблок-сополимеров, содержащих блоки метилметакрилатных гомополимеров или сополимеров, и эластомерные блоки, имеющие температуру стеклования менее 0°C, полученные из диеновых полимеров, таких как полибутадиен, полиизопрен и продукты их гидрирования.

Недостатком известных блок-сополимерных упрочняющих агентов является уменьшение температуры стеклования композиции смолы, что может привести к снижению температуры эксплуатации модифицированной и отвержденной термореактивной смолы. Температура эксплуатации материала напрямую коррелирует с температурой стеклования этого материала. Ее описывают как наивысшую температуру, при которой материал может быть использован без какого-либо сбоя работы в течение продолжительного периода времени (как правило, по меньшей мере, 5000 часов). «Сбой работы» материала обычно понимают как ситуацию, в которой значение определенного свойства падает до 50% от первоначального значения (ASTM-D794). Высокие температуры эксплуатации (например, около 150-160°C) необходимы для применения в аэрокосмических или в высококачественных автомобильных применениях, в которых деталь должна сохранять свою форму и свойства при повышенных температурах.

Дополнительный недостаток известных блок-сополимерных упрочняющих агентов заключается в снижении модуля смолы.

Для некоторых применений упрочненная смола должна демонстрировать также хорошую устойчивость к действию растворителей.

Задача настоящего изобретения заключается в обеспечении модифицирующих агентов, пригодных для улучшения ударной вязкости термореактивных смол (особенно смол с высокой степенью сшивания), которые позволяют избежать или минимизировать снижение температуры стеклования (Tg) и/или модуля смолы.

Дополнительной задачей является обеспечение модифицирующих агентов, пригодных для улучшения ударной вязкости термореактивных смол (особенно смол с высокой степенью сшивания), которые позволяют избежать или минимизировать снижение Tg и/или модуля смолы, при этом термореактивная смола демонстрирует хорошую устойчивость к действию растворителей.

Дополнительная задача заключается в обеспечении модифицирующих агентов, пригодных для улучшения ударной вязкости термореактивных смол (особенно смол с высокой степенью сшивания) при относительно более низких концентрациях упрочняющего агента.

Дополнительная задача заключается в обеспечении модифицирующих агентов, пригодных для улучшения наноструктуризации термореактивных смол (особенно смол с высокой степенью сшивания).

Дополнительная задача заключается в обеспечении модифицирующих агентов для систем термореактивных смол (особенно смол с высокой степенью сшивания), которые демонстрируют хорошие свойства клейкости при получении из них композитных материалов.

Дополнительная задача настоящего изобретения заключается в обеспечении упрочненной композиции термореактивной смолы с высокой степенью сшивания без существенного уменьшения Tg и/или модуля, при этом смола предпочтительно демонстрирует хорошую устойчивость к действию растворителей и предпочтительно смола демонстрирует улучшенные свойства клейкости и/или наноструктуризации.

Избежание или минимизация снижения Tg представляет собой особенно важный аспект этих задач.

В соответствии с настоящим изобретением представлен блок-сополимер (М), пригодный для упрочнения термореактивной смолы (R), указанный блок-сополимер (М), имеющий, по меньшей мере, один блок, полученный из термопластичного ароматического полимера (А), который имеет температуру стеклования (Tg), по меньшей мере, около 150°C, и, по меньшей мере, один блок, полученный из полимера с низкой (В) Tg, причем:

(i) полимер (В) с низкой Tg демонстрирует Tg в диапазоне от около -130°C до около +40°C;

(ii) ароматический полимер (А) растворим в предшественнике(ах) неотвержденной термореактивной смолы (Р) указанной термореактивной смолы (R),

(iii) полимер (В) с низкой Tg нерастворим в предшественнике неотвержденной термореактивной смолы (Р).

Блок-сополимер (М) благоприятным образом модифицирует свойства термореактивной смолы, и поэтому также упоминается в настоящем документе как модификатор.

В соответствии с дополнительным аспектом настоящего изобретения, представлена система термореактивной смолы или отверждаемая полимерная композиция, содержащая блок-сополимер (М), описанный в настоящем документе, и один или более неотвержденных предшественников термореактивной смолы (Р), и необязательно отверждающий агент для них.

В соответствии с дополнительным аспектом настоящего изобретения, представлена упрочненная композиция термореактивной смолы (R), полученная из блок-сополимера (М), описанного в настоящем документе, и одного или более неотвержденных предшественников термореактивной смолы (Р), и необязательно отверждающего агента для них.

При использовании в настоящем документе «отверждаемая полимерная композиция» относится к композиции перед отверждением, а «композиция термореактивной смолы» относится к композиции после отверждения.

При использовании в настоящем документе термин «растворимый» означает, что первый полимер А образует смесь со вторым полимером В, при этом указанная смесь демонстрирует одинаковые или в основном одинаковые значения физических свойств во всем объеме смеси, то есть смесь содержит практически одну фазу и/или является практически гомогенной. Для удобства растворимость может быть оценена по светорассеянию. Для полимера А, который растворим в полимере В, добавление полимера А к полимеру В практически не приводит к изменению светорассеяния. Практически однофазная смесь характеризуется высокой оптической прозрачностью. Граница между практически однофазной смесью и смесью из двух (или более) фаз определяется как «температура помутнения», которую для данной полимерной смеси определяют как температуру, при которой наблюдается разделение фаз. Оптическая прозрачность в макромасштабе может быть оценена визуально.

Блок-сополимеры настоящего изобретения способствуют такой морфологии отвержденных термореактивных смол, которая сопротивляется разрушению и улучшает ударную вязкость. Блок-сополимеры содержат один тип блока, который в основном растворим в термореактивной смоле или ее предшественнике, и один тип блока, который практически нерастворим в термореактивной смоле или ее предшественнике. В смеси с эпоксидными предшественниками самособирающиеся блок-сополимеры для термореактивной наноструктуризации эпоксидной смолы могут растворяться или самособираться. Эпоксирастворимые сегменты ускоряют растворение молекул блок-сополимера, тогда как эпоксинерастворимые сегменты выталкивают молекулы блок-сополимера их раствора и способствуют их самосборке или организации на наноуровне. Степень организации в упорядоченных и неупорядоченных наноструктурах зависит от природы блок-сополимера и его концентрации. При низком содержании блок-сополимеры могут демонстрировать мицеллярное расположение в смоле. Предполагается, что растворимый блок обеспечивает растворение упрочняющего агента при получении смолы и эффективно удерживает в наноорганизованном состоянии в термореактивной смоле вплоть до температуры гелеобразования и в течение цикла отверждения. Молекулы блок-сополимера могут быть растворимы в предшественнике смолы и могут быть лишь наноорганизованными при отверждении смолы, до точки гелеообразования (то есть инициированного реакцией микрофазного разделения). Таким образом, морфология смолы контролируется преимущественно самосборкой блок-сополимера, снижая или исключая, посредством этого, зависимость от кинетики отверждения с образованием двухфазной структуры. Исключается массовое (макроскопическое) фазовое разделение. Самосборка блок-сополимеров настоящего изобретения способствует заданной морфологии и приводит к наноструктуризации отвержденной термореактивной смолы, что в свою очередь повышает вязкость разрушения. Таким образом, в настоящем изобретении нерастворимые домены или структуры в отвержденной термореактивной смоле предпочтительно находятся в наномасштабе (то есть менее чем 1 мкм и предпочтительно не более 100 нм).

Блок-сополимер настоящего изобретения использует растворимость ароматического полимерного блока (А) в термореактивной смоле для обеспечения возможности применения полимеров с низкой Tg в качестве упрочняющих агентов в термореактивных смолах, одновременно избегая или минимизируя снижение Tg и/или модуля смолы в системах, в которых нерастворимость полимера с низкой Tg в термореактивной смоле ранее обусловливала невозможность или недоступность применения таких полимеров в качестве упрочняющих агентов.

Блок-сополимеры настоящего изобретения упрочняют термореактивную смолу, одновременно избегая или минимизируя снижение Tg и/или модуля смолы (по сравнению с этими показателями чистой смолы). Сохранение Tg означает, что упрочненные термореактивные смолы настоящего изобретения сохраняют высокую температуру эксплуатации. Кроме того, количество упрочняющего агента, необходимое для обеспечения заданной ударной вязкости указанного термореактивного материала, ниже, чем для других термопластичных упрочняющих агентов, включая стандартные высокоэффективные термопластичные упрочнители.

Кроме того, системы термореактивных смол или отверждаемые полимерные композиции, содержащие блок-сополимеры настоящего изобретения, демонстрируют преимущественно улучшенные свойства клейкости.

Блок термопластичного ароматического полимера (А)

Ароматический полимер (А) имеет относительно высокую Tg, которая представляет собой один из факторов сохранения Tg отвержденной термореактивной смолы. Так, Tg ароматического полимера (А) составляет, по меньшей мере, около 150°C, предпочтительно, по меньшей мере, около 160°C, предпочтительно, по меньшей мере, около 170°C, предпочтительно, по меньшей мере, около 180°C и в одном варианте реализации, по меньшей мере, около 190°C.

Термопластичный ароматический полимер (А) содержит двухвалентные ароматические радикалы, связанные линкерными группами, включая углерод-углеродную одинарную связь (связь С-С), эфирную группу (-O-), тиоэфирную или сульфидную группу (-S-), сложноэфирную группу (-CO-O-), сложную тиоэфирную группу (-CO-S-) или (-CS-O-), карбоксамидную группу (-CO-NH-), имидную группу (>C=N-) или ((-CO-)2N-), сульфоновую группу (-SO2-), кетоновую или карбонильную группу (>C=O), карбонатную группу (-O-CO-O-), метиленовую группу (-CH2-), дифторметиленовую группу (-CF2-), винилиденовую группу (-CH=CH-) и 2,2-пропиленовую группу (>C(CH3)2). Полимер (А) может содержать одну или более из указанных линкерных групп в одном полимере. Так, ароматический полимер (А) выбран из группы, состоящей из полиэфиров, полиэфирсульфонов, полиэфиримидов, полиимидов, полиэфиркетонов, поликарбонатов, полисульфонов, поликетонов, смешанных полисульфон-кетонов, смешанных полиэфир-сульфон-кетонов, сложных полиэфиров, полиэфирэстеров, полиамидов, полиэфирамидов и полисульфидов, а также их сополимеров. Предпочтительные полимеры (А) выбраны из ароматических полиэфирсульфонов, ароматических полиэфиркетонов, ароматических полиэфиримидов и ароматических полисульфид-сульфонов. Следует понимать, что основная особенность термопластического ароматического полимера (А) заключается в требовании, чтобы ароматический радикал был внутри полимерного скелета, а не подвешенным к нему. Ароматические радикалы, которые подвешены к полимерному скелету, также могут необязательно присутствовать в термопластическом ароматическом полимере (А) при условии, что полимерный скелет содержит ароматические радикалы. Ароматические радикалы в полимерном скелете являются, по меньшей мере, двухвалентными и, как правило, являются двухвалентными. Как рассмотрено ниже, ароматические радикалы в полимерном скелете могут нести одну или химически активную подвешенную и/или концевую группу(ы).

Двухвалентные ароматические радикалы предпочтительно представляют собой 1,4-фенилен, 1,3-фенилен, 1,4- или 2,6-нафтилен и фталимид-N-4-илен. Особенно пригодны фениленовые радикалы, в частности, 1,4-фенилен. При использовании в настоящем документе термин «ароматический полимер» представляет собой полимер, в котором массовая доля ароматических дирадикалов, которые связаны в полимер указанными линкерными группами, составляет, по меньшей мере, 51%, предпочтительно, по меньшей мере, 60%.

Предпочтительные ароматические полимеры (А) представляют собой полиэфирсульфоны, например, поли-1,4-фенилен-окси-1,4-фенилен-сульфон; полиэфирсульфон, полученный из бисфенола А и дихлордифенилсульфона; и поли-бис(1,4-фенилен)-окси-1,4-фениленсульфон. Следующий класс ароматических полимеров (А) представляет собой полиэфиримиды (ПЭИ), например, полимер, полученный из бисфенола А, 4-нитрофталевой кислоты и м-фенилендиамина.

Термопластический ароматический полимер (А) предпочтительно содержит один или более полиарилсульфонов, содержащих эфирсвязанные повторяющиеся звенья, необязательно дополнительно содержащих тиоэфирсвязанные повторяющиеся звенья; указанные звенья выбраны из:

-[ArSO2Ar]n-

и необязательно из:

-[Ar]a-,

где:

Ar представляет собой фенилен;

n = от 1 до 2 и может быть дробным;

a = от 1 до 3 и может быть дробным, и если он превышает 1, то указанные фениленовые группы связаны линейно посредством одинарной химической связи или двухвалентной группы, отличной от -SO2- (предпочтительно, если двухвалентная группа представляет собой -C(R9)2-, где каждый R9 может быть одинаковым или различным и выбранным из H и C1-8 алкила (в частности, метила)), или конденсированы вместе,

при условии, что повторяющееся звено -[ArSO2Ar]n- всегда присутствует в указанном полиарилсульфоне в таком соотношении, что в среднем, по меньшей мере, два из указанных -[ArSO2Ar]n- звеньев следуют одно за другим в каждой присутствующей полимерной цепи,

и при этом полиарилсульфон имеет одну или более химически активных подвешенных и/или концевых групп.

Ссылка «дробный» сделана для среднего значения для данной полимерной цепи, содержащей звенья, имеющие различные значения n или a.

В одном варианте реализации фениленовые группы в полиарилсульфонах связаны одинарной связью.

Фениленовые группы в полиарилсульфонах могут быть замещены одной или более группами заместителей, каждая независимо выбрана из C1-8 разветвленных или прямых алифатических насыщенных или ненасыщенных алифатических групп или фрагментов, необязательно содержащих один или более гетероатомов, выбранных из O, S, N или галогена (например, Cl или F); и/или группами, обеспечивающими активный водород, в частности, OH, NH2, NHRa или -SH, где Ra представляет собой углеводородную группу, содержащую до восьми углеродных атомов, или обеспечивающими поперечно сшивающую активность, в частности, бензоксазин, эпокси, мет(акрилат), цианат, изоцианат, ацетилен или этилен, как в виниле, аллиле или малеимиде, ангидрид, оксазол и мономеры, содержащие ненасыщенность.

Предпочтительно фениленовые группы представляют собой мета- или пара- (предпочтительно пара-). Вдоль полимерного скелета может существовать смесь конформаций (в частности, мета- и пара-корформаций).

Предпочтительно полиарилсульфон содержит комбинацию повторяющихся звеньев -[ArSO2Ar]n- и -[Ar]a-, связанных эфирными и/или тиоэфирными линкерами, предпочтительно эфирными линкерами. Таким образом, предпочтительно полиарилсульфон содержит комбинацию полиэфирсульфоновых (ПЭС) и полиэфирэфирсульфоновых (ПЭЭС) эфирсвязанных повторяющихся звеньев.

Относительное соотношение повторяющихся звеньев -[ArSO2Ar]n- и -[Ar]a- является таким, что в среднем, по меньшей мере, два повторяющихся звена -[ArSO2Ar]n- находятся в ближайшей взаимной последовательности в каждой существующей полимерной цепи, а отношение звеньев -[ArSO2Ar]n- к звеньям -[Ar]a- находится преимущественно в диапазоне от 1:99 до 99:1, более предпочтительно от 10:90 к 90:10. Как правило, отношение [ArSO2Ar]n:[Ar]a находится в диапазоне от 75:25 до 50:50.

В одном варианте реализации предпочтительные повторяющиеся звенья в полиарилсульфонах представляют собой:

(I): -X-Ar-SO2-Ar-X-Ar-SO2-Ar- (упоминаемое в настоящем документе как «звено ПЭС»)

и

(II): -X-(Ar)a-X-Ar-SO2-Ar- (упоминаемое в настоящем документе как «звено ПЭЭС»)

где:

X представляет собой O или S (предпочтительно O) и может отличаться от одного звена к другому; и

соотношение звеньев I:II предпочтительно находится в диапазоне от 10:90 до 80:20, более предпочтительно в диапазоне от 10:90 до 55:45, более предпочтительно в диапазоне от 25:75 до 50:50, и в одном варианте реализации отношение I:II находится в диапазоне от 20:80 до 70:30, более предпочтительно в диапазоне от 30:70 до 70:30, наиболее предпочтительно в диапазоне от 35:65 до 65:35.

Предпочтительные относительные доли повторяющихся звеньев полиарилсульфона могут быть выражены в выражении весового процентного содержания SO2, определенного как 100* (вес SO2)/(вес среднего повторяющегося звена). Предпочтительное содержание SO2 составляет, по меньшей мере, 22, предпочтительно 23-25%. Если а=1, это соответствует соотношению ПЭС/ПЭЭС, по меньшей мере, 20:80, предпочтительно в диапазоне от 35:65 до 65:35.

Температура текучести полиэфирэфирсульфона обычно ниже, чем этот показатель, полиэфирсульфон с соответствующей среднечисловой молекулярной массой (Mn), но оба они обладают схожими механическими свойствами. Соответственно указанное отношение может быть установлено определением значений а и n, описанных выше.

В публикации US-6437080 описаны способы получения таких композиций из их мономерных предшественников таким образом, чтобы выделить мономерные предшественники с заданным определенным молекулярным весом, и эти описания включены в настоящий документ путем ссылки.

Представленные выше соотношения относятся только к упомянутым звеньям. Помимо таких звеньев полиарилсульфон может содержать до 50 молярных %, предпочтительно до 25 молярных % других повторяющихся звеньев: тогда предпочтительные диапазоны содержания SO2 относятся ко всему полимеру. Такими звеньями могут быть, например, формулы

,

где L представляет собой прямую связь, кислород, серу, -CO- или двухвалентную группу (предпочтительно двухвалентный углеводородный радикал, предпочтительно где указанная двухвалентная группа представляет собой группу -C(R12)2-, в которой R12 может быть одинаковым или различным и выбранным из H и C1-8 алкила (в частности метила)).

Если полиарилсульфон представляет собой продукт нуклеофильного синтеза, его звенья могут быть получены, например, из одного или более бисфенолов и/или соответствующих бис-тиолов или фенол-тиолов, выбранных из гидрохинона, 4,4'-дигидроксибифенила, резорцина, дигидроксинафталина (2,6 и других изомеров), 4,4'-дигидроксибензофенона, 2,2'-ди(4-гидроксифенил)пропана и -метана. При использовании бис-тиола он может быть образован in situ, то есть дигалогенид может взаимодействовать с сульфидом щелочного металла или с полисульфидом или с тиосульфатом.

Другие примеры таких дополнительных звеньев имеют формулу

,

где Q и Q', которые могут быть одинаковыми или различными, представляют собой CO или SO2; Ar' представляет собой двухвалентный ароматический радикал; и p равен 0, 1, 2 или 3 при условии, что p не равен нулю, если Q представляет собой SO2. Ar' предпочтительно представляет собой, по меньшей мере, один двухвалентный ароматический радикал, выбранный из фенилена, бифенилена или терфенилена. Конкретные звенья имеют формулу

,

где q равен 1, 2 или 3. Если полимер представляет собой продукт нуклеофильного синтеза, такие звенья могут быть получены из одного или более дигалогенидов, например, выбранных из 4,4'-дигалобензофенона, 4,4'-бис(4-хлорфенилсульфонил)бифенила, 1,4-бис(4-галобензоил)бензола и 4,4'-бис(4-галобензоил)бифенила. Конечно, они могут быть частично получены из соответствующих бисфенолов.

Полиарилсульфон может быть продуктом нуклеофильного синтеза из галофенолов и/или галотиофенолов. В любом нуклеофильном синтезе галоген, если он представляет собой хлор или бром, может быть активирован присутствием медного катализатора. Такая активация зачастую не является необходимой, если галоген активируется электроноакцепторной группой. В любом случае, фторид обычно более активен, чем хлорид. Любой нуклеофильный синтез полиарилсульфона осуществляют предпочтительно в присутствии одной или более солей щелочных металлов, таких как KOH, NaOH или K2CO3, с молярным избытком от стехиометрического количества до 10%.

Как упомянуто выше, полиарилсульфон содержит одну или более химически активных подвешенных и/или концевых групп, и в предпочтительном варианте реализации полиарилсульфон содержит две такие химически активные подвешенные и/или концевые группы. В одном варианте реализации полиарилсульфон содержит одну такую химически активную подвешенную и/или концевую группу. Предпочтительно химически активные подвешенные и/или концевые группы представляют собой группы, обеспечивающие активный водород, в частности, OH, NH2, NHRb или -SH (где Rb представляет собой углеводородную группу, содержащую до восьми углеродных атомов), или представляют собой группы, обеспечивающие другую сшивающую активность, в частности, бензоксазин, эпокси, (мет)акрилат, цианат, изоцианат, ацетилен или этилен, как в виниле, аллиле или малеимиде, ангидрид, оксазалин и мономеры, содержащие насыщение. В одном варианте реализации химически активные подвешенные и/или концевые группы имеют формулу -A'-Y, где A' представляет собой связь или двухвалентную углеводородную группу, предпочтительно ароматическую, предпочтительно фенил. Примеры Y представляют собой группы, обеспечивающие активный водород, в частности, OH, NH2, NHRb или -SH (где Rb представляет собой углеводородную группу, содержащую до восьми углеродных атомов), или группы, обеспечивающие другую сшивающую активность, в частности, бензоксазин, эпокси, (мет)акрилат, цианат, изоцианат, ацетилен или этилен, как в виниле, аллиле или малеимиде, ангидрид, оксазалин и мономеры, содержащие насыщение. Группы, обеспечивающие другую сшивающую активность, могут быть связаны с Ar группами полиарилсульфона прямой связью или эфирным, тиофирным, сульфоновым, -CO-линкером или линкером двухвалентного углеводородного радикала, как описано выше в настоящем документе, наиболее типично эфирным, тиоэфирным или сульфоновым линкером. В дополнительном варианте реализации концевые группы, но предпочтительно не более чем относительно небольшая их часть, могут быть выбраны из галогенных групп (в частности, хлора). Химически активные концевые группы могут быть получены по реакции мономеров или более поздним превращением готовых полимеров до или после их выделения. В одном способе для внедрения химически активных подвешенных и/или концевых групп, например, с использованием активированных ароматических галогенидов (например, дихлордифенилсульфона) в качестве исходного материала для полимера, в синтетическом способе используют немного большее, чем стехиометрическое, количество активированного ароматического галогенида, а полученный полимер, имеющий концевые галогенидные группы, затем взаимодействует с аминофенолом (например, м-аминофенолом) с образованием концевых аминогрупп.

Химически активная подвешенная и/или концевая группа(ы) полимера (А) предпочтительно выбрана/выбраны из групп, обеспечивающих активный водород, в частности, OH и NH2, в частности, NH2. Предпочтительно полимер содержит две такие группы.

Блок-сополимер (М) может быть получен из смеси полиарилсульфонов, имеющих различные концевые группы. В одном варианте реализации полиарилсульфоны содержат множество концевых групп, при этом, по меньшей мере, 50 мольных %, предпочтительно, по меньшей мере, 60 мольных %, предпочтительно, по меньшей мере, 70 мольных %, предпочтительно, по меньшей мере, 80 мольных %, предпочтительно, по меньшей мере, 85 мольных % и предпочтительно, по меньшей мере, 90 мольных % концевых групп представляют собой группы одного типа.

Среднечисловая молекулярная масса Mn ароматического полимера (А), в частности, предпочтительных полиарилсульфонов, обычно находится в диапазоне от около 2000 до около 60000, предпочтительно от около 2000 до около 30000, предпочтительно от около 2000 до около 15000 и в одном варианте реализации от около 3000 до около 10000 г/моль.

Синтез термопластичных ароматических полимеров (А) дополнительно описан в публикациях US-2004/0044141 и US-6437080, и эти описания включены в настоящий документ путем ссылки.

В блок-сополимере (М), содержащем множество блоков полимера (А), каждый из блоков полимера (А) может быть одинаковым или различным. Например, молекулярный вес каждого полимерного блока может быть одинаковым или различным или может определяться диапазоном молекулярного веса или коэффициентом полидисперсности (КПД). Как правило, полимерные блоки (А), присутствующие в блок-сополимере, определяют по одному диапазону молекулярного веса или коэффициенту полидисперсности (КПД). Химическая идентичность полимерного скелета каждого полимера (А) может быть одинаковой или различной, но предпочтительно является одинаковой для каждого блока полимера (А). При использовании в настоящем документе термин «химическая идентичность полимерного скелета» относится к функциональным химическим группам, которые соединяют мономерные звенья полимера, например, полиэфира, сложного полиэфира, полиэфирсульфона, полиэфирэфирсульфона и тому подобных. При их наличии группы заместителей в каждом полимерном блоке (А) могут быть одинаковыми или различными.

Полимер (В) с низкой температурой стеклования (Tg)

Характеристические свойства полимера (В) с низкой Tg, используемого в настоящем изобретении, представляют собой низкую Tg и ограниченную растворимость в неотвержденном предшественнике термореактивной смолы (Р). Полимер (В) обычно демонстрирует также ограниченную растворимость в ароматическом полимере (А) блок-сополимера и в отвержденной термореактивной смоле (R).

Полимер (В) предпочтительно демонстрирует Tg в диапазоне от -130°C до около 40°C и в одном варианте реализации в диапазоне от -80°C до около 0°C, а в одном варианте реализации от около -80°C до около -30°C.

Полимеры В настоящего изобретения с низкой Tg, которые обычно являются эластомерными, предпочтительно представляют собой насыщенные алифатические сложные полиэфиры, полученные, по меньшей мере, из двухвалентных линейных, разветвленных или циклических алифатических спиртов, имеющих от 2 до 60 углеродных атомов, и, по меньшей мере, двухвалентных линейных, разветвленных или циклических алифатических карбоновых кислот, имеющих от 3 до 60 углеродных атомов, при условии, что, по меньшей мере, один (и в одном варианте реализации оба) из спиртовых или кислотных компонентов имеет, по меньшей мере, 4 углеродных атома, предпочтительно, по меньшей мере, 6, более предпочтительно, по меньшей мере, 12 и наиболее предпочтительно, по меньшей мере, 18 углеродных атомов. Если сложный полиэфир получен более чем из одного спирта и/или более чем одной кислоты, то используют минимум четыре углеродных атома для среднего количества углеродных атомов в спиртовом или кислотном компоненте. Предпочтительно также, чтобы сложный эфир имел массовую долю не более чем 10% от ароматических фрагментов.

В одном варианте реализации, по меньшей мере, один и предпочтительно оба из компонентов алифатического спирта и компонентов алифатической кислоты имели от 20 до 60 углеродных атомов.

В одном варианте реализации сложный эфир получен из алифатических дикарбоновых кислот и алифатических двухатомных спиртов с длинами цепей, описанными выше в настоящем документе.

Предпочтительные дикарбоновые кислоты представляют собой так называемые димерные жирные кислоты, обычно имеющие от 12 до 48 углеродных атомов. Предпочтительные спирты представляют собой двухатомные спирты, имеющие от 2 до 6 углеродных атомов, предпочтительно от 4 до 6 углеродных атомов, предпочтительно бутан-1,4-диол и гексан-1,6-диол. Предпочтительные насыщенные алифатические сложные эфиры получены из таких димерных жирных кислот и двухатомных спиртов. Альтернативно насыщенный алифатический сложный полиэфир может быть получен из димерных спиртов, имеющий от 12 до 48 углеродных атомов с низкомолекулярными дикарбоновыми кислотами (предпочтительно имеющими от 2 до 6 углеродных атомов, предпочтительно от 4 до 6 углеродных атомов, такими как адипиновая кислота).

Другой класс полимеров с низкой Tg, пригодных для применения в настоящем изобретении, представляет собой полисилоксаны, определенные в настоящем документе как полимеры, имеющие повторяющееся звено -O-(SiR1R2-O)-, где R1 и R2 независимо выбраны из C1-8 алкиловых остатков или ариловых остатков. Иллюстративные примеры представляют собой полидиметилсилоксановые гомо- и сополимеры, известные также как силиконовые каучуки, и которые имеют температуру стеклования, опускающуюся до около -130°C и обычно не превышающую значение около -10°C.

Дополнительный класс полимеров с низкой Tg, пригодных для применения в настоящем изобретении, представляет собой полибутилакрилаты, которые могут быть получены по способам, известным в данной области техники. Функционализированные полибутилакрилаты включают полибутилакрилат с концевым гидроксилом, который может быть синтезирован радикальной полимеризацией с переносом атома (как описано в публикации Macromol. Chem. Phys. 2005, 206, 33-42).

Дополнительный класс полимеров с низкой Tg, пригодных для применения в настоящем изобретении, представляет собой поли(диены), например, поли(диены), которые могут быть получены полимеризацией бутадиена (повторяющееся звено C4) или изопрена (повторяющееся звено C5). Примеры включают функционализированные поли(диены), такие как полибутадиены с концевым гидроксилом и гидрогенированные полибутадиены с концевым гидроксилом, предпочтительно имеющие молекулярный вес от около 2000 до около 10000 г/моль (имеющиеся в продаже под торговой маркой Krasol™ производства Cray Valley). Другие функционализированные поли(диены) включают ангидрид-функционализированные полибутадиены (имеющиеся в продаже под торговой маркой Ricon™ производства Cray Valley); и полибутадиены с концевой карбоновой кислотой (имеющиеся в продаже под торговой маркой Hycar™ производства Noveon).

Дополнительный класс полимеров с низкой Tg, пригодных для применения в настоящем изобретении, представляет собой полиэфиры общей химической структуры -(O-R-)n, где R предпочтительно выбран из C3 и C4 углеводородного радикала (то есть полиоксипропилен и полиокситетраметилен), которые могут иметь, например, концевой гидроксил или амин. Примеры включают полиокситетраметилен с концевым гидроксилом (имеющийся в продаже под торговой маркой Terathane®; Invista); полиоксипропилендиол (имеющийся в продаже под торговой маркой Voranol™ 220-28; Dow); и полиоксипропилен с концевым амином (имеющийся в продаже под торговой маркой Jeffamine™ D4000; Hunstman).

В предпочтительном варианте реализации среднечисловая молекулярная масса Mn полимера В с низкой Tg находится в диапазоне от около 1000 до около 30000 г/моль, типично от около 1000 до около 20000 г/моль, более типично от около 1000 до около 10000 г/моль, более типично от около 2000 до около 9000 г/моль, более типично в диапазоне от около 3000 до около 6000 г/моль. В одном варианте реализации сегмент полимера В с низкой Tg может быть образован из множества полимеров, таких как имеющиеся в продаже полимеры, ковалентно связанных вместе с образованием заданного молекулярного веса.

В блок-сополимере (М), содержащем множество блоков полимера (В), каждый из блоков полимера (В) может быть одинаковым или различным. Например, молекулярный вес каждого полимерного блока может быть одинаковым или различным, или может определяться диапазоном молекулярного веса или коэффициентом полидисперсности (КПД). Как правило, полимерные блоки (В), присутствующие в блок-сополимере, определяют по одному диапазону молекулярного веса или коэффициенту полидисперсности (КПД). Химическая идентичность полимерного скелета каждого полимера (В) может быть одинаковой или различной, но предпочтительно является одинаковой для каждого блока полимера (В).

Блок-сополимер (М)

Блок-сополимер (М) получают химическим связыванием сегментов ароматического полимера (А) и полимера (В) с низкой Tg с использованием стандартных приемов, хорошо известных в данной области. Эти сегменты могут быть специально функционализированы так, как описано выше в настоящем документе, для облегчения реакции между двумя сегментами, например, с использованием дифункционального или связывающего реагента, который легко и количественно взаимодействует с функциональными группами полимеров (А) и (В).

Предпочтительно полимеры (А) и (В) могут быть функционализированы гидроксильными и/или аминогруппами. В этом варианте реализации соответствующие дифункциональные или связывающие реагенты включают дихлориды дикислот, такие как терефталоилдихлорид и изофталоилдихлорид, ангидриды кислот и карбодиимиды. Например, аминофункциональный ароматический полимер (А) может быть смешан с полимером (В) с низкой Tg, предпочтительно с образованием раствора, и эту смесь затем добавляют к раствору дифункционального реагента. Альтернативно гидроксил-функциональный полимер (В) с низкой Tg сначала взаимодействует с избытком дифункционального реагента, затем добавляют гидроксил-функциональный или предпочтительно аминофункциональный ароматический полимер (А). Блок-сополимер (М), содержащий химически связанные сегменты полимеров (А) и (В), может быть выделен из реакционного раствора, а затем высушен.

Предпочтительно блок-сополимер (М) содержит:

(i) ароматический полимер (А) с массовой долей w(A) от около 5% до около 99%, предпочтительно от около 10% до около 95%, более предпочтитель