Нанопорошки органических соединений, способы их получения и их суспензии
Иллюстрации
Показать всеНастоящее изобретение представляет собой способ получения нанопорошка органического соединения, включающий: смешивание гранулированного органического соединения, гранулированного углеводного соединения, содержащего по меньшей мере какой-либо один из гранулированного сахарида и гранулированного сахароспирта в 0,3-кратном или большем количестве по массе относительно количества органического соединения, и жидкости, в которой органическое соединение не растворяется или плохо растворяется в смесителе; мокрое измельчение органического соединения с использованием гранулированного углеводного соединения в качестве мелющей среды после смешивания таким образом, что средний диаметр частиц органического соединения после измельчения составляет 500 нм или меньше и 90% диаметр составляет менее 1500 нм, причем мокрое измельчение органического соединения производят при размешивании смеси, полученной после смешивания в смесителе. Осуществление изобретения позволяет упростить процесс тонкого измельчения органических соединений за счет уменьшения или исключения необходимости использовать мелющие тела и иные добавки, подлежащие удалению из получаемых нанопорошков. 8 з.п. ф-лы, 15 табл., 107 пр.
Реферат
Перекрестные ссылки
Настоящая патентная заявка претендует на приоритет от Японской патентной заявки No. 2012-108972, поданной 11 мая 2012 г., все содержание которой включено сюда путем ссылки. Кроме того, сюда же включено путем ссылки содержание всех патентов, патентных заявок и документов, приведенных в настоящей заявке.
Область техники, к которой относится изобретение
Настоящее изобретение имеет отношение к нанопорошкам органических соединений, способам их получения и суспензиям, содержащим диспергированные в них органические соединения.
Уровень техники
Для того чтобы активный ингредиент, содержащийся в лекарственном препарате или продукте лечебного питания, выполнял свои функции без чрезмерного его приема, нужно повысить биодоступность препарата или лечебного питания. Возьмем для примера лекарственные препараты: хотя пероральные формы имеют преимущества в том, что они удобны и не вызывают больших неудобств по сравнению с препаратами для инъекций, но у них есть тот недостаток, что они обладают низкой биодоступностью. Пероральные формы поступают в кишечник через желудок и двенадцатиперстную кишку, всасываются в кровь главным образом в желудочно-кишечном тракте, а затем поступают в печень через воротную вену. При прохождении такого длинного пути часть пероральной формы разлагается под действием кислоты в желудке или подвергается метаболизму в печени, при этом она превращается в совершенно другое вещество. Одной из главных причин низкой биодоступности является то, что пероральные формы с трудом всасываются из пищеварительных органов типа кишечника. Для того чтобы повысить биодоступность лекарственной формы, необходимо уменьшить размеры органического соединения с лекарственными ингредиентами до уровня, который необходим для того, чтобы соединение легко всасывалось из органов пищеварения в кровь.
В случае препаратов для инъекций - типичного примера парентеральных форм, для эффективного функционирования лекарственного ингредиента в препарате нужно, чтобы лекарственный ингредиент прошел через кровеносные сосуды в организме до искомого участка. Внутренний диаметр капиллярных кровеносных сосудов, которые являются самыми узкими среди кровеносных сосудов, составляет около 5 мкм. Соответственно, для того чтобы органическое соединение с лекарственным ингредиентом прошло через капиллярный кровеносный сосуд, не вызывая закупорки, диаметр частиц такого органического соединения должен быть 5 мкм или меньше. По той же причине, что и для пероральных форм, для лечебного питания тоже необходимо уменьшить размеры органического соединения с активными ингредиентами до уровня, который необходим для того, чтобы соединение легко всасывалось из органов пищеварения в кровь.
В случае твердых осветляющих кожу ингредиентов и увлажняющих ингредиентов, содержащихся в косметических средствах, для того чтобы они легко наносились и распределялись тонким слоем на поверхности кожи, и в то же время, если они находятся в виде косметического молочка, не вызывали разделения фаз в контейнере, в котором это косметическое средство содержится, необходимо уменьшить слипание и размеры частиц с тем, чтобы сохранялось однородное дисперсное состояние.
В соответствии с современным развитием нанотехнологии, большое внимание привлекает получение органических соединений в наноразмерах, удовлетворяющих вышеприведенным требованиям. Например, известен препарат в виде частиц, который содержит стероид или производное стероида с медианой распределения частиц в пределах от 0,005 до 5 мкм и с 90% диаметром в 10 мкм или меньше (к примеру, см. Патентный документ 1). Однако присутствие небольшого процента крупных частиц в таком препарате вследствие столь широкого распределения диаметра частиц вызывает проблему нестабильности его суспензии, т.е. проблему низкой дисперсности препарата частиц.
Например, в качестве одного из методов тонкого измельчения органических соединений до уровня нанопорошка с узким распределением диаметра частиц хорошо известен метод измельчения органических соединений на шаровой мельнице с помощью шариков из керамики, стекла и пр. (к примеру, см. Патентный документ 2). Нанопорошок с узким распределением диаметра частиц можно получить применением такого механического воздействия или растирающей силы к частицам органического соединения. Кроме того, также известен и мокрый способ измельчения органических соединений в органической жидкости с помощью частиц соли в качестве мелющих тел (milling medium) (к примеру, см. Патентные документы 3 и 4). Способ с применением частиц соли является более выгодным, чем способ с применением шариков с учетом того, что из мелющих тел поступает меньше загрязняющих примесей. В то время как примеси, поступающие из шариков, удаляются с трудом, примеси, поступающие из частиц соли, легко удаляются путем промывки водой (что также называется процессом удаления соли) вследствие высокой растворимости соли в воде.
Публикации из предшествующего уровня техники
Патентные документы
Патентный документ 1: Japanese Patent Laid-Open Publication No. 2006-089386
Патентный документ 2: Japanese Patent Laid-Open Publication No. H04-295420
Патентный документ 3: International Publication WO/2008/126797
Патентный документ 4: International Publication WO/2010/032434
Сущность изобретения
Цели и задачи изобретения
Метод мокрого измельчения с помощью частиц соли в качестве мелющих тел выгоден ввиду того, что предотвращается загрязнение неустранимыми примесями, но он требует дополнительных усовершенствований. Одним из усовершенствований является проведение производственного процесса как можно более просто, без промывки водой для удаления соли, загрязняющей органическое соединение после измельчения. При использовании частиц соли в качестве мелющих тел она обычно подается в устройство для мокрого измельчения предпочтительно в 10-30-кратном количестве по массе относительно измельчаемого органического соединения. Если такое большое количество соли не удалить после размельчения, то органическое соединение после измельчения будет невозможно безопасно использовать в или на живом организме. Другое улучшение состоит в защите устройства для мокрого измельчения от коррозии. Безусловно, следует избегать загрязнения вследствие коррозии при использовании органического соединения на живом организме. Хорошо известно применение антикоррозионных средств в качестве общего метода борьбы с коррозией, но их контакт с органическим соединением также недопустим. С другой стороны, можно выбрать такое устройство для мокрого помола, которое сделано из не поддающегося коррозии материала (к примеру, сделанное на заказ устройство с керамическим покрытием на внутренней поверхности), но такое устройство невыгодно ввиду высокой стоимости вследствие использования специального устройства.
Настоящее изобретение осуществлялось для удовлетворения вышеприведенных требований и его целью является получение нанопорошков органических соединений удобным способом, при низкой стоимости и с меньшим количеством примесей, которые приходится удалять.
Средства для решения задач
Авторы настоящего изобретения провели тщательное исследование для решения вышеизложенных проблем и в результате обнаружили, что при измельчении органических соединений, имеющих гранулярную форму, с добавлением по меньшей мере одного гранулированного углеводного соединения (или сахарида) органическое соединение эффективно измельчается, а также становится ненужным процесс удаления соли после измельчения, к тому же можно избежать коррозии устройства для мокрого измельчения, и на основе этих данных смогли осуществить настоящее изобретение. С другой стороны, в некоторых случаях можно необязательно добавлять соль к гранулированным углеводным соединениям, при этом, поскольку количество соли будет несравнимо меньше, чем ее количество при использовании ее в качестве мелющих тел, то оказалось, что не только процесс удаления соли стал ненужным, но также и уменьшился риск коррозии устройства. Далее следует конкретное содержание настоящего изобретения.
Одно воплощение по настоящему изобретению составляют нанопорошки органических соединений, включающие:
гранулированное органическое соединение со средним диаметром частиц 500 нм или меньше и 90% диаметром менее 1500 нм; и
углеводное соединение, включающее по меньшей мере один сахарид либо сахароспирт в 0,3-кратном или большем количестве по массе относительно количества органического соединения.
Другое воплощение по настоящему изобретению составляют нанопорошки органических соединений, в которых углеводное соединение находится в 0,5-30-кратном количестве по массе относительно количества органического соединения.
Следующее воплощение по настоящему изобретению составляют нанопорошки органических соединений, дополнительно содержащие физиологически приемлемый полиол.
Следующее воплощение по настоящему изобретению составляют нанопорошки органических соединений, в которых углеводное соединение представляет собой одно или несколько выбранных из группы, состоящей из маннитола, мальтитола, ксилитола, эритритола, глюкозы, фруктозы, инозитола, лактозы, трегалозы, целлобиозы и декстрина.
Следующее воплощение по настоящему изобретению составляют нанопорошки органических соединений, дополнительно содержащие физиологически приемлемую соль.
Следующее воплощение по настоящему изобретению составляют нанопорошки органических соединений, в которых физиологически приемлемая соль представлена хлоридом натрия.
Следующее воплощение по настоящему изобретению составляют нанопорошки органических соединений, в которых органическое соединение представляет собой одно или несколько выбранных из группы, состоящей из кларитромицина, фексофенадина гидрохлорида, фторметолона, куркуминоида, куркумина, рутина, мефенамовой кислоты, ацетаминофена, ибупрофена, амфотерицина В, диклофенака натрия, индометацина, фелбинака, пранлукаста гидрата, дексаметазона и фенофибрата.
Одно воплощение по настоящему изобретению составляют суспензии, содержащие по меньшей мере одно органическое соединение, которое содержится в нанопорошке органического соединения в соответствии с любым из вышеизложенных пунктов, диспергированном в жидкой дисперсионной среде, в которой органическое соединение не растворяется или плохо растворяется.
Одно воплощение по настоящему изобретению составляет способ получения нанопорошков органических соединений, включающий:
смешивание гранулированного органического соединения, гранулированного углеводного соединения, включающего по меньшей мере один сахарид либо сахароспирт в 0,3-кратном или большем количестве по массе относительно количества органического соединения, и жидкости, в которой органическое соединение не растворяется или плохо растворяется; и
мокрое измельчение органического соединения после смешивания таким образом, чтобы средний диаметр его частиц составлял 500 нм или меньше и 90% диаметр составлял менее 1500 нм.
Другое воплощение по настоящему изобретению составляет способ получения нанопорошков органических соединений, в котором углеводное соединение находится в 0,5-30-кратном количестве по массе относительно количества органического соединения.
Следующее воплощение по настоящему изобретению составляет способ получения нанопорошков органических соединений, в котором смешивание проводится с добавлением физиологически приемлемого полиола в качестве жидкости, в которой органическое соединение не растворяется или плохо растворяется.
Следующее воплощение по настоящему изобретению составляет способ получения нанопорошков органических соединений, в котором мокрое измельчение органического соединения происходит во время размешивания смеси, полученной после смешивания, в месилке (kneader).
Следующее воплощение по настоящему изобретению составляет способ получения нанопорошков органических соединений, в котором процесс сушки осуществляется после измельчения.
Следующее воплощение по настоящему изобретению составляет способ получения нанопорошков органических соединений, в котором углеводное соединение представляет собой одно или несколько выбранных из группы, состоящей из маннитола, мальтитола, ксилитола, эритритола, глюкозы, фруктозы, инозитола, лактозы, трегалозы, целлобиозы и декстрина.
Следующее воплощение по настоящему изобретению составляет способ получения нанопорошков органических соединений, в котором в процессе смешивания также добавляется физиологически приемлемая соль.
Следующее воплощение по настоящему изобретению составляет способ получения нанопорошков органических соединений, в котором физиологически приемлемая соль представлена хлоридом натрия.
Следующее воплощение по настоящему изобретению составляет способ получения нанопорошков органических соединений, в котором органическое соединение представляет собой одно или несколько выбранных из группы, состоящей из кларитромицина, фексофенадина гидрохлорида, фторметолона, куркуминоида, куркумина, рутина, мефенамовой кислоты, ацетаминофена, ибупрофена, амфотерицина В, диклофенака натрия, индометацина, фелбинака, пранлукаста гидрата, дексаметазона и фенофибрата.
Преимущества настоящего изобретения
В соответствии с настоящим изобретением, нанопорошки органических соединений могут быть получены удобным способом, при низкой стоимости и с меньшим количеством примесей, которые приходится удалять.
Раскрытие сущности изобретения
Далее будут описаны воплощения нанопорошков органических соединений, способов их получения и их суспензий по настоящему изобретению.
1. Нанопорошки органических соединений
Нанопорошки органических соединений согласно воплощению включают:
гранулированное органическое соединение (А) со средним диаметром частиц 500 нм или меньше и 90% диаметром менее 1500 нм; и
углеводное соединение (В), включающее по меньшей мере один сахарид либо сахароспирт в 0,3-кратном или большем количестве по массе относительно количества органического соединения.
Нанопорошки органических соединений могут дополнительно включать физиологически приемлемую соль (С).
С другой стороны, нанопорошки органических соединений могут дополнительно включать, в соответствии с их применением, одну или несколько других добавок (D), нежели соль.
Термин "средний диаметр частиц" в настоящем описании означает математический средний диаметр (здесь он определяется как значение Dav) в распределении диаметров частиц при измерении методом динамического рассеяния света с корреляцией фотонов. Термин "50% диаметр" (определяется как медианный диаметр или значение D50) означает такой диаметр частиц, при котором количество диаметров частиц с большей стороны становится равным количеству диаметров частиц с меньшей стороны при разделении диаметров частиц порошка на две группы. Термин "90% диаметр" (значение D90) означает диаметр частиц у частиц в положении 90% при отсчете от наименьшего размера диаметра частиц 0% (минимум) до 100% (максимум) в распределении диаметра частиц при измерении вышеприведенным методом. Термин "10% диаметр" (значение D10) означает диаметр частиц у частиц в положении 10% при отсчете от наименьшего размера диаметра частиц 0% (минимум) до 100% (максимум) в распределении диаметра частиц при измерении вышеприведенным методом. Средний диаметр частиц органических соединений более предпочтительно находится в пределах от 50 до 400 нм, еще более предпочтительно в пределах от 100 до 350 нм. Значение D90 у органических соединений более предпочтительно составляет менее 700 нм, еще более предпочтительно менее 500 нм.
"Нанопорошок органического соединения" в настоящем описании может быть представлен любым порошком, если только он содержит по меньшей мере одно органическое соединение (А) в виде гранул и углеводное соединение (В); при этом он может содержать одну или несколько добавок, отличных от этих соединений. Распределение диаметров частиц методом динамического рассеяния света с корреляцией фотонов измеряется для органического соединения, имеющего форму гранул. Однако, если с поверхностью частиц органического соединения физически соединяется или химически связано углеводное соединение, то распределение диаметров частиц измеряется для того гранулированного органического соединения, с которым соединяется или связано углеводное соединение.
(А) Органические соединения
Органические соединения включают те, что применяются в качестве активных ингредиентов в лекарствах, лечебном питании, пищевых добавках, косметике и пр., но не ограничиваются ими. Предпочтительные примеры применения в медицине включают средства против ожирения, кортикостероиды, ингибиторы эластаз, анальгетики, противогрибковые препараты, противораковые препараты, противорвотные, сердечно-сосудистые препараты, противовоспалительные, антипаразитарные, антиаритмические, антибиотики, антикоагулянты, антидепрессанты, антидиабетические, антиэпилептические препараты, антигистаминовые, гипотензивные препараты, антимускариновые препараты, препараты против микобактерий, противораковые препараты, иммунодепрессанты, антитиреоидные, противовирусные, седативные, антагонисты бета-адренорецепторов, продукты крови, сердечные средства, контрастные среды, противокашлевые, диагностические средства, диагностические контрастные средства, диуретики, дофаминергические препараты, гемостатики, иммунизирующие препараты, липидные регуляторы, мьппечные релаксанты, парасимпатомиметики, паратиреоидный кальцитонин и его дифосфонатные соли, простагландины, радиоактивные препараты, половые гормоны, противоаллергические препараты, стимуляторы, средства, подавляющие аппетит, симпатомиметики, тиреоидные препараты, сосудорасширяющие, препараты против паркинсонизма, психотропные средства, препарат, затрагивающие центральную нервную систему, жаропонижающие, транквилизаторы и снотворные. Однако лекарственные средства не ограничиваются вышеприведенными примерами.
Конкретными примерами органических соединений, применяемых для лекарств, являются 5-фторурацил, 7-(3,5-диметокси-4-гидроксициннамоиламино)-3-октилокси-4-гидрокси-1-метил-2(1Н)-хинолинон, акарбоза, ацикловир, ацетилсалициловая кислота, ацетилфенетурид, ацетаминофен, аденин, атенолол, алкалоиды опиума, амидотризоевая кислота, амфотерицин В, амоксапин, амобарбитал, амурин, амоксициллин, арипипразол, альпразолам, аллопуринол, ампициллин, ампироксикам, амлексанокс, изопротеренол, ибупрофен, иприфлавон, имипрамин, ирбесартан, индометацин, убенимекс, урапидил, урсодезоксизолевая кислота, эстазолам, эстрадиол, этизолам, этензамид, этотоин, эноксацин, эпросартан, эмиглитат, эритромицин, празозин гидрохлорид, пропафенон гидрохлорид, энтакапон, оксазолам, оксапрозин, оксикодон, окситетрациклин, оксипертин, оксендолон, омепразол, оланзапин, оризанол, кофеин, каптоприл, каберголин, карбамазепин, хлорфенезин карбамат, карпипрамин малеат, карбохромен, карумонам натрия, кандесартан, цилексетил, квазепам, гуанфацин, сильденафил цитрат, кларитромицин, гризеофульвин, клоксахолам, клозапин, клотиазепам, клоназепам, клобазам, хлорамфеникол, хлордиазепоксид, хлорзоксазон, хлорталидон, хлорфенирамин, хлорпромазин, хлоргексидин, кетопрофен, кокаин, кодеин, колхицин, хлормадинон ацетат, кортизон ацетат, сахарин, зафирлукаст, салазосульфапиридин, сальбутамол, диастазу, диазепам, дигитоксин, циклациллин, диклофенак натрия, дигоксин, дизопирамид, цитиколин, дигидрохолестерин, дипиридамол, дигидрокодеин, дифенидол, дифенгидрамин, циметидин, дименгидринат, цилостазол, симвастатин, скополамин, станозолол, спарфлоксацин, спиперон, спиронолактон, сулиндак, сульпирид, сульбенициллин натрия, цефалексин, цефиксим, цефозопран, цефотиам, цефсулодин натрия, цефменоксим, сератродаст, серрапептаза, целекоксиб, зотепин, зонисамид, зопиклон, дакарбазин, такролимус гидрат, тазосартан, даназол, дантролен натрия, тиапрофен, тинидазол, тимиперон, теофиллин, дексаметазон, декстрометорфан, делаприл, тергурид, телмисартан, ипекак, тофизопам, трандолаприл, триазолам, триамцинолон, триамцинолон ацетонид, триамтерен, толбутамид, трепибутон, троглитазон, дроперидол, напроксен, налидиксовая кислота, никардипин, ницерголин, нитразепам, нифедипин, ниметазепам, нимодипин, немонаприд, носкапин, паклитаксель, папаверин, вальсартан, галоперидол, пиоглитазон, бикалутамид, бисбентиамин, гидралазин, гидроксизин памоат, пивмециллинам, бипериден, пимозид, пиреноксин, пироксикам, пиндолол, фамотидин, фалекальцитриол, фексофенадин гидрохлорид, фенацемид, фенитоин, фенилефрин, фенобарбитал натрия, фенофибрат, фелбинак, фенпробамат, форасартан, буколом, будесонид, клемастин фумарат, формотерол фумарат, пранопрофен, правастатин, пранлукаст гидрат, примидон, флудиазепам, флунитразепам, проглуметацин малеат, блонансерин, профенамин гибензат, бромазепам, флутазолам, флуоцинолон ацетонид, фторметолон, флуконазол, флутопразепам, флунизолид, флуфеназин деканоат, алюминиевая соль флуфенамовой кислоты, флумазенил, флурбипрофен, преднизолон, прокаинамид, фуросемид, бротизолам, флутиказон пропионат, беклометазон пропионат, пропранолол, проперициазин, прометазин, бромперидол, бромокриптин месилат, бета-каротин, бетаметазон, верапамил, бензтиазид, пентазоцин, воглибоза, пропилгаллат, политиазид, митомицин С, мазиндол, манидипин, мапротилин, мальтол, лизурид малеат, миглитол, миконазол, мидазолам, миноксидил, милринон, мексазолам, меквитазин, меклизин, меклофеноксат, медазепам, метилэфедрин, метилдофа, метокарбамол, метоклопрамид, метотрексат, мефенамовая кислота, мелоксикам, модафинил, мофезолак, мольсидомин, фолиевая кислота, ранитидин, лабеталол, рабепразол, рамелтеон, лансопразол, лиотиронин натрия, рисперидон, лизоцим, лидокаин, рифампицин, лейпрорелин, резерпин, леваллорфан, L-дофа, рилузол, лозартан, лофепрамин гидрохлорид, лоразепам и лорметазепам. Однако органические соединения не ограничиваются этими соединениями. В частности, в вышеуказанных органических соединениях предпочтительно применяются кларитромицин, фексофенадин гидрохлорид и фторметолон.
Примерами органических соединений, применяемых для лечебного питания или пищевых добавок, являются астаксантин, аллиин, аллизин, антоцианин, изофлавон, изорамнетин, а-липоевая кислота, олейропеин, орнитин, катехин, капсаицин, капсантин, капсорубин, бета-каротин, карнитин, карминовая кислота, кантаксантин, гинкголид, глюкан, хитозан, хиноны, гимнемовая кислота, бета-криптоксантин, куркуминоиды, куркумин, глюкозамин, креатин, хлорофилл, кверцетин, лигнан кунжута, зеаксантин, биксин, биотин, витамин А и его производные, витамин D2, витамин D3, фитостерол, фосфатидилсерин, β-апо-4-каротенал, этил-β-апо-8-каротеноат, флавоноиды, проантоцианидин, пектин, полифенолы, монаколин K, убихинон, ликопен, ресвератрол, лютеин и рутин. Однако органические соединения не ограничиваются этими соединениями. В частности, в вышеуказанных органических соединениях предпочтительно применяются куркуминоиды, куркумин и рутин.
Примеры косметических средств включают предотвращающие старение кожи средства, УФ-экранирующие материалы, подтягивающие средства, антиоксиданты, средства против морщин, увлажняющие средства, усиливающие кровообращение средства, антибактериальные средства, дезинфицирующие средства, высушивающие средства, охлаждающие средства, согревающие средства, витамины, аминокислоты, средства, ускоряющие заживление, средства, снимающие раздражение, болеутоляющие, клеточные стимуляторы и различные ферменты. Однако косметические средства не ограничиваются этими примерами.
Примерами органических соединений, применяемых для этих косметических средств, являются 4-н-бутилрезорцин, N-ацилированный глутатион, аскорбиновая кислота, соли аскорбиновой кислоты, глюкозиды аскорбиновой кислоты, аскорбилфосфат магния, арбутин, изоферуловая кислота, соли изоферуловой кислоты, эллаговая кислота, эргокислоты, соли эргокислот, кинетин, казеин, кофеиновая кислота, соли кофеиновой кислоты, глабридин, глицирризовая кислота, глутатион, эфиры глутатиона, соли глутатиона, кодзиевая кислота, ретинол ацетат, цистеин, танниновая кислота, транексамовая кислота, трансферрин, третиноин, гидрохинон, соли гидрохинона, фитиновая кислота, фибрин, фиброин, фибронектин, феруловая кислота, соли феруловой кислоты, ликопен, ретинилацетат, ретинилпальмитат, ретинол, ретиноевые кислоты и токоферил ретиноевой кислоты. Однако органические соединения не ограничиваются этими соединениями.
(В) Углеводные соединения
Углеводные соединения включают по меньшей мере одно из группы, состоящей из сахаридов (моносахариды, дисахариды, полисахариды, в том числе трисахариды и выше, а также олигосахариды) и сахароспиртов. Углеводные соединения выбираются так, чтобы они не могли перекрываться с вышеприведенными органическими соединениями.
Примерами моносахаридов являются глюкоза, галактоза, манноза, фруктоза, инозитол, рибоза и ксилоза. Примерами дисахаридов являются лактоза, сахароза, целлобиоза, трегалоза и мальтоза. Примерами полисахаридов являются пуллулан, гиалуронат натрия, раффиноза, мелезитоза, хондроитинсульфат натрия, целлюлоза, кластерный декстрин, циклодекстрин, декстрин, декстран, ксантановая камедь, хитин и хитозан. Примерами олигосахаридов являются фрукто-олигосахариды, галакто-олигосахариды, маннано-олигосахариды, гентио-олигосахариды, ксило-олигосахариды, целло-олигосахариды, изомальто-олигосахариды, нигеро-олигосахариды, хито-олигосахариды, фукоидан-олигосахариды, соевые олигосахариды и лактосахароза. Примерами сахароспиртов являются палатиноза, сорбитол, лактитол, эритритол, пентаэритритол, ксилитол, мальтитол, маннитол и дульцитол. В этом воплощении в качестве углеводных соединений предпочтительно можно использовать сахароспирты, моносахариды или дисахариды, более предпочтительно маннитол, мальтитол, эритритол, ксилитол, глюкозу, фруктозу, лактозу, трегалозу или целлобиозу, и еще более предпочтительно D-маннитол, ксилитол, глюкозу, фруктозу или трегалозу.
В нанопорошках органических соединений углеводные соединения могут содержаться в виде частиц, независимо от частиц органических соединений, или же в виде физически соединенных или химически связанных с поверхностью частиц органических соединений.
Углеводные соединения содержатся в нанопорошках органических соединений в количестве 0,3 раз или больше, предпочтительно от 0,3 до 100 раз, более предпочтительно от 0,5 до 30 раз или еще более предпочтительно от 0,8 до 20 раз по массе относительно органического соединения. Для того чтобы исключить избыток углеводных соединений после измельчения органического соединения и предотвратить чрезмерно высокое осмотическое давление жидкости, включающей углеводные соединения, при использовании жидкости, содержащей избыточное количество углеводных соединений, суммарное количество углеводных соединений предпочтительно составляет от 0,3 до 100 раз, более предпочтительно от 0,5 до 30 раз, более предпочтительно от 0,8 до 20 раз, еще более предпочтительно от 1 до 8 раз по массе относительно органического соединения. Вышеупомянутые углеводные соединения можно использовать по отдельности или в виде смеси из двух или нескольких из них. Кроме того, углеводные соединения можно использовать в виде мелких частиц.
Углеводные соединения могут функционировать в качестве мелющих тел (milling medium) или в качестве вспомогательного средства для размельчения в процессе измельчения органических соединений. При этом термин "мелющие тела" означает такие тела, которые непосредственно оказывают раздавливающее или растирающее действие на органическое соединение. Термин "вспомогательное средство" означает такой материал, который не оказывает вышеупомянутого прямого действия на органическое соединение, а облегчает размельчение органических соединений косвенным образом. Кроме того, углеводные соединения могут способствовать уменьшению слипания между частицами органического соединения.
(С) Физиологически приемлемые соли
Соли, которые можно смешивать с нанопорошками органических соединений настоящего воплощения, это соли, которые при использовании не вызывают заметных физиологических проблем. Иными словами, соли не имеют особых ограничений, если только они не вызывают значительных проблем, даже если они попадают в живой организм или контактируют с кожей. Физиологически приемлемые соли предпочтительно обладают достаточной твердостью для тонкого измельчения органических соединений. Кроме того, количество физиологически приемлемой соли в смеси с органическими соединениями и углеводными соединениями будет такое количество соли, при котором она не создает критических проблем для биологического организма при ее потреблении биологическим организмом.
Примерами предпочтительных солей являются хлорид натрия, хлорид калия, хлорид аммония, сульфат натрия, сульфат магния, сульфат калия, сульфат кальция, малат натрия, цитрат натрия, двузамещенный цитрат натрия, однозамещенный цитрат натрия, однозамещенный цитрат калия, однозамещенный фосфат натрия, однозамещенный фосфат калия, двузамещенный фосфат натрия и двузамещенный фосфат калия. Более предпочтительными примерами солей являются хлорид натрия, хлорид калия, сульфат магния, сульфат кальция, цитрат натрия, однозамещенный фосфат натрия, однозамещенный фосфат калия, двузамещенный фосфат натрия и двузамещенный фосфат калия, а наиболее предпочтительной солью является хлорид натрия.
Соль можно довести до нужного диаметра частиц путем измельчения и пр. перед смешиванием ее с органическим соединением или углеводным соединением. В случае предварительного доведения диаметра частиц средний диаметр частиц соли предпочтительно составляет от 0,01 до 300 мкм, более предпочтительно от 0,1 до 100 мкм и еще более предпочтительно от 0,5 до 50 мкм. Количество соли, содержащейся в нанопорошке органического соединения, может составлять в пределах от 0,02 до 4 раз по массе, предпочтительно от 0,05 до 2 раз по массе или более предпочтительно от 0,1 до 1,5 раз по массе относительно общего количества органического соединения и углеводного соединения. Соли можно использовать по отдельности или в виде смеси из двух или нескольких из них. Соли могут действовать в качестве мелющих тел или в качестве вспомогательных средств для размельчения во время измельчения органических соединений.
(D) Другие добавки
Нанопорошки органических соединений могут содержать весь или часть модификатора вязкости, добавленного во время их получения. В качестве модификатора вязкости предпочтительно используется физиологически приемлемый полиол. Термин "физиологически приемлемый" имеет то же значение, что и термин "физиологически приемлемый" для физиологически приемлемой соли, приведенный выше. Примерами физиологически приемлемых полиолей являются глицерин, пропиленгликоль, полиэтиленгликоль, дипропиленгликоль, этиленгликоль, диэтиленгликоль, лимонная кислота, DL-яблочная кислота, винная кислота, молочная кислота, мочевина, малеиновая кислота и малоновая кислота, предпочтительно лимонная кислота, пропиленгликоль и глицерин. Эти модификаторы вязкости могут применяться по отдельности или в виде смеси из одного или двух из них.
Нанопорошки органических соединений весьма легко слипаются, так как составляющие их частицы приходятся на уровень наноразмеров. Нанопорошки органических соединений могут содержать весь или часть антиагломеранта, добавленного во время или после измельчения для того, чтобы предотвратить слипание частиц нанопорошка органического соединения. Примерами антиагломерантов являются этанол, глицерин, пропиленгликоль, цитрат натрия, очищенный соевый лецитин, фосфолипиды, D-сорбитол, лактоза, ксилитол, гуммиарабик, эфиры сахарозы с жирными кислотами, додецилсульфат натрия, полиоксиэтиленовые эфиры гидрогенизованного касторового масла, полиоксиэтиленовые эфиры жирных кислот, полиоксиэтиленгликоли, полиоксиэтиленовые эфиры сорбитана с жирными кислотами, соли алкилсульфатов, алкилбензолсульфонаты, соли сульфосукцината, полиоксиэтилен-полиоксипропиленгликоли, поливинилпирролидон, поливиниловый спирт, гидроксипропилцеллюлоза, метицеллюлоза, гидроксиэтилцеллюлоза, гидроксипропилметилцеллюлоза, натриевая кармеллоза, натриевая карбоксиметилцеллюлоза, карбоксиметиловые полимеры, соли N-ацилглутаматов, сополимеры акриловой кислоты, миристоилметилтаурин натрия, полиоксистеараты, карбоксилвиниловые полимеры, диоктилсульфосукцинат натрия, ксантановая камедь, сополимеры метакриловой кислоты, натриевый казеин, L-валин, L-лейцин, L-изолейцин, бензаркония хлорид и бензетония хлорид. Антиагломерантами предпочтительно могут быть глицерин, эфиры сахарозы с жирными кислотами, додецилсульфат натрия, поливинилпирролидон, поливиниловый спирт, гидроксипропилцеллюлоза, натриевая карбоксиметилцеллюлоза, миристоилметилтаурин натрия, полиоксистеараты, карбоксилвиниловые полимеры, диоктилсульфосукцинат натрия и ксантановая камедь. Вышеприведенные антиагломеранты можно использовать по отдельности или в виде смеси из одного или двух из них. Кроме того, вышеприведенные другие добавки выбирают таким образом, чтобы они не перекрывались с органическим соединением, углеводным соединением и солью.
2. Суспензии диспергированных нанопорошков органических соединений
Суспензии в соответствии с воплощением настоящего изобретения включают органическое соединение (А) в жидкой дисперсионной среде, в которой органическое соединение не растворяется или плохо растворяется.
Термин "не растворяется или плохо растворяется" в настоящем описании означает, что растворимость органического соединения в жидкой дисперсионной среде составляет 10 мг/мл или меньше, предпочтительно 1 мг/мл или меньше, при нормальной рабочей температуре, к примеру, при комнатной температуре около 25°С. Жидкая дисперсионная среда, в которой органическое соединение не растворяется или плохо растворяется, может включать воду; органические растворители типа этанола; или полиоли типа глицерина, пропиленгликоля, полиэтиленгликоля, этиленгликоля, диэтиленгликоля. Однако жидкие дисперсионные среды не ограничиваются вышеприведенными примерами некоторых жидкостей и могут представлять собой любые среды, лишь бы только они находились в виде жидкости при комнатной температуре около 25°С. Так, например, если в качестве жидкой дисперсионной среды используется полиол, то он может также действовать и в качестве модификатора вязкости или антиагломеранта. К примеру, если органическое соединение растворяется в воде, то жидкая дисперсионная среда, в которой органическое соединение не растворяется или плохо растворяется, означает что-либо другое, чем вода. Далее, если органическое соединение растворяется в определенном органическом растворителе, то жидкая дисперсионная среда означает что-либо другое, чем этот органический растворитель. Иными словами, жидкую дисперсионную среду нужно выбирать таким образом, чтобы органическое соединение могло существовать в диспергированном состоянии без полного в ней растворения. При использовании суспензии в том виде, как она есть, в качестве лекарства, лечебного питания или косметического средства, предпочтительно используется дисперсионная среда, включающая главным образом воду.
Суспензии в соответствии с настоящим воплощением могут содержать различные модификаторы вязкости и антиагломеранты, приведенные в разделе "Другие добавки" (D), и могут дополнительно содержать эмульгаторы, модификаторы pH, буферные средства, консерванты и пр. Примеры материалов, которые могут содержаться в таких суспензиях, включают: соли фосфата, как-то однозамещенный фосфат натрия, двузамещенный фосфат натрия, тризамещенный фосфат натрия, пирофосфат натрия, триполифосфат натрия, тетраполифосфат натрия, гексаметафосфат натрия, кислый гексаметафосфат натрия и однозамещенный фосфат калия; гидраты этих солей; эдетат натрия; и гидроксид натрия.
3.