Способ получения высокодисперсного полимерного материала и устройство для его осуществления

Иллюстрации

Показать все

Изобретения предназначены для получения высоко дисперсного полимерного материала. Получение материала осуществляют путем переработки полимера или смеси полимеров в устройстве шнекового типа непрерывного действия. Способ включает уплотнение материала и последующее измельчение. Уплотнение осуществляют в две стадии. На первой стадии уплотнение осуществляют путем воздействия напряжения сдвига в условиях возрастания давления до не более 70 МПа при снижении коэффициента модуляции давления. На второй стадии уплотнение осуществляют путем воздействия на перерабатываемый материал напряжения сдвига в условиях возрастания давления до не более 100 МПа при одновременном разделении массы перерабатываемого материала для увеличения и выравнивания давления по меньшей мере на три потока при снижении коэффициента модуляции давления. Минимальный коэффициент модуляции давления на второй стадии ниже, чем минимальный коэффициент модуляции давления на первой стадии, не менее чем в 2 раза. Изобретения обеспечивают повышение содержания мелкой фракции в порошковом материале, повышение однородности порошка по размерам частиц и снижение энергозатрат. 2 н. и 22 з.п. ф-лы, 2 ил., 1 табл.

Реферат

Изобретения относятся к области переработки полимерных материалов, в частности, к способам и устройствам для получения порошка из полимерных материалов, и могут быть использованы при измельчении синтетических и природных полимерных материалов, в частности, термопластичных, сшитых полимеров, полимер-полимерных смесей, полимерных композитов и их отходов, в виде рыхлой крошки или волокон с получением высокодисперсного порошка высокого качества.

Важными характеристиками, как процесса измельчения полимерных материалов, так и устройства для измельчения являются качество порошкового материала, а именно его фракционный состав, форма и средний размер получаемых порошковых частиц, а также энергозатраты на получение порошка.

Известен способ получения резинового порошка в аппарате экструзионного типа путем двухстадийного измельчения материала: сначала в условиях пульсирующего объемного напряжения от 15 до 250 МПа, возрастающего со скоростью от 5 до 90 МПа/с, с частотой 5-600 Гц и при температуре, возрастающей со скоростью 50-150°С/с в диапазоне от 90 до 380°С, при одновременном газонасыщении резины продуктами расщепления пластификаторов и других компонентов, а затем при быстром снижении объемного напряжения со скоростью 50-150 МПа/с (ЕР №1362681 А1, В29В 17/00, опубл. 19.11.2003).

Способ позволяет получать резиновые порошки с удельной поверхностью 0,4-5,0 м2/г из отходов шинной резины и резинотехнических изделий.

На первой стадии способа при воздействии на материал указанных выше факторов материал уплотняется, и частично даже измельчается, причем параметры процесса, то есть, объемное напряжение, температура, деформация сдвига, очень сильно отличаются друг от друга по всему объему материала, в частности, изменение объемного напряжения на стадии уплотнения очень велико. Следует отметить, что различия указанных параметров усиливаются в случае осуществления процесса вблизи верхних границ указанных выше интервалов параметров процесса. И на второй стадии измельчения резина подвергается воздействию очень сильно меняющегося напряжения, поэтому порошок получается низкого качества, поскольку для получения однородного порошкообразного продукта требуется проведение процесса измельчения при наиболее близких значениях параметров процесса: давления, напряжения сдвига и температуры.

Недостатком способа является низкое качество порошка, поскольку порошок содержит незначительное количество частиц с размером менее 0,2 мм, а частиц с размером более 0,8 мм содержит 15-25%. К недостаткам способа следует отнести и сложность его реализации. Для реализации процесса с такими крайне высокими значениями параметров как скорость нагрева материала, скорость его охлаждения, скорость возрастания объемного напряжения и другие, потребуется использование уникального, дорогостоящего оборудования. Например, в современных промышленных диспергаторах и в других установках экструзионного типа, без введения специальных конструктивных элементов, скорость нагрева материала не превышает 3-30°С/с. Также, недостатком способа является его неэкологичность, связанная с выделением газообразных продуктов, а также, завышенные энергозатраты, в частности, это определяется двухстадийностью измельчения. Удельные энергозатраты на измельчение резин данным способом составляют более 400 кВт⋅ч/т.

Известен способ получения порошка из полимерного материала, включающий нагрев материала и последующее измельчение. Нагрев в способе осуществляют до температуры 30-250°С в две стадии, сначала при возрастании давления от 0,1-0,5 до 3-100 МПа, а затем в изобарических условиях и при деформации сдвига 0,3-10 в течение 0,3-5 с. А измельчение осуществляют путем воздействия на перерабатываемый материал давления в условиях снижения давления до 0,1-0,5 МПа и в условиях сдвиговых деформаций 0,5-50 при одновременном охлаждении (Патент РФ 2057013 С1, В29В 17/00, опубл. 27.03.1996). Исходя из нашего опыта переработки мелкой резиновой крошки, гранул полиэтилена и других полимеров в современных роторных диспергаторах отмечаем, что на стадии уплотнения сдвиговым деформациям 0,3-10 ориентировочно соответствуют напряжения сдвига 0,2-15 Н/мм2, а на стадии разрушения и измельчения сдвиговым деформациям 0,5-50 ориентировочно соответствуют напряжения сдвига 0,4-150 Н/мм2.

Способ характеризуется достаточно высокой производительностью и позволяет получать порошок из полимерного материала в виде гранул, из материала с рыхлой и волокнистой структурой, из крошки, находящейся, в том числе, в эластичном состоянии. При измельчении полиэтилена после просева полученного порошка на сите с размером ячейки 0,63 мм остаток составляет 2%, однако на сите с размером ячейки 0,4 мм остаток составляет ~30%. При измельчении резины после просева порошка на сите с размером ячейки 0,63 мм остаток составляет 30%, однако на сите с размером ячейки 0,4 мм остаток составляет 40-50%.

Указанный способ реализуется в устройстве шнекового типа. Следует отметить, что при вращении шнека давление в перерабатываемом материале, реализуемое перед спиральным гребнем шнека, выше и, в ряде случаев, существенно выше, чем давление в других участках, находящихся в том же поперечном сечении шнека. Таким образом, шнек постоянно модулирует давление в процессе уплотнения материала, и эта модуляция давления проявляется на протяжении всего процесса уплотнения и нагревания материала, непосредственно до стадии измельчения. Причем в начале первой стадии нагрева материала коэффициент модуляции давления выше, чем в конце этой стадии. Из-за модуляции давления, определяемой шнеком, на второй стадии нагрева не удается обеспечить изобарические условия. Поэтому образуется уплотненный слой материала, в котором наблюдаются существенные перепады давления, при этом на второй стадии нагрева коэффициент модуляции давления снижается, но не столь существенно. Эти перепады давления и приводят к неравномерному протеканию процесса растрескивания и измельчения, и, следовательно, к снижению качества получаемого порошка.

Под коэффициентом модуляции давления понимается отношение разности между максимальным и минимальным значениями амплитуд давления к сумме этих значений, выраженное в процентах.

Недостатком способа является то, что полученный порошок характеризуется достаточно высоким содержанием частиц с размером 0,5 мм и выше, а также характеризуется высокой неоднородностью частиц по размерам и очень низким содержанием мелкой фракции (менее 0,2 мм). И кроме того, способ характеризуется довольно высокими энергозатратами, например при измельчении полиэтилена энергозатраты составляют выше 250 кВт⋅ч/т, а при измельчении резины - не менее 400 кВт⋅ч/т.

Известен способ получения высокодисперсного порошка из полимерного материала, включающий уплотнение материала и последующее измельчение. Уплотнение осуществляют в два этапа. Сначала уплотнение материала осуществляют при возрастании давления в условиях деформации сдвига от 0,1 до 3 и при охлаждении, а затем - при одновременной гомогенизации и нагревании материала за счет деформации сдвига от 1 до 1000 в изобарических и адиабатических условиях. А измельчение осуществляют в условиях деформации сдвига от 0,5 до 1000 при снижении давления и при охлаждении со скоростью 3-49°С/с. Отмечаем, что на стадии уплотнения сдвиговым деформациям 0,5-1000 ориентировочно соответствуют напряжения сдвига 1-1200 Н/мм2, а на стадии разрушения и измельчения сдвиговым деформациям 1-1000 ориентировочно соответствуют напряжения сдвига 1-2500 Н/мм2 (RU 2374037 С1, В29В 17/00, опубл. 20.01.2009).

Способ позволяет получать высокодисперсный порошок, например, при измельчении шинной резины возможно получение порошка с размером частиц 0,03-1,2 мм.

Указанный способ основан на принципе высокотемпературного сдвигового измельчения и при осуществлении указанного способа в устройстве шнекового типа вследствие специфики работы шнека уплотнение материала, по сути, происходит при возрастании давления в условиях модуляции давления, причем на первом этапе уплотнения коэффициент модуляции давления снижается по мере увеличения давления. А на втором этапе уплотнения из-за модуляции давления не удается обеспечить осуществление процесса в изобарических условиях. Вследствие этого на втором этапе уплотнения образуется уплотненный слой материала, в котором наблюдаются перепады давления от максимального к минимальному с коэффициентом модуляции примерно таким же, как в конце первого этапа уплотнения. Эти перепады давления приводят к неравномерному протеканию процесса множественного растрескивания и измельчения, и, следовательно, к снижению качества получаемого порошка.

Недостатком способа является то, что полученный порошок характеризуется высокой неоднородностью частиц по размерам и низким содержанием мелкой фракции (менее 0,2 мм), а также то, что способ характеризуется довольно высокими энергозатратами, например при измельчении полиэтилена энергозатраты достигают 240 кВт⋅ч/т, а при измельчении резины без корда - не менее 350 кВт⋅ч/т.

Наиболее близким к предлагаемому способу является способ получения порошка из полимерного материала, который включает уплотнение материала и последующее измельчение. Уплотнение материала осуществляют в условиях деформации сдвига 1-500 при возрастании давления от 0,1-0,5 МПа до 3-100 МПа и при охлаждении. Уплотненный материал подвергают измельчению в условиях деформации сдвига от 0,5 до 1000 и при дросселировании со скоростью 3×10-3 - 1×10-1 м/с в среду с давлением 0,01-0,15 МПа при одновременном снижении давления и при охлаждении (RU 2173634 С1, В29В 13/00, опубл. 20.09.2001). Отмечаем, что на стадии уплотнения материала сдвиговым деформациям 1-500 ориентировочно соответствуют напряжения сдвига 1-1200 Н/мм2, а на стадии разрушения и измельчения сдвиговым деформациям 0,5-1000 ориентировочно соответствуют напряжения сдвига 1-2500 Н/мм2.

Способ позволяет получать высокодисперсные порошки из полимерных материалов, в том числе из шинной резины, с удельной поверхностью 0,1-0,5 м2/г и размером частиц 0,03-1,2 мм.

Указанный способ основан на принципе высокотемпературного сдвигового измельчения и реализуется в устройстве шнекового типа. В процессе уплотнения шнек модулирует давление, причем давление увеличивается по направлению к камере измельчения, и по мере увеличения давления коэффициент модуляции давления снижается. Однако следует отметить, что для традиционно применяемых двухзаходных шнеков коэффициент модуляции давления в конце шнека, то есть перед стадией измельчения, остается достаточно высоким и составляет 30-40%. В условиях интенсивных сдвиговых деформаций уплотненный перерабатываемый материал нагревается до достаточно высоких температур (70-250°С), и в тот момент, когда в определенном слое материала давление, напряжение сдвига и температура достигают оптимальных значений, в этом слое начинается множественное растрескивание и измельчение с последующим выбросом образовавшихся порошковых частиц в холодную, разреженную среду. Поскольку, в способе после стадии уплотнения сразу же следует стадия измельчения, это обстоятельство приводит к наиболее сильной модуляции давления по окружности кольцевого слоя уплотненного материала, образующегося перед стадией измельчения. Это сильно затрудняет разогрев материала до нужного оптимального значения температуры и приводит к существенным колебаниям температуры при измельчении. Указанные колебания температуры и давления негативно сказываются на качестве порошка, так как полученный порошок характеризуется низкой однородностью частиц по размерам и низким содержания мелкой фракции, поскольку для повышения однородности порошкообразного продукта необходимо обеспечить постоянство указанных параметров непосредственно перед стадией измельчения.

Недостатком способа является низкое качество получаемого порошка, поскольку порошок характеризуется низким содержанием фракции с размером частиц менее 0,2 мм, относительно высоким содержанием частиц с размером 0,5 мм и более, а также то, что полученный порошок обладает высокой неоднородностью по размерам частиц. Кроме того, способ характеризуется довольно высокими энергозатратами, например в случае измельчения резины они составляют более 450 кВт⋅ч/т.

Известно устройство для получения резинового порошка, в частности, из изношенных шин путем высокотемпературного сдвигового измельчения. Устройство содержит снабженный загрузочным и выгрузным патрубками корпус, внутри которого сформированы две зоны измельчения. Первую зону измельчения образует уплотняющий шнек с убывающим в сторону выгрузного патрубка объемом межвиткового пространства и охватывающий его корпус, при этом первая зона измельчения включает область уплотнения и первую область измельчения. В области уплотнения внутренняя поверхность корпуса образована конусным отверстием с уклоном в сторону выгрузного патрубка, а в первой области измельчения внутренняя поверхность корпуса образована цилиндрическим отверстием. Указанные области уплотнения и измельчения сформированы на сменных гильзах, установленных на валу и корпусе, при этом рабочие поверхности этих областей выполнены с одной стороны гильзы, а с другой стороны гильзы выполнены винтовые каналы для подачи хладагента. Вторая зона измельчения образована активатором, жестко пристыкованным к нему выгрузным шнеком и охватывающим их цилиндрическим корпусом. При этом активатор выполнен в форме тела вращения, на поверхности которого выполнены винтовые канавки прямого и обратного направления, а выгрузной шнек расположен соосно с уплотняющим шнеком. Кроме того, рабочие поверхности активатора, вала вращения и корпуса выполнены с одной стороны гильзы, а с другой стороны гильзы - винтовые каналы для подачи хладагента (ЕР №1362681 А1, В29В 17/00, опубл. 19.11.2003).

Указанное устройство обеспечивает переработку материала в условиях эффективного отбора тепла по всей длине устройства, что способствует увеличению производительности процесса. По данным, приведенным в патенте, устройство обеспечивает на второй стадии измельчения снижение температуры со скоростью 70-150°С/с.

Недостатком устройства является то, что полученный порошок характеризуется очень широким распределением частиц по размерам, а также то обстоятельство, что устройство не позволяет получить порошок с размером частиц менее 0,2 мм. Это обусловлено тем, в устройстве отсутствуют какие-либо конструктивные особенности, которые позволили бы создать более равномерные условия проведения процесса порошкообразования. Также к недостаткам данного устройства следует отнести и отсутствие конструктивных особенностей, которые обеспечили бы интенсивный саморазогрев перерабатываемого материала именно в тех зонах устройства, где теплопотери были бы минимальными. Например, в начале первой зоны измельчения материал подвергают сдвиговому нагреву во время его транспортировки в условиях интенсивного отбора выделяющегося тепла. Наличие двух зон измельчения следует рассматривать как нежелательное конструктивное решение, которое приводит к увеличению удельных энергозатрат снижает качество полученного порошка. Кроме того, в устройстве отсутствуют какие-либо конструктивные особенности, обеспечивающие высокую скорость охлаждения порошка, полученного и на втором этапе измельчения, и в том числе, такие аномально высокие значения скоростей охлаждения переработанного материала, как 70-150°С/с.

Известно устройство для получения порошка из полимерного материала, содержащее камеру уплотнения и камеру измельчения, которые расположены соосно. Камера уплотнения выполнена в виде цилиндрического корпуса с загрузочным окном и выгрузным отверстием, а внутри указанного корпуса установлен уплотняющий шнек со спиральными канавками на поверхности, глубина которых постепенно уменьшается к выгрузному отверстию. А камера измельчения выполнена в виде цилиндрического корпуса с входным отверстием и выгрузным патрубком, при этом, внутри указанного корпуса коаксиально с образованием кольцевого зазора относительно внутренней поверхности корпуса установлен мелющий ротор. На поверхности уплотняющего шнека на его конце, расположенном у выгрузного отверстия камеры уплотнения и/или на поверхности мелющего ротора на его конце, расположенном у входного отверстия камеры измельчения, выполнена кольцевая проточка глубиной 1-8 мм в ее мелкой части, при этом уплотняющий шнек выполнен с возможностью независимого или совместного вращения с мелющим ротором. Устройство снабжено средствами охлаждения ротора и/или корпуса. (Патент РФ 2057013 С1, В29В 17/00, опубл. 27.03.1996).

В указанном устройстве материал уплотняется шнеком, в результате чего по мере продвижения к камере измельчения температура уплотненного материала постепенно увеличивается и постоянно увеличивается средняя величина давления. Вместе с тем, давление в уплотненном материале модулировано, то есть в каждой точке камеры уплотнения, там, где вдоль камеры перемещается уплотненный материал, давление периодически изменяется от определенного максимального значения до минимального и так далее. И хотя по мере продвижения материала к камере измельчения коэффициент модуляции давления постепенно снижается, он остается все же достаточно высоким даже в начале кольцевого зазора камеры измельчения, то есть там, где начинается множественное растрескивание и разрушение уплотненного материала. Следует отметить, что в указанном устройстве отсутствуют какие-либо конструктивные особенности, которые позволили бы существенно уменьшить коэффициент модуляции давления непосредственно перед камерой измельчения. Хотя наличие проточки на мелющем роторе и позволяет в какой-то степени снизить колебания давления и температуры непосредственно перед зоной измельчения, однако все же это не оказывает существенного влияния на снижение коэффициента модуляции давления. В указанных условиях формируется уплотненный слой материала, в котором наблюдаются существенные перепады давления, которые приводят к неравномерному протеканию процесса образования порошка и, следовательно, к снижению качества получаемого порошка.

Недостатком устройства является недостаточно высокое качество получаемого порошка, поскольку порошок характеризуется высокой неоднородностью частиц по размерам, относительно высоким содержанием частиц с размером 0,4 мм и более, а также низким содержанием мелкой фракции (менее 0,2 мм), И кроме того, устройство характеризуется довольно высокими энергозатратами, например при измельчении полиэтилена энергозатраты составляют выше 250 кВт⋅ч/т, а при измельчении резины - не менее 400 кВт⋅ч/т.

Известно устройство для получения высокодисперсного порошка из полимерного материала, содержащее корпус, снабженный загрузочным и выгрузным отверстиями. На внутренней поверхности корпуса жестко закреплена съемная гильза корпуса, а внутри корпуса коаксиально и с возможностью вращения установлен вал вращения, на поверхности которого жестко закреплена съемная гильза вала вращения. Вдоль оси корпуса последовательно расположены рабочие зоны: зона компрессии, зона сдвигового нагрева, зона измельчения и зона быстрого охлаждения. В зоне компрессии расположен напорный шнек, образованный спиральными канавками, которые выполнены на внешней поверхности съемной гильзы вала вращения. При этом между поверхностью напорного шнека и охватывающей его внутренней поверхностью съемной гильзы корпуса образована камера компрессии. В зоне сдвигового нагрева на внешней поверхности съемной гильзы вала вращения выполнено кольцевое углубление. На внутренней поверхности съемной гильзы корпуса в зоне сдвигового нагрева также выполнено кольцевое углубление. Между поверхностями указанных кольцевых углублений образована форкамера сдвигового нагрева. В зоне сдвигового нагрева на внутренней поверхности съемной гильзы вала вращения выполнена кольцевая канавка, при этом между поверхностью указанной кольцевой канавки и прилегающей к ней поверхностью вала вращения образована замкнутая теплоизолирующая полость вала вращения. Также в зоне сдвигового нагрева на внешней поверхности съемной гильзы корпуса выполнена кольцевая канавка, при этом между поверхностью указанной кольцевой канавки и прилегающей к ней поверхностью корпуса образована замкнутая теплоизолирующая полость корпуса. Замкнутая теплоизолирующая полость вала вращения и/или замкнутая теплоизолирующая полость корпуса заполнена теплоизолирующим материалом. В зоне измельчения расположен подпорный измельчающий элемент, выполненный на внешней поверхности съемной гильзы вала вращении в виде кольцевого выступа, на поверхность которого нанесены спиральные канавки прямого и/или обратного направления. Между поверхностью подпорного измельчающего элемента и указанной внутренней поверхностью съемной гильзы корпуса образована камера измельчения. В зоне быстрого охлаждения на внешней поверхности съемной гильзы вала вращения выполнена выгрузная кольцевая проточка с образованием камеры быстрого охлаждения между поверхностью указанной выгрузной кольцевой проточки и охватывающей ее внутренней поверхностью съемной гильзы корпуса. Устройство снабжено системой охлаждения, выполненной с возможностью охлаждения камеры компрессии, камеры измельчения и камеры быстрого охлаждения (RU 2374037 С1, В29В 17/00, опубл. 20.01.2009).

Устройство позволяет получать порошки из полимерного материала, в частности, при измельчении шинной резины устройство позволяет получать порошки с размером частиц 0,03-1,2 мм.

При переработке материала в камере компрессии указанного устройства под действием напорного шнека создается давление, среднее значение которого увеличивается по мере продвижения материала к форкамере сдвигового нагрева. Вместе с тем, в каждой точке камеры компрессии величина давления периодически меняется во времени, то есть давление модулировано, причем по мере уплотнения материала модуляция давления снижается. В форкамере сдвигового нагрева перерабатываемый материал продолжает уплотняться за счет воздействия модулированного давления и напряжения сдвига в адиабатических условиях. Хотя наличие указанной зоны сдвигового нагрева и позволяет в какой-то степени снизить колебания давления и температуры по окружности кольцевого зазора перед зоной измельчения, но все же это обстоятельство не оказывает существенного влияния на снижение коэффициента модуляции давления. Следует отметить, что в указанном устройстве отсутствуют какие-либо конструктивные особенности, которые позволили бы существенно снизить модуляцию давления непосредственно перед камерой измельчения. Вследствие этого перед началом процесса множественного растрескивания и измельчения по кольцевому слою уплотненного материала, образующегося перед камерой измельчения, периодически наблюдаются перепады давления, которые приводят к неравномерному протеканию процесса порошкообразования в камере измельчения, и как следствие, к получению порошка недостаточно высокого качества.

Недостатком устройства является то, что полученный порошок характеризуется низким содержанием мелкой фракции и относительно высоким содержанием частиц с размером 0,5 мм и более, а также то, что полученный порошок характеризуется высокой неоднородностью частиц по размерам. Кроме того, недостатком устройства являются довольно высокие энергозатраты, которые при измельчении полиэтилена составляют приблизительно 150-250 кВт⋅ч/т, а при измельчении различных резин - от 300 до 1200 кВт⋅ч/т.

Наиболее близким к предлагаемому устройству является устройство для получения порошка из полимерного материала путем высокотемпературного сдвигового измельчения, которое содержит цилиндрический корпус с загрузочным и выгрузным отверстиями, а внутри указанного корпуса последовательно и соосно расположены камера уплотнения и камера измельчения. В камере уплотнения расположен напорный шнек, а в камере измельчения расположен измельчающий элемент, который установлен коаксиально, с возможностью вращения и образованием кольцевого зазора относительно внутренней поверхности корпуса камеры измельчения. При этом измельчающий элемент выполнен в виде дроссельной заслонки в форме соединенных соосно друг с другом диска и усеченного конуса, причем одно основание диска жестко соединено с напорным шнеком, а другое основание диска жестко соединено с большим основанием усеченного конуса, а диаметр основания диска равен диаметру большего основания усеченного конуса. Устройство снабжено системой охлаждения, которая выполнена с возможностью охлаждения камеры измельчения и камеры охлаждения (RU 2173634 С1, В29В 13/00, опубл. 20.09.2001).

Устройство обеспечивает получение, в частности, высокодисперсных порошков резины, состоящих из частиц размером 0,03-1,2 мм, и характеризуется достаточно высокой производительностью.

В указанном устройстве напорный шнек подает перерабатываемый материал к рабочему органу измельчения - к дроссельной заслонке. При этом перерабатываемый материал уплотняется, образуя очень плотный, почти монолитный слой перед узким кольцевым зазором камеры измельчения. В каждой точке камеры уплотнения величина давления периодически меняется во времени, то есть напорный шнек модулирует давление. Причем в начале камеры уплотнения коэффициент модуляции давления выше, здесь он может достигать 100%, а в конце камеры уплотнения давление увеличивается, коэффициент модуляции снижается, но остается достаточно высоким и может составлять 30-40%. В уплотненном полимерном материале возникают интенсивные сдвиговые деформации, в результате чего материал нагревается до достаточно высоких температур (70-250°С). Когда давление, напряжение сдвига и температура в кольцевом слое уплотненного материала перед камерой измельчения достигает оптимальных значений, материал начинает подвергаться множественному растрескиванию и измельчению с последующим выбросом образовавшихся порошковых частиц в холодную, разреженную среду. Вследствие того, что в устройстве дроссельная заслонка расположена непосредственно после напорного шнека, это приводит к наиболее сильной модуляции давления во время множественного разрушения и измельчения материала, и, кроме того, это сильно затрудняет разогрев материала до нужного оптимального значения температуры. Значения температуры, давления и напряжения сдвига достаточно сильно меняются по окружности кольцевого слоя уплотненного материала, причем достичь значений указанных параметров, достаточно близких к оптимальным, в этом устройстве не представляется возможным. Эти факторы ухудшают качество получаемого порошка, в частности, это приводит к широкому разбросу размеров получаемых порошковых частиц.

Недостатком устройства является недостаточно высокое качество получаемого порошка, поскольку порошок характеризуется низким содержанием фракции с размером частиц менее 0,2 мм, относительно высоким содержанием частиц с размером 0,5 мм и более, а также то, что полученный порошок обладает высокой неоднородностью по размерам частиц. Также недостатком устройства являются высокие энергозатраты, в частности, при измельчении резины они составляют более 450 кВт⋅ч/т.

Задачей создания изобретений является разработка способа получения высокодисперсного полимерного материала, обеспечивающего улучшение качества материала за счет повышения содержания мелкой фракции, за счет снижения содержания частиц с размером 0,5 мм и более и за счет повышения однородности материала по размерам частиц, а также обеспечивающего снижение энергозатрат, а также разработка устройства для осуществления способа.

Поставленная задача решается способом получения высокодисперсного полимерного материала путем переработки полимера или смеси полимеров в устройстве шнекового типа непрерывного действия, включающим уплотнение перерабатываемого материала и последующее его измельчение, причем уплотнение осуществляют путем воздействия на перерабатываемый материал напряжения сдвига в условиях его возрастания, при возрастании давления в условиях модуляции давления и при снижении коэффициента модуляции давления, а измельчение осуществляют путем воздействия на перерабатываемый материал напряжения сдвига при дросселировании в условиях снижения давления и при охлаждении. При этом в предлагаемом способе уплотнение осуществляют в две стадии. На первой стадии уплотнение осуществляют путем воздействия на перерабатываемый материал напряжения сдвига в условиях его возрастания и при возрастании давления до не более 70 МПа в условиях модуляции давления при снижении коэффициента модуляции давления. На второй стадии уплотнение осуществляют путем воздействия на перерабатываемый материал напряжения сдвига в условиях его возрастания и при возрастании давления до не более 100 МПа при одновременном разделении массы перерабатываемого материала для увеличения и выравнивания давления, по меньшей мере, на три потока в условиях модуляции давления при снижении коэффициента модуляции давления, при этом минимальный коэффициент модуляции давления на второй стадии ниже, чем минимальный коэффициент модуляции давления на первой стадии не менее чем в 2 раза.

В частности, уплотнение перерабатываемого материала может быть осуществлено при охлаждении.

В частности, уплотнение перерабатываемого материала на первой стадии может быть осуществлено при воздействии напряжения сдвига при его возрастании в интервале 0,1-3 Н/мм2.

В частности, уплотнение перерабатываемого материала на первой стадии может быть осуществлено в условиях модуляции давления при снижении коэффициента модуляции давления в интервале 100-35%.

В частности, уплотнение перерабатываемого материала на второй стадии может быть осуществлено при воздействии напряжения сдвига при его возрастании в интервале 1-50 Н/мм2.

В частности, измельчение перерабатываемого материала может быть осуществлено при воздействии напряжения сдвига со средним значением не более 80 Н/мм2.

Для дополнительного улучшения качества полимерного порошка за счет придания ему определенных функциональных свойств переработка полимера или смеси полимеров может быть осуществлена в присутствии целевых добавок, выбранных из группы: структурирующие добавки, красители, термостабилизаторы, антирадиационные добавки для придания материалу способности защиты от нейтронного излучения и γ-излучения, а также диспергирующие добавки. В качестве структурирующей добавки может быть использована сера.

Поставленная задача также решается устройством для получения высокодисперсного полимерного материала, которое содержит корпус с внутренней цилиндрической полостью и с загрузочным и выгрузным отверстиями. Внутри указанной полости соосно расположены камера уплотнения, камера измельчения и камера охлаждения, при этом в камере уплотнения установлен напорный шнек, в камере измельчения установлен измельчающий элемент, а в камере охлаждения установлен вал. Измельчающий элемент установлен коаксиально и с образованием кольцевого зазора относительно внутренней поверхности корпуса камеры измельчения и выполнен в виде дроссельной заслонки в форме соединенных жестко и соосно друг с другом диска и усеченного конуса, причем большее основание указанного усеченного конуса обращено в сторону загрузочного отверстия, а меньшее основание - в сторону выгрузного отверстия и соединено с торцом вала. Устройство снабжено системой охлаждения, которая выполнена с возможностью охлаждения камеры измельчения и камеры охлаждения.

Согласно изобретению устройство дополнительно содержит камеру уплотнения и выравнивания давления, причем камера уплотнения, камера уплотнения и выравнивания давления, камера измельчения и камера охлаждения расположены последовательно и соосно, а в камере уплотнения и выравнивания давления установлен модулятор давления для увеличения и выравнивания давления на выходе из камеры уплотнения и выравнивания давления. При этом напорный шнек, модулятор давления, измельчающий элемент и вал соединены друг с другом последовательно и жестко, и установлены соосно и с возможностью вращения.

Модулятор давления может быть выполнен или в виде цилиндра и усеченного конуса, которые соединены друг с другом соосно и жестко, причем одно основание цилиндра соединено с напорным шнеком, а другое его основание соединено с меньшим основанием усеченного конуса, и при этом большее основание усеченного конуса соединено с измельчающим элементом, а на цилиндрической поверхности модулятора давления расположены силовые элементы.

Или модулятор давления может быть выполнен в виде усеченного конуса и установлен таким образом, что меньшее основание указанного усеченного конуса соединено с напорным шнеком, а большее его основание соединено с измельчающим элементом, а на конусной поверхности, преимущественно, вблизи от напорного шнека расположены силовые элементы.

Или модулятор давления может быть выполнен в виде двух соединенных друг с другом усеченных конусов, которые соединены соосно и жестко и установлены таким образом, что меньшее основание первого усеченного конуса соединено с напорным шнеком, а большее его основание соединено с меньшим основанием второго усеченного конуса, и при этом большее основание второго усеченного конуса соединено с измельчающим элементом, и, кроме того, угол наклона образующей первого усеченного конуса к оси устройства меньше, чем угол наклона образующей второго усеченного конуса к оси устройства, а диаметр большего основания первого усеченного конуса равен диаметру меньшего основания второго усеченного конуса, и при этом на поверхности первого усеченного конуса расположены силовые элементы.

Силовые элементы модулятора давления выполнены в виде выступов, способствующих увеличению и выравниванию давления на выходе из камеры уплотнения и выравнивания давления, а число силовых элементов составляет не менее трех.

В частности, в устройстве силовые элементы могут быть выполнены в виде выступов различной формы,

В частности, если указанные силовые элементы выполнены в виде выступов различной формы, эти силовые элементы могут быть выполнены в виде выступов двух различных типов. При этом силовые элементы первого типа выполнены в виде выступов с двумя фронтальными гранями и с двумя боковыми гранями - с боковой рабочей гранью и с боковой задней гранью. Фронтальные грани силовых элементов первого типа образованы двумя плоскостями сечения виртуального продолжения спирального гребня или виртуальных продолжений спиральных гребней напорного шнека в сторону модулятора давления. Указанные плоскости сечения выполнены перпендикулярно к оси устройства, причем одно из указанных сечений выполнено на расстоянии не более 0,15 от торца напорного шнека, а второе из указанных сечений - на расстоянии 0,3-0,5 от торца напорного шнека, где - длина модулятора давления. Боковая рабочая грань каждого силового элемента первого типа расположена под углом α по отношению к фронтальной грани того же силового элемента, расположенной на расстоянии не более 0,15 от торца напорного шнека, причем 90°>α>β, где β - угол подъема винтовой линии спирального гребня, причем угол β определяют относительно перпендикуляра к оси устройства. Боковая задняя грань каждого силового элемента первого типа параллельна боковой рабочей грани этого же силового элемента. А силовые элементы второго типа выполнены в виде выступов, которые имеют две фронтальные грани и две боковые грани - боковую рабочую грань и боковую заднюю грань. При этом фронтальные грани силовых элементов второго типа расположены в тех же плоскостях сечения, что и фронтальные грани силовых элементов первого типа, а боковая рабочая грань каждого силового элемента второго типа расположена по