Аккомодация теплового расширения для систем с циркулирующей текучей средой, используемых для нагревания толщи пород

Иллюстрации

Показать все

Группа изобретений относится к способам и системам для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов, таких как пласты, содержащие углеводороды. Способ аккомодации теплового расширения нагревателя в пласте, согласно которому обеспечивают протекание теплоносителя через канал, чтобы передать теплоту в пласт. Обеспечивают по существу постоянное натяжение концевого участка канала, который проходит за пределы пласта. Причем по меньшей мере часть концевого участка канала намотана на подвижное колесо. При этом подвижное колесо является подвижным по меньшей мере в вертикальной плоскости, в то время как концевой участок канала намотан на подвижное колесо. Причем подвижное колесо перемещают по меньшей мере в вертикальной плоскости для обеспечения по существу постоянного натяжения концевого участка канала. Техническим результатом является повышение эффективности добычи углеводородов, упрощение установки нагревательной системы и исключение повреждения канала. 2 н. и 15 з.п. ф-лы, 16 ил., 1 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение, в целом, относится к способам и системам для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов, таких как пласты, содержащие углеводороды. Более конкретно, изобретение относится к системам и способам нагревания подземных пластов, содержащих углеводороды.

Уровень техники

Углеводороды, добываемые из подземных пластов, часто используют в качестве энергетических ресурсов, в качестве сырья и в качестве потребительских товаров. Обеспокоенность истощением доступных углеводородных ресурсов и обеспокоенность спадом общего качества производимых углеводородов привело к развитию процессов для более эффективного восстановления, обработки и/или использования доступных углеводородных ресурсов. Процессы в пласте могут быть использованы для извлечения углеводородных материалов из толщи пород. Может потребоваться изменение химических и/или физических свойств углеводородного материала в подземном пласте, чтобы позволить более просто изъять углеводородный материал из подземного пласта. Химические и/или физические свойства могут включать в себя проходящие на месте реакции, которые производят извлекаемые текучие среды, изменения состава, изменения растворимости, изменения плотности, фазовые изменения и/или изменения вязкости углеводородного материала в пласте. Текучая среда может представлять собой, но, не ограничиваясь, газ, жидкость, эмульсию, буровой раствор и/или поток твердых частиц, обладающий характеристиками потока, аналогичными потоку жидкости.

В патенте США №7575052, выданном Сандбергу и др., описан процесс обработки в пласте, который использует систему циркуляции для нагревания одной или нескольких обрабатываемых областей. Система циркуляции может использовать нагретую жидкую текучую среду для теплопередачи, которая проходит через трубопровод в пласте, чтобы передать теплоту в пласт.

В публикации заявки на патент США 2008-0135254 Винегара и др. описана система и способы для осуществления процесса термообработки в пласте, которые используют систему циркуляции для нагревания одной или нескольких обрабатываемых областей. Система циркуляции использует нагретую жидкую текучую среду для теплопередачи, которая проходит через трубопровод в пласте, чтобы передать теплоту в пласт. В некоторых вариантах осуществления трубопровод расположен, по меньшей мере, в двух скважинах.

В публикации заявки на патент США 2009-0095476 Нгуена и др. описана нагревательная система для толщи пород, которая включает в себя канал, расположенный в скважине в подземном пласте. В канале расположен изолированный проводник. В канале между участком изолированного проводника и участком канала расположено вещество. Вещество может представлять собой соль. При рабочей температуре нагревательной системы вещество представляет собой текучую среду. Тепло передают от изолированного проводника в текучую среду, от текучей среды в канал и от канала в толщу пород.

Предпринималось значительное количество попыток разработать способы и системы, чтобы экономично добывать углеводороды, водород и/или другие продукты из пластов, содержащих углеводороды. Тем не менее, в настоящее время все еще имеется много пластов, содержащих углеводороды, из которых нельзя экономично добыть углеводороды, водород и/или другие продукты. Также имеется потребность в усовершенствовании способов и систем, которые сокращают затраты энергии для обработки пласта, снижают выбросы от процессов обработки, упрощают установку нагревательной системы и/или сокращают утечки тепла в перекрывающей породе по сравнению с процессами извлечения углеводородов, в которых используют наземное оборудование.

Раскрытие изобретения

Варианты осуществления, описанные в этом документе, в целом, относятся к системам, способам и нагревателям для обработки подземных пластов. Варианты осуществления, описанные в этом документе, также, в целом, относятся к нагревателям, имеющим в своем составе новые компоненты. Такие нагреватели можно получить путем использования систем и способов, описанных в этом документе.

В отдельных вариантах осуществления в изобретении предложена одна или несколько систем, способов и/или нагревателей. В некоторых вариантах осуществления системы, способы и/или нагреватели используют для обработки толщи пород.

В отдельных вариантах осуществления способ аккомодации теплового расширения нагревателя в пласте включает в себя этапы, на которых: обеспечивают протекание теплоносителя через канал, чтобы передать теплоту в пласт; и обеспечивают по существу постоянное натяжение концевого участка канала, который проходит за пределы пласта, причем, по меньшей мере, часть концевого участка канала намотана на подвижное колесо, используемое для создания натяжения канала.

В отдельных вариантах осуществления система аккомодации теплового расширения нагревателя в пласте включает в себя канал, выполненный с возможностью передачи теплоты в пласт, когда теплоноситель протекает через канал; и подвижное колесо, причем, по меньшей мере, часть концевого участка канала намотана на колесо, а подвижное колесо используют для поддерживания по существу постоянного натяжения канала для аккомодации расширения канала, когда теплоноситель протекает через канал.

В дополнительных вариантах осуществления признаки специфических вариантов осуществления могут быть скомбинированы с признаками других вариантов осуществления. Например, признаки одного варианта осуществления могут быть скомбинированы с признаками любого другого варианта осуществления.

В дополнительных вариантах осуществления обработку толщи пород осуществляют с использованием любого из способов, систем, источников питания или нагревателей, описанных в этом документе.

В дополнительных вариантах осуществления к специфическим вариантам осуществления, описанным в этом документе, могут быть добавлены дополнительные признаки.

Краткое описание чертежей

Преимущества настоящего изобретения могут стать очевидными специалистам в области техники, благодаря нижеследующему подробному описанию и при обращении к сопровождающим чертежам.

На фиг. 1 показан схематический вид варианта осуществления участка системы термической обработки, предназначенной для обработки пласта, содержащего углеводороды.

На фиг. 2 приведено схематическое представление системы для нагревания пласта, использующей систему циркуляции. На фиг. 3 изображен сильфон.

На фиг. 4А показан трубопровод с расширительной петлей над устьем скважины для аккомодации теплового расширения.

На фиг. 4В показан трубопровод со спирально свернутым или намотанным трубопроводом над устьем скважины для аккомодации теплового расширения.

На фиг. 4С показан трубопровод со спирально свернутым или намотанным трубопроводом в изолированном объеме над устьем скважины для аккомодации теплового расширения.

На фиг. 5 показан участок трубопровода в перекрывающей породе после того, как возникло тепловое расширение.

На фиг. 6 показан участок трубопровода с более чем одним каналом в перекрывающей породе после того, как возникло тепловое расширение.

На фиг. 7 изображено устье скважины со скользящим уплотнением.

На фиг. 8 приведена система, в которой теплоноситель в канале передают в зафиксированный канал или из него.

На фиг. 9 приведена система, в которой зафиксированный канал прикреплен к устью скважины.

На фиг. 10 изображен вариант осуществления уплотнений.

На фиг. 11 изображен вариант осуществления уплотнений, канала и другого канала, закрепленного с помощью блокировочных механизмов.

На фиг. 12 показан вариант осуществления, где блокировочные механизмы посажены на место с использованием мягких металлических уплотнений.

На фиг. 13 изображена U-образная скважина, при этом в скважине расположен нагреватель.

На фиг. 14 изображена U-образная скважина, при этом нагреватель соединен с натяжным колесом.

Хотя в изобретение допускает различные модификации и альтернативные формы, отдельные варианты его осуществления показаны на чертежах в качестве примера и будут описаны подробно. Чертежи могут не быть выполненными в масштабе. Тем не менее, следует понимать, что не предполагается, что чертежи и подробное описание ограничивают изобретение конкретной описанной формой, а наоборот, предполагается, что оно покрывает все модификации, эквиваленты и альтернативы, попадающие под сущность и объем настоящего изобретения, как задано прилагаемой формулой определения.

Осуществление изобретения

Нижеследующее описание, в целом, относится к системам и способам обработки углеводородов в пластах. Такие пласты могут быть обработаны для добычи углеводородных продуктов, водорода и других продуктов.

Термин "плотность в градусах АНИ (Американского нефтяного института)" относится к плотности в градусах АНИ при 15,5°C (60°F). Плотность определяют с помощью способа D6822 или D1298 ASTM.

"АОИМ" обозначает Американское общество испытания материалов.

В контексте нагревательных систем со сниженной теплоотдачей, устройств и способов, термин "автоматически" означает определенное функционирование систем, устройств и способов без использования внешних органов управления (например, внешних контроллеров, таких как контроллер с датчиком температуры и обратной связью, ПИД-регулятор или предсказывающий контроллер).

Термин "асфальт/битум" относится к полутвердому, вязкому материалу, растворимому в сероуглероде. Асфальт/битум может быть получен в результате операций очистки или из толщи пород.

"Углеродное число" означает число атомов углерода в молекуле. Углеводородный флюид может включать в себя углеводороды с различными углеродными числами. Углеводородный флюид можно описать распределением углеродного числа. Углеродные числа и/или распределения углеродных чисел можно определить с помощью распределения истинной точки кипения и/или газо-жидкостной хроматографии.

"Конденсируемые углеводороды" - это углеводороды, которые конденсируются при 25°C и значении абсолютного давления, равном одной атмосфере. Конденсируемые углеводороды могут включать в себя смесь углеводородов, углеродное число которых больше 4. "Неконденсируемые углеводороды" - это углеводороды, которые не конденсируются при 25°C и значении абсолютного давления, равном одной атмосфере. Неконденсируемые углеводороды могут включать в себя углеводороды, углеродное число которых меньше 5.

"Текучая среда" может представлять собой, но, не ограничиваясь, газ, жидкость, эмульсию, буровой раствор и/или поток твердых частиц, обладающий характеристиками потока, аналогичными потоку жидкости.

Термин "пласт" включает в себя один или несколько содержащих углеводороды слоев, один или несколько неуглеводородных слоев, перекрывающих и/или подстилающих. Выражение "углеводородные слои" относится к слоям в пласте, которые содержат углеводороды. Углеводородные слои могут содержать неуглеводородный материал и углеводородный материал. Термины "перекрывающая порода" и/или "подстилающая порода" включают в себя один или несколько различных типов непроницаемых материалов. Например, перекрывающая и/или подстилающая порода может включать в себя скальную породу, сланец, аргиллит или влажную/плотную карбонатную породу. В некоторых вариантах осуществления в процессах термообработки пласта перекрывающая и/или подстилающая порода может включать в себя слои, содержащие углеводороды, или слои, не содержащие углеводороды, которые являются сравнительно непроницаемыми и не подвергаются воздействию температуры во время процесса термообработки пласта, что приводит к значительным изменениям характеристик слоев, содержащих углеводороды, перекрывающей и/или подстилающей породы. Например, подстилающая порода может содержать сланец или аргиллит, но во время термообработки пласта не допускается нагрев подстилающей породы до температур пиролиза. В некоторых случаях перекрывающая порода и/или подстилающая порода могут быть в какой-то степени проницаемыми.

Выражение "пластовый флюид" означает текучие среды, присутствующие в пласте, и могут включать в себя текучие среды пиролиза, синтез-газ, подвижные углеводороды и воду (пар). Пластовые флюиды могут включать в себя углеводородные флюиды, а также неуглеводородные флюиды. Термин "подвижные флюиды" означает флюиды в пласте, содержащем углеводороды, которые могут перетекать в результате термообработки пласта. Термин "добываемые флюиды" относится к флюидам, извлекаемым из пласта.

Выражение "источник тепла" представляет собой любую систему для подачи тепла, по меньшей мере, на участок пласта по существу с помощью кондуктивной/лучистой теплопередачи. Например, источник тепла может включать в себя электропроводные материалы и/или электронагреватели, такие как изолированный проводник, вытянутый элемент и/или проводник, расположенные в канале. Источник тепла также может включать в себя системы, которые вырабатывают теплоту путем сжигания топлива, являющегося внешним по отношению к пласту, или находящегося в пласте. Системы могут представлять собой поверхностные горелки, скважинные газовые горелки, беспламенные распределенные камеры сгорания и природные распределенные камеры сгорания. В некоторых вариантах осуществления тепло, подаваемое или вырабатываемое в одном или нескольких источниках тепла, может снабжаться другими источниками энергии. Другие источники энергии могут непосредственно нагревать пласт, либо энергия может передаваться на передающую среду, которая непосредственно или косвенно нагревает пласт. Следует понимать, что один или несколько источников тепла, которые подводят тепло к пласту, используют различные источники энергии. Таким образом, например, для данного пласта некоторые источники тепла могут подавать тепло от электропроводных материалов, резистивных электронагревателей, некоторые источники тепла могут подавать тепло от процесса горения, а некоторые источники тепла могут подавать тепло от одного или нескольких других источников энергии (например, от химических реакций, солнечную энергию, энергию ветра, биомассы или других источников возобновляемой энергии). Химическая реакция может включать в себя экзотермическую реакцию (например, реакцию окисления). Источник тепла также может включать в себя электропроводный материал и/или нагреватель, который подает тепло в зону, расположенную возле и/или окружающую место нагревания, такую как нагревательная скважина.

"Нагреватель" - это любая система или источник тепла, предназначенный для выработки теплоты в скважине или в области возле скважины. Нагреватели могут представлять собой электронагреватели, горелки, камеры сгорания, которые осуществляют реакцию с веществом, расположенным или добываемым из пласта, и/или их сочетания, но, не ограничиваясь этим.

"Тяжелые углеводороды" - это вязкие углеводородные флюиды. Тяжелые углеводороды могут включать в себя высоковязкие углеводородные флюиды, такие как сырая нефть, смола и/или асфальт. Тяжелые углеводороды могут включать в себя углерод и водород, а также меньшие концентрации серы, кислорода и азота. Дополнительные элементы также могут присутствовать в тяжелых углеводородах в незначительных количествах. Тяжелые углеводороды можно классифицировать посредством плотности в градусах АНИ. Тяжелые углеводороды, в общем, обладают плотностью менее 20° АНИ. Сырая нефть, например, в целом, имеет плотность около 10-20° АНИ, в то время как смола имеет плотность менее 10° АНИ. Вязкость тяжелых углеводородов, в целом, больше примерно 100 сантипуазов при 15°C. Тяжелые углеводороды могут включать в себя ароматические соединения или другие сложные циклические углеводороды.

Тяжелые углеводороды можно обнаружить в сравнительно проницаемом пласте. Сравнительно проницаемый пласт может включать в себя тяжелые углеводороды, захваченные, например, песком или карбонатом. Выражение "сравнительно проницаемый" касательно пластов или их участков означает, что средняя проницаемость составляет 10 миллидарси или более (например, 10 или 100 миллидарси). "Сравнительно низкая проницаемость" касательно пластов или их участков означает, что средняя проницаемость составляет менее 10 миллидарси. Один дарси равен примерно 0,99 мкм. Непроницаемый слой, в общем, имеет проницаемость менее чем примерно 0,1 миллидарси.

Отдельные типы пластов, которые включают в себя тяжелые углеводороды, также могут включать в себя природные минеральные воски или природные асфальтиты. "Природные минеральные воски" обычно образуются в по существу трубчатых прожилках, которые могут иметь несколько метров в ширину, несколько километров в длину и сотни метров в глубину. "Природные асфальтиты" включают в себя твердые углеводороды ароматических соединений и обычно образуются в больших жилах.

Извлечение из пластов углеводородов, таких как природные минеральные воски и природные асфальтиты, может включать в себя плавление, чтобы получить жидкие углеводороды, и/или добычу углеводородов из пластов растворением.

"Углеводороды", в общем, определяют как молекулы, образованные преимущественно из атомов углерода и водорода. Углеводороды также могут включать в себя другие элементы, такие как галогены, металлические элементы, азот, кислород и/или сера, но, не ограничиваясь этим. Углеводороды могут представлять собой кероген, битум, пиробитум, масла, природные минеральные воски и асфальтиты. Углеводороды могут быть расположены в скелетных породах в земле или примыкать к ним. Скелетные породы включают в себя осадочные породы, пески, силицилиты, карбонаты, диатомиты и другие пористые среды, но, не ограничиваясь этим. "Углеводородные флюиды" представляют собой флюиды, содержащие углеводороды. Углеводородные флюиды могут включать в себя, охватывать или быть охваченными неуглеводородными флюидами, такими как водород, азот, окись углерода, двуокись углерода, сероводород, вода и аммиак.

Выражение "процесс преобразования в пласте" относится к процессу нагревания пласта, содержащего углеводороды, с помощью источников тепла, чтобы поднять температуру, по меньшей мере, части пласта до температуры, превышающей температуру пиролиза, чтобы в пласте образовывался пиролизный флюид.

Выражение "процесс термообработки в пласте" относится к процессу нагревания пласта, содержащего углеводороды, с помощью источников тепла, чтобы поднять температуру, по меньшей мере, части пласта до температуры, превышающей температуру, при которой возникает подвижный флюид, висбрекинг и/или пиролиз материала, содержащего углеводороды, чтобы в пласте образовывались подвижные флюиды, флюиды висбрекинга и/или пиролизные флюиды.

Термин "изолированный проводник" означает любой вытянутый материал, который способен проводить электричество и который полностью или частично покрыт электроизоляционным материалом.

"Кероген" представляет собой твердый, нерастворимый углеводород, преобразованный путем естественной деградации, и который в принципе содержит углерод, водород, азот, кислород и серу. Уголь и нефтеносный сланец являются типичными примерами материалов, содержащих кероген. "Битум" - это некристаллический твердый или вязкий углеводородный материал, который по существу растворим в сероуглероде. "Нефть" - это текучая среда содержащая смесь конденсируемых углеводородов.

Термин "перфорация" включает в себя отверстия, прорези, проемы или дырки в стенке канала, трубы, трубопровода или другой направляющей потока, которые позволяют втекать или вытекать из канала, трубы, трубопровода или другой направляющей потока.

"Пиролиз" представляет собой разрыв химических связей под действием прикладываемого тепла. Например, пиролиз может включать в себя преобразование соединения в одну или несколько других субстанций только под воздействием тепла. Тепло может быть передано к участку пласта для того, чтобы возник пиролиз.

"Пиролизные флюиды" или "продукты пиролиза" относятся к флюидам, полученным по существу во время процесса пиролиза углеводородов. Флюиды, полученные при реакциях пиролиза, могут смешиваться с другими флюидами в пласте. Смесь можно рассматривать в качестве пиролизного флюида или продукта пиролиза. Используемый в этом документе термин "зона пиролиза" относится к объему пласта (например, сравнительно проницаемого пласта, такого как пласт нефтеносных песков), который подвергают реакции, или в котором происходит реакция для образования пиролизного флюида.

"Обогащенные слои" в пласте, содержащем углеводороды, представляют собой сравнительно тонкие слои (обычно около от 0,2 м до 0,5 м толщиной). Обогащенность обогащенных слоев, в целом, составляет около 0,150 л/кг или больше. Обогащенность некоторых обогащенных слоев составляет около 0,170 л/кг или больше, около 0,190 л/кг или больше или 0,210 л/кг или больше. Обогащенность бедных слоев, в целом, составляет около 0,100 л/кг или меньше, и они, в общем, толще, чем обогащенные слои. Обогащенность и местоположения слоев определяют, например, путем взятия керновой пробы и последующего анализа керна методом Фишера, выполнения плотностного или нейтронного каротажа или других способов каротажа. Обогащенные слои обладают более низкой начальной теплопроводностью, чем другие слои пласта. Обычно теплопроводность обогащенных слоев от 1,5 до 3 раз ниже, чем теплопроводность бедных слоев. Кроме того, коэффициент теплового расширения обогащенных слоев больше, чем у бедных слоев пласта.

Выражение "суперпозиция тепла" относится к подаче тепла от двух или нескольких источников тепла в выбранный участок пласта, так что на температуру пласта, по меньшей мере, в одном месте между источниками тепла влияют источники тепла.

"Синтез-газ" - это смесь, включающая в себя водород и окиси углерода. Дополнительные компоненты синтез-газа могут включать в себя воду, углекислый газ, азот, метан и другие газы. Синтез-газ может вырабатываться в результате множества процессов и из разных исходных материалов. Синтез-газ может быть использован для синтеза широкого диапазона соединений.

"Смола" представляет собой вязкий углеводород, вязкость которого, в целом, превосходит примерно 10000 сантипуазов при 15°С. Удельный вес смолы, в общем, превосходит 1. Смола может обладать плотностью менее 10° АНИ.

"Пласт нефтеносных песков" представляет собой пласт, в котором углеводороды преимущественно присутствуют в форме тяжелых углеводородов и/или смолы, захваченной в гранулярном минеральном скелете породы или в другой литологии вмещающих пород (например, в песке или карбонате). Примеры пластов нефтеносных песков включают в себя такие месторождения, как месторождение Атабаска, месторождение Гросмонт и месторождение Пис-Ривер, все три расположены в провинции Альберта, Канада; и месторождение Файа в нефтеносном поясе реки Ориноко в Венесуэле.

"Нагреватель с ограничением рабочих температур", в целом, представляет собой нагреватель, который регулирует теплоотдачу (например, снижает теплоотдачу) при температуре, превышающей заданную, без использования внешних органов управления, таких как контроллеры температуры, регуляторы мощности, ректификаторы или другие устройства. Нагреватели с ограничением рабочих температур могут представлять собой электрические резистивные нагреватели, работающие от переменного тока (АС) или модулированного (например, "ограниченного") постоянного тока (DC).

"Толщина" слоя означает толщину поперечного сечения слоя, причем поперечное сечение проходит по нормали к поверхности слоя.

"U-образная скважина" представляет собой скважину, которая проходит от первого отверстия в пласте через, по меньшей мере, часть пласта и выходит через второе отверстие в пласте. В этом контексте скважина может иметь форму в виде буквы "v" или "и" только в грубом приближении, при этом надо понимать, что, чтобы рассматривать скважину в качестве "u-образной", "ножки" буквы "u" не обязательно должны быть параллельными друг относительно друга или перпендикулярными "дну" буквы "u".

Термин "обогащать" относится к увеличению качества углеводородов. Например, обогащение тяжелых углеводородов может привести к увеличению плотности тяжелых углеводородов.

Термин "висбрекинг" относится к распутыванию молекул в текучей среде во время термообработки и/или к распаду больших молекул на меньшие молекулы во время термообработки, что приводит к снижению вязкости текучей среды.

"Вязкость" означает кинематическую вязкость при 40°C, если не указано иное. Вязкость определяют с помощью способа D445 ASTM.

"Воск" относится к легкоплавкой органической смеси или соединению с высоким молекулярным весом, которое является твердым при низких температурах и жидким при более высоких температурах, и, являясь твердым, может образовывать барьер для воды. Примеры восков включают в себя животный воск, растительный воск, минеральный воск, нефтяной парафин и синтетический воск.

Термин "скважина" обозначает отверстие в пласте, выполненное посредством бурения или вставки канала в пласт. Скважина может иметь по существу круглое поперечное сечение или другую форму поперечного сечения. Используемые в этом документе термины "колодец" и "отверстие" в контексте отверстия в пласте могут быть взаимозаменяемыми с термином "скважина".

Чтобы получить разные продукты, пласт может быть подвергнут обработке различными способами. Для обработки пласта во время процесса термообработки могут использоваться различные этапы или процессы. В некоторых вариантах осуществления один или несколько участков пласта разрабатывают растворением, чтобы удалить растворимые минералы из участков. Добываемые растворением минералы могут быть произведены до, во время и/или после процесса термообработки пласта. В некоторых вариантах осуществления средняя температура одного или нескольких участков, добычу из которых осуществляют растворением, может поддерживаться ниже примерно 120°C.

В некоторых вариантах осуществления один или несколько участков пласта нагревают, чтобы удалить воду из участков и/или чтобы удалить метан и другие летучие углеводороды из участков. В некоторых вариантах осуществления в процессе удаления воды и летучих углеводородов средняя температура может быть поднята от температуры окружающей среды до температур ниже примерно 220°C.

В некоторых вариантах осуществления один или несколько участков пласта нагревают до температур, которые допускают перемещение и/или висбрекинг углеводородов в пласте. В некоторых вариантах осуществления средняя температура одного или нескольких участков пласта может быть поднята до температур активации углеводородов в участках (например, до температур из диапазона от 100°C до 250°C, от 120°C до 240°C или от 150°C до 230°C).

В некоторых вариантах осуществления один или несколько участков нагревают до температур, которые допускают реакции пиролиза в пласте. В некоторых вариантах осуществления средняя температура одного или нескольких участков пласта может быть поднята до температур пиролиза углеводородов в участках (например, до температур из диапазона от 230°C до 900°C, от 240°C до 400°C или от 250°C до 350°C).

Нагревание пласта, содержащего углеводороды, с помощью нескольких источников тепла может установить термические градиенты вокруг источников тепла, которые поднимают температуру углеводородов в пласте до желаемых температур с желаемыми скоростями нагрева. Скорость увеличения температуры через диапазон температур активации и/или диапазон температур пиролиза для желаемых продуктов может повлиять на качество и количество пластовых флюидов, получаемых из пласта, содержащего углеводороды. Медленно поднимая температуру пласта через диапазон температур активации и/или диапазон температур пиролиза, можно допустить получение из пласта углеводородов высокого качества, высокой плотности. Медленно поднимая температуру пласта через диапазон температур активации и/или диапазон температур пиролиза, можно позволить извлечь большое количество углеводородов, присутствующих в пласте в качестве углеводородного продукта.

В некоторых вариантах осуществления термообработки пласта участок пласта нагревают до желаемой температуры вместо медленного нагрева через диапазон температур. В некоторых вариантах осуществления желаемая температура составляет 300°C, 325°C или 350°C. В качестве желаемой температуры можно выбрать другое значение.

Суперпозиция теплоты от источников тепла позволяет установить в пласте желаемую температуру сравнительно быстро и эффективно. Подводимая в пласт энергия от источников тепла может быть отрегулирована так, чтобы поддерживать в пласте по существу желаемую температуру.

Продукты активации и/или пиролиза могут быть получены из пласта через эксплуатационные скважины. В некоторых вариантах осуществления среднюю температуру одного или нескольких участков поднимают до температур активации, и из эксплуатационных скважин получают углеводороды. Средняя температура одного или нескольких участков может быть поднята до температур пиролиза после того, как выход из-за активации опустится ниже выбранного значения. В некоторых вариантах осуществления средняя температура одного или нескольких участков может быть поднята до температур пиролиза без значительного выхода до достижения температур пиролиза. Пластовые флюиды, включая продукты пиролиза, могут быть получены через эксплуатационные скважины.

В некоторых вариантах осуществления средняя температура одного или нескольких участков может быть поднята до температур достаточных для того, чтобы после активации и пиролиза допустить выход синтез-газа. В некоторых вариантах осуществления, углеводороды могут быть нагреты до температур, достаточных для того, чтобы допустить выход синтез-газа без значительного выхода до достижения температур, достаточных для того, чтобы допустить выход синтез-газа. Например, синтез-газ может быть получен в диапазоне температур примерно от 400°C до 1200°C, от 500°C до 1100°C или от 550°C до 1000°C. Текучая среда, вырабатывающая синтез-газ (например, пар и/или вода) может быть введена в участки для выработки синтез-газа. Синтез-газ может быть получен из эксплуатационных скважин.

Добыча растворением, извлечение летучих углеводородов и воды, активация углеводородов, пиролиз углеводородов, выработка синтез-газа и/или другие процессы могут быть выполнены во время процесса термообработки пласта. В некоторых вариантах осуществления некоторые процессы могут быть выполнены после процесса термообработки пласта. Такие процессы могут включать в себя восстановление тепла от обработанных участков, сохранение текучих сред (например, воды и/или углеводородов) в ранее обработанных участках и/или отделение диокиси углерода в ранее обработанных участках.

На фиг. 1 показан схематический вид варианта осуществления участка системы термической обработки, предназначенной для обработки пласта, содержащего углеводороды. Система термической обработки пласта может включать в себя барьерные скважины 200. Барьерные скважины используют для того, чтобы образовать барьер вокруг обрабатываемой области. Барьер препятствует потоку флюидов в и/или из обрабатываемой области. Барьерная скважина включает в себя водопонижающие скважины, вакуумные скважины, захватывающие скважины, нагнетательные скважины, цементирующие скважины, морозильные скважины и их сочетания, но, не ограничиваясь этим. В некоторых вариантах осуществления барьерные скважины 200 представляют собой водопонижающие скважины. Водопонижающие скважины могут удалять жидкую воду и/или препятствовать поступлению жидкой воды в участок пласта, который надо нагреть, или в нагреваемый пласт. В варианте осуществления, показано на фиг. 1, барьерные скважины 200 показаны проходящими только вдоль одной стороны источников 202 тепла, но барьерные скважины обычно окружают все используемые источники 202 тепла или источники, которые надо использовать, чтобы нагреть обрабатываемую область пласта.

Источники 202 тепла размещают, по меньшей мере, в части пласта. Источники 202 тепла могут включать в себя нагреватели, такие как изолированные проводники, нагреватели с проводником в канале, поверхностные горелки, беспламенные распределенные камеры сгорания и/или природные распределенные камеры сгорания. Источники 202 тепла также могут включать в себя другие типы нагревателей. Источники 202 тепла подают тепло, по меньшей мере, в часть пласта, чтобы нагреть углеводороды в пласте. Энергия может подаваться к источникам 202 тепла через линии 204 питания. Лини 204 питания могут структурно отличаться, в зависимости от типа источника тепла или источников тепла, используемых для нагрева пласта. Линии 204 питания для источников тепла могут передавать электричество для электронагревателей, топливо для камер сгорания, или могут передавать теплообменную текучую среду, которая циркулирует в пласте. В некоторых вариантах осуществления электричество для процесса термообработки пласта может обеспечиваться атомной электростанцией или атомными электростанциями. Использование атомной энергии может позволить сократить или ограничить выбросы окиси углерода в процессе термообработки пласта.

Когда пласт нагревают, поступление тепла в пласт может вызвать расширение пласта и геомеханическое перемещение. Источники тепла могут быть включены до, вместе или во время процесса обезвоживания. Реакцию пласта на нагрев можно смоделировать посредством компьютерной симуляции. Компьютерная симуляция может быть использована для разработки шаблона и последовательности активизации источников тепла в пласте так, чтобы геомеханическое перемещение пласта не оказало неблагоприятного воздействия на функциональность источников тепла, эксплуатационных скважин и другого оборудования в пласте.

Нагрев пласта может привести к увеличению проницаемости и/или пористости пласта. Увеличение проницаемости и/или пористости может привести к сокращению массы в пласте из-за испарения и удаления воды, удаления углеводородов и/или возникновения трещин. Текучая среда может легко течь в нагретый участок пласта, благодаря увеличенной проницаемости и/или пористости пласта. Благодаря увеличенной проницаемости и/или пористости пласта, текучая среда в нагретом участке пласта может перемещаться на значительное расстояние через пласт. Значительное расстояние может превышать 1000 м, в зависимости от различных факторов, таких как проницаемость пласта, свойства текучей среды, температура пласта и градиент давления, допускающий перемещение текучей среды. Способность текучей среды перемещаться на значительное расстояние в пласте позволяет расположить эксплуатационные скважины 206 сравнительно далеко от пласта.

Эксплуатационные скважины 206 используют для извлечения пластового флюида из пласта. В некоторых вариантах осуществления эксплуатационная скважина 206 включает в себя источник тепла. Источник тепла в эксплуатационной скважине может нагревать один или несколько участков пласта в эксплуатационной скважине или рядом с ней. В некоторых вариантах осуществления процесса термообработки пласта количество теплоты, подаваемой в пласт от эксплуатационной скважины на метр эксплуатационной скважины, меньше, чем количество теплоты, подаваемой в пласт от источника тепла, который нагревает пласт, на метр источника тепла. Теплота, подаваемая в пласт от эксплуатационной скважины, может увеличить проницаемость пласта возле эксплуатационной скважины посредством испарения и удаления флюида жидкой фазы возле эксплуатационной скважины и/или путем увеличения проницаемости пласта возле эксплуатационной скважины из-за формирования макро и/или микротрещин.

В эксплуатационной скважине может быть расположено более одного источника тепла. Источник тепла в нижнем участке эксплуатационной скважины может быть выключен, если суперпозиция теплоты от смежных источников тепла нагревает пласт достаточно, чтобы нейтрализовать преимущества, обеспечиваемые нагревом пласта от эксплуатационной скважины. В некоторых вариантах осущес