Способ наблюдения за коллектором с использованием данных о скученных изотопах и/или инертных газах

Иллюстрации

Показать все

Изобретение относится к способу управления добычей углеводородов при осуществлении наблюдения за коллектором с использованием данных о скученных изотопах, данных об инертных газах или сочетания данных о скученных изотопах и инертных газах. Техническим результатом является повышение эффективности мониторинга. Способ содержит получение пробы из одного из числа одного или нескольких подземных регионов, интерпретацию пробы для определения сигнатуры инертного газа и сигнатуры скученного изотопа углеводорода для полученных проб, образование характерного признака представляющего интерес региона, имеющего сигнатуру инертного газа и сигнатуры скученного изотопа углеводорода для полученных проб, добычу флюидов из одного из числа одного или нескольких подземных регионов, при этом добываемые флюиды содержат углеводороды, и осуществление наблюдения за коллектором относительно флюидов, добываемых из одного из числа одного или нескольких подземных регионов. 18 з.п. ф-лы, 5 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] По этой заявке испрашивается преимущество приоритета находящейся на национальной стадии международной заявки PCT/US2012/52542, поданной 27 августа 2012 года, по которой испрашивается преимущество приоритета предварительной заявки № 61/558822 на патент США, поданной 11 ноября 2011 года, под названием “Method for determining the presence and location of a subsurface hydrocarbon accumulation and the origin of the associated hydrocarbons”, которая полностью включена в эту заявку путем ссылки. По этой заявке также испрашивается преимущество приоритета предварительной заявки № 61/616813 на патент США, поданной 28 марта 2012 года, под названием “Method for determining the presence and volume of a subsurface hydrocarbon accumulation”, которая полностью включена в эту заявку путем ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ РАСКРЫТИЕ

[0002] В общем варианты осуществления настоящего раскрытия относятся к области геохимии. Более конкретно, настоящее раскрытие относится к системам и способам для управления добычей углеводородов при осуществлении наблюдения за коллектором с использованием данных о скученных изотопах, данных об инертных газах или сочетания данных о скученных изотопах и инертных газах. Эти данные об инертных газах и/или скученных изотопах объединяют с геохимическими и физическими данными для образования всеобъемлющих геохимических характерных признаков, необходимых для осуществления наблюдения за коллектором в одном или нескольких представляющих интерес районах.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

[0003] Этот раздел предназначен для введения в различные аспекты данной области техники, которые могут быть связаны с примерами вариантов осуществления настоящего раскрытия. Можно полагать, что это рассмотрение поможет усвоить основные положения для содействия лучшему пониманию конкретных аспектов раскрытых методологий и способов. В соответствии с этим должно быть понятно, что этот раздел следует читать в свете этого и необязательно как признание справедливости предшествующего уровня техники.

[0004] Для добычи углеводородов из подземных залежей или пластов обычно используют план разработки. План разработки может включать в себя схему истощения коллектора и стратегию наблюдения за коллектором. Такая стратегия наблюдения за коллектором может включать в себя мониторинг добываемых флюидов для обнаружения и прогнозирования статической фрагментации коллектора на участки и для определения отношений составных частей смеси из различных интервалов коллектора в смешанной углеводородной фазе при продолжительной поставке углеводородов (например, для распределения добычи). Дополнительным фактором, который следует учитывать при разработке коллектора, является прогнозирование изменения отдачи коллектора при добыче в течение периода времени до десятков лет. Прогнозирование динамических изменений добычи углеводородов из отдельных участков, интервалов и отдельных коллекторов обычно основано на измерениях на месте проведения работ свойств флюидов, таких как давление, объем и температура, и на них могут влиять химические или физические процессы, такие как, например, выпадение жидкости.

[0005] Эффективный способ ослабления эффектов химических и физических процессов, которые могут отрицательно влиять на отдачу коллектора, заключается в мониторинге геохимических и физических параметров (таких как давление). То есть изменение условий можно идентифицировать и затем выполнять корректировку добычи углеводородов. Действительно, геохимию нефти применяют в нескольких аспектах наблюдения за коллектором на основании изменчивости состава флюидов в пределах аналогичных участков, интервалов или коллекторов. См., например, Larter and Aplin (1995). См., например, Larter S.R. and Aplin A.C., “Reservoir geochemistry: methods, applications and opportunities”, Geological Society of London Special Publication, 86, 5-32, 1995. Например, изотопные и молекулярные композиционные анализы углеводородов и/или воды позволяют получать различные сигнатуры углеводородных продуктов и воды в коллекторе в случаях, когда между интервалами или участками существуют различия в сигнатурах. Однако в случаях, когда геохимические сигнатуры углеводородов, получаемых из различных коллекторов или участков представляющем интерес районе, неразличимы, эти изотопные и композиционные сигнатуры находят ограниченное применение в прикладной области статического наблюдения за коллектором. В дополнение к этому в прикладной области динамического наблюдения за коллектором традиционные способы реагируют на начало таких процессов и не обеспечивают упреждающих указаний относительно неизбежных изменений свойств флюидов коллектора. Это усугубляется тем, что имеется недостаточное количество индикаторов, пригодных для осуществления наблюдения за коллектором при наличии в коллекторных системах преимущественно природного газа. Действительно, в настоящее время при таких исследованиях или при применении на практике мониторинга обычно используют только органическую или неорганическую геохимию валового состава и/или систематику стабильных изотопов углеводорода и водорода. Кроме того, валовой состав и стабильные изотопы могут давать информацию относительно источника, зрелости и степени изменения процессов, таких как биологическое разложение. Этими способами не обеспечивается проникновение в физические процессы, такие как фазовые превращения, выпадение жидкости или дегазация пластовой воды, а также не обеспечивается возможность получения оценок изменений объема углеводородов, которые возникают во время добычи из участка, интервала или коллектора (представляющего интерес региона).

[0006] Как следствие этого для осуществления наблюдения за коллектором существует необходимость в улучшении геохимических индикаторов. Эти индикаторы смогут охватывать большую изменчивость, чем существующие индикаторы, и отображать чувствительность к химическим и/или физическим процессам, что позволит получать более эффективные способы статического и динамического мониторинга коллектора и наблюдения за коллектором. Таким образом, стратегии истощения запасов можно будет корректировать для повышения добычи углеводородов и совершенствования нашего понимания долговременной оценки месторождений и применения на практике управления ресурсами.

КРАТКОЕ ИЗЛОЖЕНИЕ

[0007] Согласно одному варианту осуществления описан способ добычи углеводородов. Способ может включать в себя получение пробы из одного из числа одного или нескольких подземных регионов; интерпретацию пробы для определения одной или нескольких из сигнатур инертных газов и сигнатур скученных изотопов для полученных проб; образование характерного признака представляющего интерес региона, имеющего одну или несколько из сигнатуры инертного газа и сигнатуры скученного изотопа для полученных проб; добычу флюидов из одного из числа одного или нескольких подземных регионов, при этом добываемые флюиды содержат углеводороды; и осуществление наблюдения за коллектором относительно флюидов, добываемых из одного из числа одного или нескольких подземных регионов.

[0008] Согласно одному или нескольким вариантам осуществления способ может включать в себя определенные признаки. Например, осуществление наблюдения за коллектором относительно добываемых флюидов дополнительно содержит получение первой пробы из добываемых флюидов; определение характерного признака первой пробы для полученной первой пробы, при этом характерный признак первой пробы содержит одну или несколько из сигнатуры инертного газа и сигнатуры скученного изотопа; сравнение характерного признака первой пробы с характерным признаком представляющего интерес региона; и определение, изменился ли характерный признак первой пробы, на основании сравнения характерного признака первой пробы с характерным признаком представляющего интерес региона. Согласно другому примеру осуществление наблюдения за коллектором относительно добываемых флюидов дополнительно содержит получение второй пробы из добываемых флюидов, при этом вторую пробу получают в период времени после получения первой пробы; определение характерного признака второй пробы для полученной второй пробы, при этом характерный признак второй пробы содержит одну или несколько из сигнатуры инертного газа и сигнатуры скученного изотопа; сравнение характерного признака второй пробы с характерным признаком представляющего интерес региона; и определение, изменился ли характерный признак второй пробы, на основании сравнения характерного признака второй пробы с характерным признаком представляющего интерес региона. Кроме того, выполняют сравнение между характерным признаком первой пробы и статическим характерным признаком представляющих интерес регионов, чтобы определить межрегиональные измерения, и/или выполняют сравнение между характерным признаком первой пробы и динамическим характерным признаком представляющих интерес регионов, чтобы определить внутрирегиональные изменения. Кроме того, способ может включать в себя разработку стратегии истощения запасов на основании характерного признака представляющего интерес региона для добычи углеводородов определенного качества и состава.

[0009] Эти и другие признаки и преимущества настоящего раскрытия без труда станут понятными при рассмотрении нижеследующего описания в сочетании с сопровождающими чертежами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0010] Преимущества предложенных способов могут стать очевидными при рассмотрении нижеследующего подробного описания и сопровождающих чертежей. На чертежах:

[0011] фиг. 1 - блок-схема последовательности действий при добыче углеводородов согласно примеру варианта осуществления предложенных способов;

[0012] фиг. 2 - блок-схема последовательности действий при использовании различных способов наблюдения за коллектором согласно примеру варианта осуществления предложенных способов;

[0013] фиг. 3 - блок-схема последовательности действий при использовании статических характерных признаков из многочисленных, представляющих интерес регионов согласно примеру варианта осуществления предложенных способов;

[0014] фиг. 4 - вариант блок-схемы последовательности действий при использовании динамического изменения характерного признака отдельного или единственного, представляющего интерес региона для осуществления наблюдения за коллектором согласно варианту осуществления предложенных способов; и

[0015] фиг. 5 - функциональная схема вычислительной системы согласно раскрытым методологиям и способам.

ПОДРОБНОЕ ОПИСАНИЕ

[0016] Различные термины, используемые в этой заявке, определяются ниже. В тех случаях, когда термин, используемый в формуле изобретения, не определен ниже, специалисты в данной области техники должны давать термину определение в контексте, в котором он используется.

[0017] Используемый в этой заявке неопределенный артикль имеет отношение к одному или нескольким объектам. Соответственно, неопределенный артикль, термины «один или несколько» и «по меньшей мере один» могут использоваться в этой заявке взаимозаменяемо, если специально не установлено ограничение.

[0018] Используемые в этой заявке термины «содержащий», «содержит», «содержат», «содержащийся», «состоящий из», «состоит из», «состоят из», «имеющий», «имел», «имеет», «включающий в себя», «включает в себя» и «включают в себя» представляют собой неограничивающие переходные термины, используемые для перехода от объекта, приведенного перед термином, к одному или нескольким элементам, перечисляемым после термина, при этом элемент или элементы, перечисляемые после переходного термина, необязательно представляют собой исключительно элементы, которые составляют объект.

[0019] Используемый в этой заявке термин «примерный» единственно означает «служащий примером, образцом или иллюстрацией». Любой вариант осуществления описан в этой заявке как пример и не должен толковаться как предпочтительный или выгодный по сравнению с другими вариантами осуществления.

[0020] Используемый в этой заявке термин «углеводороды», например нефть и природный газ, в общем случае определяется как молекулы, образованные прежде всего из атомов углерода и водорода. Кроме того углеводороды могут включать в себя другие элементы или соединения, такие как, но без ограничения ими, галогены, металлические элементы, азот, кислород и сера. Неуглеводородные газы, такие как сероводород (H2S), азот (N2) и диоксид углерода (CO2), могут добываться вместе с углеводородами или в дополнение к ним. Углеводороды и неуглеводородные газы могут добываться из углеводородных коллекторов через скважины, проникающие в пласт, содержащий углеводороды. Углеводороды, извлекаемые из углеводородного коллектора, могут включать в себя, но без ограничения ими, нефтепродукты, кероген, битум, пиробитум, асфальтены, смолы, нефть, природный газ или комбинацию из них. Углеводороды и неуглеводородные газы могут располагаться в геологической среде внутри минеральных матриц или вблизи них, называемых коллекторами. Матрицы могут включать в себя, но без ограничения ими, осадочную породу, пески, силикаты, карбонаты, диатомиты и другие пористые среды.

[0021] Используемый в этой заявке термин «добыча углеводородов» или «добываемые углеводороды» относится к любой активности, связанной с извлечением углеводородов из скважины или другого вскрытия месторождения. Добычей углеводородов обычно называют любую деятельность, осуществляемую в скважине или относительно нее после заканчивания скважины. В соответствии с этим добыча или извлечение углеводородов включает в себя не только первичное извлечение углеводородов, но также способы вторичной или третичной добычи, такие как нагнетание газа или жидкости для повышения давления вытеснения, придания подвижности углеводороду, или обработка, например, химическими реагентами, или гидравлический разрыв пласта в буровой скважине для содействия повышенному движению флюида, обслуживание скважины, каротаж скважины и другие обработки приствольной зоны и буровой скважины.

[0022] Используемый в этой заявке термин «инертные газы» относится к ряду химически инертных элементов, которые имеют подобные свойства. Шесть инертных газов, которые встречаются в природе, представляют собой гелий (He), неон (Ne), аргон (Ar), криптон (Kr), ксенон (Xe) и радон (Rn). Инертные газы, которые рассматриваются в этом раскрытии, представляют собой He, Ne, Ar, Kr и Xe.

[0023] Используемый в этой заявке термин «изотоп» относится к одному из двух или нескольких атомов с одним и тем же атомным номером, но с разным количеством нейтронов. Например, гелий может иметься в виде одного из двух изотопов: 3He, который имеет 2 протона и 1 нейтрон (в этой заявке обозначается как 3He); и 4He, который имеет 2 протона и 2 нейтрона.

[0024] Используемый в этой заявке термин «сигнатуры» относится к относительным содержаниям, концентрациям и/или отношениям различных элементов и изотопов данных видов.

[0025] Используемый в этой заявке термин «пластовая вода» относится к любой воде, находящейся в пласте, который может иметься в коллекторной породе, однако вода в пласте может также встречаться в водоносных горизонтах, осадочных отложениях или может быть не связана с залеганием углеводородов. Для задач, обозначенных в этой заявке, основное внимание сосредоточено на воде, встречающейся в пористых средах внутри залежи или непосредственно под ней, но в контакте с залежью углеводородов (то есть на водяной части залежи). Она может быть а) метеорного происхождения, b) обусловлена всасыванием поверхностных вод, таких как дождевая вода или морская вода, которые мигрировали через проницаемую породу в пласт, и с) водой, захваченной в осадочном отложении во время залегания и оставшейся на месте.

[0026] Используемый в этой заявке термин «время пребывания» относится к периоду времени, в течение которого пластовая вода присутствует в геологической среде, и может считаться возрастом пластовой воды.

[0027] Используемый в этой заявке термин «радиогенный» относится к образованию или созданию вещества через радиоактивный распад другого вещества. Радиогенные инертные газы включают в себя 4He, 21Ne, 40Ar, 82Kr, 86Kr, 129Xe, 130Xe и 136Xe.

[0028] Используемый в этой заявке термин «представляющий интерес регион» относится к интервалу, участку или коллектору, где углеводороды, неуглеводородные газы и/или вода могут находиться. «Представляющими интерес регионами» именуются многочисленные интервалы, участки или коллекторы, где углеводороды, неуглеводородные газы и/или вода могут находиться.

[0029] Используемый в этой заявке термин «межрегиональный» или «межучастковый» относится к сравнениям многочисленных геохимических характерных признаков, получаемых из многочисленных представляющих интерес регионов, включающих в себя, но без ограничения ими, участки, интервалы или коллекторы. Отклонения межрегиональных характерных признаков можно получать на основании различных пропорций индивидуальных представляющих интерес регионов, вносящих вклад в объединенный поток в процессе добычи, многочисленных участков, которые связаны в геологической среде, которые позволяют получить характерный признак, согласованный с многочисленными входными данными, и т.п. «Внутрирегиональный» или «внутриучастковый» относятся к сравнениям многочисленных геохимических характерных признаков, получаемых из одного представляющего интерес региона, в том числе, но без ограничения ими, из участков, интервалов или коллекторов. Отклонения «внутриучастковых» характерных признаков получают на основании изменений свойств в одном представляющем интерес регионе, например, добываемых флюидов или процессов, происходящих в одном представляющем интерес регионе.

[0030] Используемый в этой заявке термин «характерный признак» или «геохимический характерный признак» относится к совокупности геохимических сигнатур, которые связаны с конкретным, представляющим интерес регионом.

[0031] Используемый в этой заявке термин «сигнатуры» относится к химическим или геохимическим составам, компонентам, концентрациям или отношениям одних или нескольких элементов, изотопов, соединений или подобных им. Эти сигнатуры могут быть получены для одного или нескольких из углеводородов, неуглеводородных газов, воды, инертных газов и скученных изотопов.

[0032] Используемый в этой заявке термин «термогенный» относится к углеводородам, образованным из керогена, который в настоящее подвергается или раньше подвергался воздействию высокой температуры и давления.

[0033] Используемый в этой заявке термин «снижение риска» относится к оценке возможности присутствия нежелательных веществ, таких как H2S, CO2, в концентрациях, которые делают добычу или очистку углеводородов более трудной или уменьшают количество добываемых углеводородов.

[0034] Используемый в этой заявке термин «компьютерный компонент» относится к компьютерному объекту, аппаратному обеспечению, встроенной программе, программному обеспечению, сочетанию из них или к программному обеспечению при выполнении. Например, компьютерным компонентом могут быть, но без ограничения ими, процесс, выполняемый на процессоре, процессор, объект, выполняемый файл, выполняемый поток, программа и/или компьютер. Один или несколько компьютерных компонентов могут находиться в процессе и/или выполняемом потоке и компьютерный компонент может быть локализован на одном компьютере и/или распределен между двумя или большим количеством компьютеров.

[0035] Используемый в этой заявке термин «считываемый компьютером носитель» или «материальный считываемый компьютером носитель» относится к любому материальному запоминающему устройству, которое участвует в снабжении процессора инструкциями для выполнения программы. Такие носители могут иметь многочисленные формы, включая, но без ограничения или, энергонезависимые носители и энергозависимые носители. Например, энергонезависимые носители включают в себя энергонезависимое оперативное запоминающее устройство или магнитные или оптические диски. Энергозависимые носители включают в себя динамическое запоминающее устройство, такое как основное запоминающее устройство. Считываемые компьютером носители могут включать в себя, например, дискету, гибкий диск, жесткий диск, магнитную ленту или любой другой магнитный носитель, магнитооптический носитель, компакт-диск, доступный только для чтения и другой оптический носитель, оперативное запоминающее устройство, программируемое постоянное запоминающее устройство и стираемое программируемое постоянное запоминающее устройство, флэш-память, твердотельный носитель, подобный голографической памяти, карту памяти или любую другую микросхему памяти или модуль, или любой другой физический носитель, который может считываться компьютером. При конфигурировании считываемых компьютером носителей в качестве базы данных следует понимать, что база данных может быть базой данных любого вида, такой как реляционная, иерархическая, объектно-ориентированная и/или подобная. В соответствии с этим примеры вариантов осуществления предложенных способов могут считаться включающими материальный носитель данных или материальный дистрибутивный носитель и принятые в данной области техники эквиваленты и альтернативные носители, на которых сохраняются реализации программного продукта, используемого при осуществлении предложенных способов.

[0036] Некоторые части подробного описания, которые следуют ниже, представлены в виде процедур, этапов, логических блоков, обработки и других символических представлений операций относительно битов данных в памяти компьютера. Эти описания и представления являются средством, используемым специалистами в области обработки данных, для более эффективной передачи сущности их работы другим специалистам. В настоящей заявке процедуру, этап, логический блок, процесс или что-либо подобное следует воспринимать как логическую последовательность этапов или инструкций, приводящую к желаемому результату. Для этапов требуется физическая обработка физических величин. Обычно, хотя необязательно, эти величины имеют форму электрических или магнитных сигналов, которые можно сохранять, передавать, объединять, сравнивать и иным образом обрабатывать в вычислительной системе.

[0037] Однако следует помнить, что все эти и подобные термины должны быть связаны с соответствующими физическими величинами и представляют собой лишь удобные пояснения, придаваемые этим величинам. Из последующих рассмотрений станет очевидно, что во всей настоящей заявке, если особо не оговорено иное, рассмотрения с использованием терминов, таких как «моделирование», «модификация», «измерение», «сравнение», «определение», «анализ», «вывод», «отображение», «оценивание», «интегрирование» или аналогичные, относятся к действиям и процессам вычислительной системы или аналогичного электронного вычислительного устройства, которое преобразует данные, представленные в виде физических (электронных) величин в регистрах и запоминающих устройствах вычислительной системы, в другие данные, подобные представленным в виде физических величин в запоминающих устройствах или регистрах вычислительной системы или в других таких устройствах хранения, передачи или отображения информации. Примеры способов можно лучше понять при обращении к схемам последовательностей операций.

[0038] Хотя для простоты пояснения представляемые методологии показываются и описываются в виде последовательности блоков, следует понимать, что методологии не ограничены порядком блоков, поскольку некоторые блоки могут следовать в ином порядке и/или одновременно с другими блоками из числа показанных и описанных блоков. Кроме того, не все показанные блоки требуются для реализации примера методологии. Блоки могут быть объединены или разделены на многочисленные компоненты. Кроме того, в дополнительных и/или альтернативных методологиях могут использоваться дополнительные непоказанные блоки. Хотя на чертежах показаны различные, последовательно происходящие действия, следует понимать, что различные действия могут происходить одновременно, по существу параллельно и/или по существу в различные моменты времени.

[0039] В нижеследующем разделе конкретные варианты осуществления раскрываемых методологий и технологий описываются применительно к раскрываемым аспектам и технологиям. Однако в том смысле, что нижеследующее описание является специфическим для конкретного аспекта, технологии или конкретного использования, оно предназначено быть только примером и не ограничено раскрываемыми аспектами и технологиями, описываемыми ниже, а точнее, включает в себя все варианты, модификации и эквиваленты, попадающие в объем прилагаемой формулы изобретения.

[0040] Это настоящее раскрытие включает в себя систему и способ для более эффективной добычи углеводородов путем использования наблюдения за коллектором. В частности, предложенными способами предоставляется новый набор консервативных геохимических индикаторов, которые обладают большей изменчивостью, чем индикаторы из современных способов, и которые отображают чувствительность к химическим и/или физическим процессам, что позволяет получить технологию более эффективного статического и динамического мониторинга коллектора. В частности, при некоторых применениях способом предоставляется механизм для раннего прогнозирования и/или идентификации начала физических процессов, которые возникают в коллекторах, перед действием, наблюдаемым в продуктивной скважине. Этот прогноз можно использовать для улучшения стратегий истощения путем реагирования на изменения добычи прежде чем изменения станут значительной проблемой. То есть стратегию истощения можно корректировать, чтобы сокращать периоды закрытия скважины и в конечном счете повышать добычу углеводородов. В соответствии с этим объединение геохимических индикаторов и физических свойств дает ценный недорогой способ прогнозирования, которым обеспечивается более широкий набор технологий для наблюдения за коллектором.

[0041] Согласно одному или нескольким вариантам осуществления предложенные способы могут включать в себя объединение сигнатур скученных изотопов углеводородов и неуглеводородных газов (например, CO2, H2S, N2, H2) с элементными и изотопными сигнатурами инертных газов, полученными на основании проб газа, нефти, воды и флюидного включения. Использование этих двух геохимических технологий, которые представляют собой геохимию скученных изотопов и геохимию инертных газов, может повысить качество процесса наблюдения за коллектором. При сочетании и объединении с традиционными геохимическими технологиями, такими как молекулярная геохимия (например, метана, этана, диоксида углерода, азота), геохимия объемов (например, смесей газов) или геохимия стабильных изотопов (например, углерода, водорода, азота, серы) углеводорода и неуглеводородных газов, и с физическими измерениями (например, давления, объема и температуры (ДОТ)) этими способами обеспечивается повышение качества наблюдения за коллектором на основании проб с идентификацией отдельных, представляющих интерес регионов (например, коллекторов, интервалов или участков) и последующим мониторингом добываемых углеводородов. То есть новые геохимические индикаторы можно использовать при выполнении способов наблюдения за коллектором, таких как распределение добычи, когда традиционные способы не обладают необходимой чувствительностью для проведения различия между потоками из различных, представляющих интерес регионов. Кроме того, впервые предоставляется механизм, с помощью которого можно заблаговременно прогнозировать или идентифицировать начало химических и/или физических процессов, таких как выпадение жидкости, которые могут оказывать отрицательное влияние на отдачу пласта. Этой технологией предоставляется механизм изменения стратегий добычи для предотвращения или уменьшения влияния таких процессов на добычу углеводородов.

[0042] Инертные газы (He, Ne, Ar, Kr и Xe) представляют собой группу химически инертных или консервативных газов, которые имеют низкую распространенность в природе в системах земной коры. Различные физические процессы приводят к образованию различных залежей инертных газов (мантийных, атмосферных залежей и залежей в земной коре), соответствующих различиям в изотопном составе и относительных содержаниях элементов. Низкое содержание и особый изотопный характер инертных газов в различных залежах означает, что вклады от этих различных источников в накопленный флюид земной коры, например в углеводородную залежь, часто можно разрешать и количественно оценивать (Ballentine and Burnard, 2002). См., например, Ballentine C.J. and Burnard P.G., “Production, release and transport of noble gases in the continental crust”, Reviews in Mineralogy and Geochemistry, 47, 481-538, 2002. Состав инертных газов в коллекторе регулируется количеством атмосферных инертных газов (например, 20Ne, 36Ar), вносимых из пластовой воды, и приростом радиогенных инертных газов (например, 4He, 40Ar), образующихся при радиоактивном распаде в коллекторе минералов, содержащих уран, торий или калий. Этот последний компонент в конечном счете регулируется концентрацией этих минералов и масштабами времени, в течение которого происходит прирост. Консервативный характер инертных газов означает, что они не вовлекаются в химические или биологические процессы, которые могут влиять на другие геохимические индикаторы. Однако они чувствительны к физическим процессам, таким как фазовое разделение, извлечение тяжелых углеводородных газов и дегазация.

[0043] Концентрации инертных газов в нефти, газе и воде базируются на совместном влиянии растворимостей их, которые являются функцией давления, температуры и состава флюида (ДТС), превалирующими во время растворения или выделения из раствора, взаимодействия и смешения с другими флюидами, и прироста инертных газов в результате радиоактивного распада минералов в земной коре. Состояние ДТС воды в контакте с подземной углеводородной залежью можно оценить или измерить, размер углеводородной залежи можно оценить или вычислить на основании распределения растворимостей инертных газов между водой и углеводородами.

[0044] Например, один вариант осуществления может включать в себя способ определения объема и отношения газ/нефть, конденсат/газ, или газ/вода, или нефть/вода для подземной углеводородной залежи на основании пробы, относящейся к ней. Исходную концентрацию атмосферных инертных газов, присутствующих в пластовой воде в контакте с подземной углеводородной залежью, измеряют или моделируют. Модельную исходную концентрацию модифицируют путем учета прироста радиогенных инертных газов в течение времени пребывания пластовой воды. Получают пробу, относящуюся к подземной углеводородной залежи. Измеряют концентрации и изотопные отношения инертных газов, присутствующих в пробе. Измеренные концентрации и изотопные отношения атмосферных инертных газов и радиогенных инертных газов, присутствующих в пробе, сравнивают с измеренными/модифицированными модельными концентрациями в пластовой воде для множества процессов обмена. Определяют источник углеводородов, присутствующих в пробе. Сигнатуру атмосферного инертного газа, измеренную в углеводородной фазе, сравнивают с измеренной/модифицированной модельной концентрацией атмосферных инертных газов в пластовой воде для множества процессов обмена. Для подземной залежи определяют вид и объемное отношение углеводород/вода и/или газ/нефть, конденсат/газ и/или объем подземной залежи.

[0045] Согласно другому аспекту раскрыт способ определения типа и объема типа и объема подземной углеводородной залежи на основании анализа пробы, относящейся к ней. Пробу анализируют, чтобы определить геохимическую сигнатуру пробы. Определяют исходную концентрацию атмосферных инертных газов, присутствующих в пластовой воде в контакте с подземной углеводородной залежью. Прирост радиогенных инертных газов моделируют, чтобы модифицировать исходную концентрацию для заданных времен пребывания пластовой воды. Определяют время пребывания пластовой воды. Определяют степень взаимодействия с углеводородной фазой. Определяют происхождение пробы. Объемное отношение углеводород/вода определяют в случае, когда проба происходит из углеводородной залежи. Объем углеводородной залежи определяют на основании объемного отношения углеводород/вода.

[0046] Согласно еще одному аспекту раскрыт способ определения типа и объема подземной углеводородной залежи на основании пробы углеводородов, относящейся к ней. Определяют исходную концентрацию атмосферных инертных газов, присутствующих наряду с углеводородными видами. Диапазон ожидаемых концентраций атмосферных и радиогенных инертных газов, присутствующих в пробе, моделируют для диапазона времен пребывания и для различных степеней взаимодействия между пластовой водой и углеводородной фазой. Измеряют концентрации и изотопные отношения инертных газов, присутствующих в пробе. Измеренные концентрации инертных газов сравнивают с полученным моделированием диапазоном ожидаемых концентраций атмосферных и радиогенных инертных газов. С использованием результата сравнения определяют, вышли ли углеводороды, присутствующие в пробе, из подземной залежи. На основании измеренных концентраций инертных газов и полученного моделированием диапазона ожидаемых концентраций атмосферных и радиогенных инертных газов оценивают объемное отношение углеводород/пластовая вода для подземной углеводородной залежи. Объемное отношение углеводород/пластовая вода для подземной залежи объединяют с ограничениями метода отраженных волн, накладываемыми на объем углеводородной залежи и объем воды, присутствующей в углеводородной залежи, в результате чего определяют объем углеводородов, присутствующих в подземной залежи.

[0047] Вычислительная система включает в себя процессор и материальный машиночитаемый носитель данных, на котором сохраняются машиночитаемые инструкции для исполнения процессором. Машиночитаемые инструкции включают в себя код для определения ожидаемой концентрации изотопологов углеводородных видов; код для моделирования с использованием высокоуровневых неэмпирических вычислений ожидаемой температурной зависимости изотопологов, присутствующих в пробе; код для измерения сигнатуры скученного изотопа изотопологов, присутствующих в пробе; код для сравнения сигнатуры скученного изотопа с ожидаемой концентрацией изотопологов; и код для определения с использованием результата указанного сравнения, происходят ли углеводороды, присутствующие в пробе, непосредственно из материнской породы или углеводороды, присутствующие в пробе, вышли из подземной залежи.

[0048] Геохимия скученных изотопов основана на вариации распределения изотопов в пределах молекулы, которая приводит к молекулам, которые идентичны по элементному составу, но могут различаться по изотопному составу отдельных атомов в пределах молекулы. Эти виды называют изотопологами. Например, имеются три изотополога азота (14N2, 15N14N и 15N2). Изотополог, в котором два или большее количество редких изотопов присутствуют в непосредственной близости (то есть изотопные «комки»), называют многократно замещенным изотопологом или скученным изотопом (например, 15N2). Изотополог углеводорода включает в себя углеводородные соединения (например, атомы углерода и водорода), которые имеют природные изотопы 12С, 13С, 1Н или 2Н (дейтерий или D). 12С образует 98,93% углерода на земле, тогда как 13С образует оставшиеся 1,07%. Аналогичным образом, распространенность на земле изотопа 1Н составляет 99,985%, тогда как распространенность 2Н составляет 0,015%. Сигнатура скученного изотопа любой молекулы является функцией (i) не зависящего от температуры случайно заселенного процесса (стохастического распределения) и (ii) термически равновесного изотопного обмена. Последний процесс может регулироваться окружающей температурой или зависеть от