Низкоэмиссионный отвердитель для эпоксидных смол

Иллюстрации

Показать все

Изобретение относится к отвердителю, подходящему для отверждения эпоксидных смол, к составу эпоксидной смолы и его применению, к отвержденному составу, а также к изделию. Отвердитель содержит амин нижеуказанной формулы и по меньшей мере один полиамин, содержащий по меньшей мере три аминных водорода, способных вступать в реакцию с эпоксидными группами. Состав эпоксидной смолы содержит по меньшей мере одну эпоксидную смолу и вышеуказанный отвердитель. Отвержденный состав получают в результате отверждения эпоксидной композиции с получением покрытия. Путем нанесения эпоксидной композиции на поверхность субстрата получают изделие. Изобретение позволяет получить отвердитель со слабым запахом, низкой вязкостью, который не проявляет тенденции к засыханию или к выпадению осадка на воздухе и способен затвердевать без помутнения в условиях влажности и низких температур, а также получить ровные неклейкие пленки высокой твердости. 5 н. и 12 з.п. ф-лы, 4 табл., 22 пр.

Реферат

Область техники

Изобретение касается области применения аминов и их использования в качестве отвердителей для эпоксидных смол, а также аминосодержащих составов эпоксидных смол и их использования, особенно в качестве покрытия.

Известный уровень техники

Составы эпоксидных смол должны обладать рядом свойств для их успешного применения в качестве покрытий. С одной стороны, они должны обладать низкой вязкостью для того, чтобы легко поддаваться обработке, и самопроизвольной текучестью при температуре окружающего воздуха, а также обязаны быстро затвердевать без проявления каких-либо так называемых эффектов помутнения даже в условиях высокой влажности и низкой температуры. Под "помутнением" подразумеваются такие возникающие после отверждения дефекты как мутность, пятна, неровная или липкая поверхность, которые, как правило, проявляются вследствие образования солей аминов при взаимодействии с двуокисью углерода (СО2), содержащейся в воздухе, а также по причине высокой влажности и низких температур, способствующих возникновению эффекта помутнения. В затвердевшем состоянии покрытие из эпоксидной смолы должно образовывать ровную поверхность без мутности, пятен или углублений и обладать высокой твердостью с минимально возможной ломкостью для выдерживания механического напряжения, что особенно важно при использовании такого покрытия в качестве защитного покрытия или для нанесения на пол. Для получения покрытий с указанными свойствами в составах эпоксидной смолы, описанных в предшествующем уровне техники, традиционно использовались растворители. Такие растворители как бензиловый спирт или фенолы значительно улучшают обрабатываемость эпоксидной смолы и снижают степень ломкости получаемых покрытий, однако они не встраиваются в смоляную матрицу в процессе отверждения. Кроме того, потребность создания низкоэмиссионных систем с низким содержанием веществ, которые после отверждения могут выделяться в результате процессов испарения или диффузии, в настоящее время становятся все более и более актуальной. Следовательно, невстраиваемые растворители можно использовать только в очень малых количествах или совсем не включать в состав низкоэмиссионных систем. Другой возможностью разбавления композиций эпоксидных смол является добавление в их состав таких низкомолекулярных аминов как изофорон диамин, ксилилен диамин или диметиламинопропиламин. Однако такие низкомолекулярные амины обычно обладают резким запахом, вызывают очень сильное раздражение кожи и приводят к проявлению мутности покрытий в условиях сырости и низкой температуры.

В патенте US 2009/0163676 указаны отвердители эпоксидных смол, содержащие по меньшей мере один бензилированный полиалкиленполиамин и по меньшей мере один дополнительный амин. В патенте US 6'562'934 указаны отвердители эпоксидных смол, содержащие продукты химического взаимодействия диаминов с алкенильными соединениями. Отвердители, указанные в этих двух документах, обладают недостатком, таким как медленное отверждение при взаимодействии с эпоксидными смолами, особенно при низких температурах, и без использования невстраиваемых растворителей приводят к получению довольно ломких покрытий.

Краткое описание изобретения

Следовательно, задачей, решаемой настоящим изобретением, является обеспечение создания таких отвердителей эпоксидных смол, обладающих слабым запахом, низкой вязкостью, а также легко обрабатываемых и хорошо сочетаемых с эпоксидными смолами, даже в отсутствии невстраиваемых растворителей, и способных быстро затвердевать без помутнения даже в условиях влажности и низких температур.

Неожиданно было обнаружено, что отвердители согласно пункту 1, в состав которых входит амин формулы (I), являются решением этой задачи. Такой отвердитель обладает слабым запахом, низкой вязкостью и прекрасно совместим с эпоксидными смолами. Он быстро затвердевает даже в условиях сырости и холода и образует неклейкие пленки, обладающие хорошим блеском, без мутности и дефектов поверхности, обладающие неожиданно высокой твердостью. Поскольку амин формулы (I) не содержит первичной аминогруппы, а содержит по меньшей мере две вторичные аминогруппы и обладает сравнительно высоким эквивалентным весом NH, специалисты в данной области техники ожидали, что использование такого амина в отвердителе приведет к медленному отверждению, клейкости и/или не низкой твердости получаемых пленок. Использование отвердителя согласно пункту 1 позволяет получить низкоэмиссионные системы эпоксидной смолы, которые соответствуют требованиям Eco Seal of Approval,, таким как Emicode (ЕС1 Plus), AgBB, DIBt, Der Blaue Engel, AFSSET, RTS (M1) и Советом по экологическому строительству США (US Green Building Council) (система LEED (лидерство в энергетическом и экологическом проектировании)), и одновременно с этим при их использовании соблюдаются высокие требования, предъявляемые к свойствам по обработке и эксплуатации, чего невозможно было достичь с использованием отвердителей, описанных в предшествующем уровне техники.

Дальнейшие аспекты изобретения являются предметом дальнейших независимых пунктов формулы изобретения. Особенно предпочтительные варианты реализации изобретения являются предметом зависимых пунктов формулы изобретения.

Суть изобретения

Предметом данного изобретения является отвердитель, подходящий для отверждения эпоксидных смол, содержащий в своем составе амин формулы (I).

Названия веществ, начинающие с приставки «поли-», таких как полиамин, полиол или полиэпоксид, обозначают вещества, которые формально содержат в каждой молекуле две или более функциональных групп, указанных в названии.

Термин «алифатический» означает амин, аминогруппа которого связана с алифатическим, циклоалифатическим или арилалифатическим остатком; соответственно данная группа названа алифатической аминогруппой.

Термин «ароматический» означает амин, аминогруппа которого связана с ароматическим остатком; соответственно данная группа названа ароматической аминогруппой. Термин «аминный водород» означает атомы водорода первичной и вторичной аминогрупп. Термин "эквивалентный вес NH" означает весовое отношение отвердителя или амина к аминному водороду, который присутствует в отвердителе или в амине.

Термин "невстраиваемый растворитель" означает вещество, растворимое в эпоксидной смоле и снижающее ее вязкость, которое не образует ковалентных связей со смоляной матрицей в процессе отверждения эпоксидной смолы.

В настоящем документе термин «вязкость» означает динамическую или сдвиговую вязкость, которая определяется отношением между напряжением сдвигай скоростью сдвига (градиентом скорости) и определяется так, как описано в стандарте DIN EN ISO 3219.

Амин формулы (I) может быть получен преимущественно посредством восстановительного алкилирования 1,3-би-(аминометил)бензола (= мета-ксилилендиамина или MXDA) с помощью бензальдегида. Предпочтительно использовать бензальдегид в стехиометрических количествах по отношению к первичным аминогруппам 1,3-би-(аминометил)бензола. Восстановительное алкилирование предпочтительно проводить с подачей водорода под повышенным давлением. Восстановительное алкилирование может происходить непосредственно с участием молекулярного водорода или косвенно за счет переноса водорода из других реагентов. Использование молекулярного водорода является предпочтительным. Условия предпочтительно выбирать таким образом, чтобы, с одной стороны, первичные аминогруппы алкилировались с насколько возможно полным восстановлением и, с другой стороны, чтобы исключить присоединение водорода к бензольным кольцам. Этот процесс предпочтительно выполнять при давлении водорода от 5 до 100 бар, температуре от 40 до 120°C и в присутствии соответствующего катализатора. В качестве катализатора предпочтительно использовать палладий на угле (Pd/C), платину на угле (Pt/C), катализатор Адамса (Adams) и скелетный никелевый катализатор гидрирования Ренэя (Raney), в особенности - палладий на угле и платину на угле.

Амин формулы (I), полученный с помощью восстановительного алкилирования, способом, описанным выше, особенно предпочтителен для использования его в качестве компонента отвердителей для эпоксидных смол, поскольку первичные аминогруппы алкилируются очень селективно, тогда как вторичные аминогруппы в дальнейшем алкилируются довольно сложно. Следовательно, продукт для отверждения эпоксидных смол, полученный указанным выше способом, можно использовать без дальнейшей обработки.

Амин формулы (I) также можно получить способами, отличными от восстановительного алкилирования, в особенности посредством реакции 1,3-би-(аминометил)бензола с хлоридом бензила или бромидом бензила, взятыми в соответствующей пропорции. Это приводит к получению реакционных смесей, которые, как правило, содержат значительную долю двойных алкилированных аминогрупп.

Амин формулы (I) является слабо летучим веществом со слабым запахом и низкой вязкостью. Он обладает настолько малой реакционной способностью по отношению к СО2, что в отличие от многих аминов, описанных в предшествующем уровне техники, не проявляет тенденцию к засыханию или к выпадению осадка на воздухе или увеличению вязкости. Он демонстрирует прекрасную совместимость с другими аминами и эпоксидными смолами. Отвердители, содержащие амин формулы (I), обладают низкой вязкостью с относительно высоким эквивалентным весом NH и, таким образом, являются хорошими растворителями для эпоксидных смол. Они неожиданно быстро затвердевают при совместном использовании с эпоксидными смолами и не мутнеют, даже при низких температурах. При нанесения покрытия они образуют ровные неклейкие пленки высокой твердости.

Отвердитель, получаемый согласно данному изобретению, пригоден для отверждения эпоксидных смол, кроме того, амин формулы (I) также, в частности, дополнительно содержит один полиамин А, в состав которого входят по меньшей мере три аминных водорода, способные вступать в реакцию с эпоксидными группами.

Отвердители, содержащие амин формулы (I) в сочетании с полиамином А, кроме того, способствуют отверждению эпоксидных смол, что приводит к получению отвержденных смол более высокой твердости и малой ломкости. Это особенно полезно для таких прикладных работ как нанесение покрытий. Отвердители, содержащие амин формулы (I) в сочетании с полиамином А, также обладают низкой вязкостью. В частности, вязкость отвердителя также мала, когда полиамин А обладает намного более высокой вязкостью, чем амин формулы (I). Таким образом, амин формулы (I) в значительной степени разбавляет полиамин А, в особенности тогда, когда последний обладает более высокой вязкостью. Таким образом, амин формулы (I) позволяет эффективно разбавлять полиамин А без использования невстраиваемых растворителей или амина с резким запахом, склонного к о помутнению. Процесс растворения особенно эффективен при использовании полиамина А с вязкостью свыше 700 МПз, более предпочтительно, когда та превышает 1500 МПз. Благодаря присутствию амина формулы (I), скорость отверждения при совместном использовании с эпоксидными смолами, а также твердость и качество поверхности таких пленок не подвергаются отрицательному воздействию, а ломкость покрытия снижается еще больше.

Следующие полиамины, которые наиболее предпочтительно использовать в качестве полиамина А:

- алифатические, циклоалифатические или арилалифатические первичные диамины, такие как этилендиамин, 1,2-пропан диамин, 1,3-пропан диамин, 2-метил-1,2-пропан диамин, 2,2-диметил-1,3-пропан диамин, 1,3-бутан диамин, 1,4-бутан диамин, 1,3-пентан диамин (DAMP), 1,5-пентан диамин, 1,5-диамино-2-метилпентан (MPMD), 2-бутил-2-этил-1,5-пентан диамин (С11-неодиамин), 1,6-гексан диамин, 2,5-диметил-1,6-гексан диамин, 2,2,4- и 2,4,4-триметилгексаметилен диамин (TMD), 1,7-гептан диамин, 1,8-октан диамин, 1,9-нонан диамин, 1,10-декан диамин, 1,11-ундекан диамин, 1,12-додекан диамин, 1,2-, 1,3- and 1,4-диаминоциклогексан, би-(4-аминоциклогексил) метан (H12-MDA), би-(4-амино-3-метилциклогексил) метан, би-(4-амино-3-этилциклогексил) метан, би-(4-амино-3,5-диметилциклогексил) метан, би-(4-амино-3-этил-5-метилциклогексил)метан (М-МЕСА), 1-амино-3-аминометил-3,5,5-триметилциклогексан (= изофорон диамин или IPDA), 2- и 4-метил-1,3-диаминоциклогексан и его составы, 1,3- и 1,4-би-(амино-метил)циклогексан, 2,5(2,6)-би-(аминометил)бицикло[2.2.1]гептан(NBDA), 3(4), 8(9)-би-(аминометил)цикло[5.2.1.02,6]декан, 1,4-диамино-2,2,6-триметилциклогексан (TMCDA), 1,8-гексагидропарацимол диамин, 3,9-би-(3-аминопропил)-2,4,8,10-тетраоксаспиро[5.5]ундекан, а также 1,3- и 1,4-би-(аминометил) бензол;

- алифатические, циклоалифатические или арилалифатические триамины наподобие 4-аминометил-1,8-октан диамина, 1,3,5-трис-(аминометил) бензола, 1,3,5-трис-(аминометил) циклогексана, трис-(2-аминоэтил) амина, трис-(2-аминопропил) амина и трис-(3-аминопропил) амина;

- алифатические первичные диамины, содержащие эфирные группы, такие как, в особенности, би-(2-аминоэтил)-простой эфир, 3,6-диоксаоктан-1,8-диамин, 4,7-диоксадекан-1,10-диамин, 4,7-диоксадекан-2,9-диамин, 4,9-диоксадодекан-1,12-диамин, 5,8-диоксадодекан-3,10-диамин, 4,7,10-триоксатридекан-1,13-диамин и высокие олигомеры этих диаминов, би-(3-аминопропил) политетрагидрофураны и прочие политетрагидрофуран-диамины, а также полиоксиалкилен-диамины. Последние диамины, как правило, образуют продукты в результате аминирования полиоксиалкилен-диолов и доступны под названиями, например, Jeffамин® - джеффамин (от компании Huntsman), Polyetheramine - полиэфирамин (от компании BASF) или PC Амин® - пропилен-карбонат амин (от компании Nitroil). Наиболее подходящими полиоксиалкилен-диаминами являются Jeffамин® D-230, Jeffамин® D-400, Jeffамин® D-2000, Jeffамин® D-4000, Jeffамин® XTJ-511, Jeffамин® ED-600, Jeffамин® ED-900, Jeffамин® ED-2003, Jeffамин® XTJ-568, Jeffамин® XTJ-569, Jeffамин® XTJ-523, Jeffамин® XTJ-536, Jeffамин® XTJ-542, Jeffамин® XTJ-559, Jeffамин® EDR-104, Jeffамин® EDR-148, Jeffамин® EDR-176; Polyetheramine D 230, Polyetheramine D 400 и Polyetheramine D 2000, PC Амин® DA 250, PC Амин® DA 400, PC Амин® DA 650 и PC Амин® DA 2000;

- первичные полиоксиалкилен-триамины, которые, как правило, образуют продукты в результате аминирования полиоксиалкилен-триолов и доступны под названиями, например, Jeffамин® (от компании Hunts-man), полиэфирамин (от компании BASF) или PC Амин® (от компании Nitroil), такие как, в особенности, Jeffамин® Т-403, Jeffамин® Т-3000, Jeffамин® Т-5000, Polyetheramine Т 403, Polyetteramine Т 5000 и PC Амин® ТА 403;

- полиамины, в состав которых входят третичные аминогруппы с двумя первичными алифатическими аминогруппами, такими как, в частности, N,N'-би-(аминопропил)-пиперазин, N,N-би-(3-аминопропил) метиламин, N,N-би-(3-аминопропил) этиламин, N,N-би-(3-аминопропил) пропиламин, N,N-би-(3-аминопропил) циклогексиламин, N,N-би-(3-аминопропил)-2-этил-гексиламин, а также продукты, полученные в результате двойного цианэтилирования и последующего восстановления аминов жирного ряда, которые производятся из натуральных жирных кислот, таких как N-би-(3-аминопропил)додецил амин и N,N-би-(3-аминопропил)жир-алкиламин, доступные под названиями Triameen®Y12 дня и Triameen® YT (от компании Akzo Nobel);

- полиамины, в состав которых входят третичные аминогруппы с тремя первичными алифатическими аминогруппами, такими как, в частности, трис-(2-аминоэтил) амин, трис-(2-аминопропил) амин и трис-(3-аминопропил) амин;

- полиамины, в состав которых входят вторичные аминогруппы с двумя первичными алифатическими аминогруппами, такими как, в частности, 3-(2-аминоэтил) аминопропиламин, би-гексаметилен триамин (ВНМТ), диэтилен-триамин (DETA), триэтилен-тетрамин (ТЕТА), тетраэтилен-пентамин (ТЕРА), пентаэтилен-гексамин (РЕНА) и высокие гомологи линейных полиэтилен-аминов наподобие полиэтилен-полиамина с 5-7 этилен-аминовыми звеньями (так называемые "высокие этилен-полиамины", НЕРА), продукты, полученные в результате многократного цианэтилирования или цианбутилирования и последующего гидрирования первичных ди- и полиаминов по меньшей мере с двумя первичными аминогруппами, такие как дипропилен триамин (DPTA), N-(2-аминоэтил)-1,3-пропан диамин (N3-амин), N,N-би(3-аминопропил)этилен диамин (N4-амин), N,N'-би-(3-аминопропил)-1,4-диаминбутан, N5-(3-аминопропил)-2-метил-1,5-пентандиамин, N3-(3-аминопентил)-1,3-пентандиамин, N5-(3-амино-1-этилпропил)-2-метил-1,5-пентандиамин и N,N'-би-(3-амино-1-этилпропил)-2-метил-1,5-пентандиамин;

- полиамины, в состав которых входит одна первичная и одна вторичная аминогруппы, в частности, такие как N-метил-1,2-этан диамин, N-этил-1,2-этан диамин, N-бутил-1,2-этан диамин, N-гексил-1,2-этан диамин, N-(2-этилгексил)-1,2-этан диамин, N-циклогексил-1,2-этан диамин, 4-аминометил-пипередин, N-(2-аминоэтил) пиперазин, N-метил-1,3-пропан диамин, N-бутил-1,3-пропан диамин, N-(2-этилгексил)-1,3-пропан диамин, N-циклогексил-1,3-пропан диамин, 3-метиламино-1-пентиламин, 3-этиламино-1-пентиламин, 3-циклогексиламино-1-пентиламин, жирные диамины наподобие N-алкил жирной кислоты кокосового масла-1,3-пропан диамина и продуктов, полученных в результате реакции присоединения (по Михаэлю) первичных алифатических диаминов со сложными диэфирами акрилонитриловой, малеиновой или фумаровой кислот, сложными диэфирами цитраконовой кислоты, сложными диэфирами акриловой и метакриловой кислот, амидами акриловой и метакриловой кислот и сложными диэфирами итаконовой кислоты, которые взаимодействуют при молярном отношении 1:1, и также продукты, полученные в результате частичного восстановительного алкилирования первичных полиаминов с помощью бензальдегида или прочих альдегидов либо кетонов, а также частично стиролизированных полиаминов наподобие Gaskamin® 240 (от компании Mitsubishi Gas Chemical (MGC));

- ароматические полиамины, в особенности, такие как м- и п-фенилен диамин, 4,4'-, 2,4' и 2,2'-диаминодифенилметан, 3,3'-ди-хлор-4,4'-диаминодифенилметан (МОСА), 2,4- и 2,6-толуилен диамин, смеси 3,5-диметилтио-2,4- и -2,6-толуилен диамина (доступный как Ethacure® 300 от компании Albemarle), соединения 3,5-диэтил-2,4-и -2,6-толуилен диамина (DETDA), 3,3',5,5'-тетраэтил-4,4'-диаминодифенилметан (M-DEA), 3,3',5,5'-тетраэтил-2,2'-дихлор-4,4'-диаминодифенилметан (M-CDEA), 3,3'-ди-изопропил-5,5'-диметил-4,4'-диаминодифенилметан (M-MIPA), 3,3',5,5'-тетраизопропил-4,4'-диаминодифенилметан (M-DIPA), 4,4'-диаминодифенилсульфон (DDS), 4-амино-N-(4-аминофенил) бензол сульфонамид, 5,5'-метилен ди-ортоаминобензойгая кислота, диметил-(5,5'-метилен диантранилат), 1,3-пропилен-би-(4-аминобензоат), 1,4-бутилен-би-(4-аминобензоат), политетраметилен оксид-би-(4-аминобензоат) (доступный как Versalink® от компании Air Products), 1,2-би-(2-аминофенилтио) этан, 2-метилпропил-(4-хлор-3,5-диаминобензоат) и трет-бутил-(4-хлор-3,5-диаминобензоат);

- продукты присоединения упомянутых полиаминов при взаимодействии с эпоксидами и эпоксидными смолами, в особенности продукты присоединения при взаимодействии с диэпоксидами при молярном отношении по меньшей мере 2/1, продукты присоединения при взаимодействии с моноэпоксидами при молярном отношении по меньшей мере 1/1, и продукты реакции аминов и эпихлоргидрина, особенно 1,3-би-(аминометил) бензол, имеющийся в продаже под названием as Gaskамин® 328 (от компании MGC);

- полиамидоамины, которые образуют продукты реакции моновалентной и поливалентной карбоксильной кислоты, или их сложные эфиры или ангидриды, в особенности димерная жирная кислота, и алифалический, циклоалифалический или ароматический полиамин, используемый в избытке против стехиометрии, в особенности полиалкиленамин, такой как DETA или ТЕТА, в особенности имеющиеся в продаже полиамидоамины Versamid® 100, 125,140 и 150 (от компании Cognis), Aradur® 223, 250 и 848 (от компании Huntsman), Euretek® 3607 и 530 (от компании Huntsman) и Beckopox® ЕН 651, ЕН 654, ЕН 655, ЕН 661 и ЕН 663 (от компании Cytec); и

- феналкамины, также известные как основания Манниха, которые образуют продукты реакции после реакции Манниха между фенолами, в особенности карданолом, и альдегидами, в особенности формальдегидом, и полиаминами, в особенности имеющиеся в продаже феналкамины Cardolite® NC-541, NC-557, NC-558, NC-566, Lite 2001 и Lite 2002 (от компании Cardolite), Aradur® 3440, 3441, 3442 и 3460 (от компании Huntsman) и Beckopox® ЕН 614, ЕН 621, ЕН 624, ЕН 628 и ЕН 629 (от компании Cytec).

В качестве полиамина А могут быть выбраны полиамины из группы, состоящей из 1,3-пентандиамина (DAMP), 1,5-диамино-2-метилпентана (MPMD), 2-бутил-2-этил-1,5-пентандиамина (С11-неодиамин), 1,6-гексан диамина, 2,2,4- и 2,4,4-триметилгексаметилен диамина (TMD), 1,12-додекан диамина, 1,3-диаминоциклогексана, би-(4-аминоциклогексил) метана (H12-MDA), би-(4-амино-3-метилциклогексил) метана, 1-амино-3-аминометил-3,5,5-триметилциклогексана (IPDA), 1,3-би-(аминометил)циклогексана, 1,3-би-(аминометил)бензола (MXDA), би-гексаметилен триамина (ВНМТ), диэтилен триамина (DETA), триэтилен тетрамина (ТЕТА), тетраэтилен пентамина (ТЕРА), пентаэтилен гексамина (РЕНА) и высоких гомологов линейных полиэтилен-аминов наподобие полиэтилен-полиаминов с 5-7 этиленаминовыми единицами (HEPA), дипропилен триамина (DPTA), N-(2-аминоэтил)-1,3-пропан диамина (N3-амина), N,N'-би-(3-аминопропил) этилен диамина (N4-амина), полиоксиалкилен диаминов и полиоксиалкилен триаминов с молекулярным весом в диапазоне от 200 до 500 г/моль, в особенности вещества типа Jeffамин® D-230, Jeffамин® D-400 и Jeffамин® Т-403, полиамидоаминов, феналкаминов, соединений упомянутых полиаминов, которые частично ли полностью алкилируются в первичные аминогруппы и продукты присоединения упомянутых полиаминов в результате реакции с эпоксидами и эпоксидными смолами.

Эти предпочтительные полиамины А совместимы, главным образом, с эпоксидными смолами и создают покрытия пленки очень высокого качества.

Особенно предпочтительными в качестве полиамина А являются полиамины, в состав которых входит по меньшей мере одна вторичная аминогруппа, в особенности феналкамины, продукты присоединения полиаминов, полученные в результате реакций с эпоксидами и эпоксидными смолами, а также первичные полиамины, которые алкилируются по меньшей мере в одну первичную аминогруппу, в частности стиролизованный 1,3-би-(аминометил) бензол и бензилированные полиалкилен амины. Эти предпочтительные полиамины А характеризуются незначительной тенденцией к помутнению и при использовании их совместно с эпоксидными смолами могут быть получены пленки высокого качества даже в условиях высокой влажности и низкой температуры. Однако многие из этих аминов обладают высокой вязкостью, поэтому при использовании таких аминов в качестве компонентов отвердителя эпоксидной смолы без добавки растворителя полученные покрытия сложно поддаются обработке. Сочетание эпоксидных смол с амином формулы (I) в низкоэмиссионных покрытиях особо полезно, потому что такое сочетание делает возможным применение маловязких отвердителей, которые характеризуются незначительной тенденцией к помутнению и, в результате отверждения могут быть получены пленки высокой твердости и незначительной ломкости даже при отсутствии невстраиваемых растворителей.

В качестве полиамина А также особенно пригодны смеси, содержащие несколько из упомянутых полиаминов.

Наиболее предпочтительны для использования в качестве полиамина А те полиамины, которые сами по себе обладают хорошими свойствами в случае применения их в качестве компонентов эпоксидных смол при нанесении покрытий, однако при этом они обладают высокой вязкостью и по причине необходимости получения требуемой обрабатываемости и/или вследствие проявления слишком высокой ломкости, для удовлетворения требований, предъявляемых к покрытиям высокого качества, указанные полиамины непременно следует комбинировать с невстраиваемыми растворителями, такими как бензиловый спирт, алкилфенолы, стиролизированный фенол или углеводородные смолы. Однако смеси с такими растворителями не подходят для прикладных работ, где требуется использование низкоэмиссионных систем. Однако благодаря амину формулы (I), который полностью встраивается в состав смоляной матрицы в процессе отверждения, после завершения отверждения не происходит выделения растворителя.

Если помимо амина формулы (I), отвердитель также содержит полиамин А, то отношение количества аминных водородов в амине формулы (I), которые вступают в реакцию с эпоксидными группами, и количества аминных водородов в полиамине А, которые вступают в реакцию с эпоксидными группами, как правило, находится в диапазоне от 0,05 до 5, предпочтительно от 0,05 до 2. Такие отвердители обладают пониженной вязкостью и совместно с эпоксидными смолами отверждаются с получением пленок низкой ломкости и гибко регулируемой твердости - от твердости среднего уровня, когда добавляется больше амина формулы (I), до твердости высокого уровня, когда добавляется меньше амина формулы (I).

Особо предпочтительно значение этого отношения находится в диапазоне от 0,1 до 1. Такие отвердители отличаются низкой вязкостью и быстрым отверждением с использованием их совместно с эпоксидными смолами с образованием пленок высокой твердости и низкой ломкости.

В отношении описанного отвердителя предпочтительное весовое соотношение между амином из формулы (I) и полиамином А находится в диапазоне от 0,2 до 2, особенно предпочтителен диапазон от 0,4 до 1,5. Такие отвердители отличаются низкой вязкостью и быстрым отверждением при совместном использовании с эпоксидными смолами для получения покрытий.

Согласно настоящему изобретению отвердитель кроме амина формулы (I) также может содержать по меньшей мере одну ускоряющую добавку.

В качестве ускоряющей добавки подходят те вещества, которые ускоряют реакцию между аминными и эпоксидными группами, в особенности между кислотами или соединениями, которые могут быть гидролизированы до кислот, в особенности до органических карбоксильных кислот, таких как уксусная кислота, бензойная кислота, салициловая кислота, 2-нитробезойная кислота, молочная кислота, органические сульфоновые кислоты, такие как метансульфокислота, п-толилсульфокислота или 4-додецилбензольная сульфокислота, сложные эфиры сульфокислоты, прочие органические или неорганические кислоты, в частности, такие как фосфорная кислота или смеси вышеупомянутых кислот и кислых эфиров; кроме того, третичных аминов, таких как, в частности, 1,4-диазабицикло[2.2.2] октан, бензилдиметиламин, D-метил-бензилдиметиламин, триэтаноламин, диметил-аминопропиламин, имидазолы, в частности, такие как N-метилимидазол, N-винилимидазол или 1,2-диметилимидазол, соли вышеупомянутых третичных аминов, четвертичных аммониевых солей, в частности, такие как бензилтриметиламмоний хлорид, амидины, в частности, такие как 1,8-диазабицикло[5.4.0]ундек-7-ен, гуанидины, в частности, такие как 1,1,3,3-тетраметилгуанидин, фенолы, в особенности бифенолы, феноловые смолы и основания Манниха, такие как, в частности, 2-(диметиламинометил) фенол, 2,4,6-трис-(диметиламинометил) фенол и полимеры на основе фенола, формальдегид и N,N-диметил-1,3-пропан диамин, фосфиты, в частности, такие как ди- и трифенил фосфиты, а также те соединения, в состав которых входят меркаптогруппы, такие как те, что уже упоминались выше.

Предпочтительными ускоряющими добавками являются салициловая кислота и 2,4,6-трис-(диметиламинометил) фенол.

Согласно настоящему изобретению ускоритель в дополнение к амину формулы (I) может содержать по меньшей мере один невстраиваемый растворитель, такой как, в частности, ксилол, 2-метоксиэтанол, диметоксиэтанол, 2-этоксиэтанол, 2-пропоксиэтанол, 2-изопропоксиэтанол, 2-бутоксиэтанол, 2-феноксиэтанол, 2-бензилоксиэтанол, бензиловый спирт, этиленгликоль, эталенгликоль диметилэфир, этиленгликоль диэтилэфир, этиленгликоль дибутилэфир, этиленгликоль дифенилэфир, диэтиленгликоль, диэтиленгликоль монометилэфир, диэтиленгликоль мономеэтилэфир, диэтиленгликоль моно-н-бутилэфир, диэтиленгликоль диметилэфир, диэтиленгликоль диэтилэфир, диэтиленгликоль ди-н-бутилэфир, пропиленгликоль бутилэфир, пропиленгликоль фенилэфир, дипропиленгликоль, дипропиленгликоль монометилэфир, пропиленгликоль диметилэфир, дипропиленгликоль ди-н-бутилэфир, N-метил пирролидон, дифенилметан, диизопропил нафиалин, такие нефтяные фракции как разновидности Sorvesso® (от компании Exxon), алкилфенолы наподобие трет-бутил фенола, нонилфенол, додецилфенол и 8,11,14-пентадекатриенил фенол (карданол, полученный из масла скорлупы ореха кешью и доступный в продаже под названием, например, Cardolite NC-700 от компании Cardolite Corp., США), стиролизированный фенол, бифенолы, ароматические углеводородные смолы, в особенности те их разновидности, которые содержат феноловые группы, адипинаты, себацинаты, фталаты, бензоаты, органические сложные эфиры фосфорной и сульфоновой кислот и сульфаниламиды. Предпочтительными для применения являются бензиловый спирт, додецилфенол, трет-бутил-фенол, стиролизованный фенол и ароматические углеводородные смолы, содержащие феноловые группы, в особенности их разновидности типа Novares® LS 500, LX 200, LA 300 и LA 700 (от компании Rutgers).

Предпочтительно, чтобы отвердитель содержал незначительное количество или вообще не содержал невстраиваемых растворителей, наиболее предпочтительно количество указанных невстраиваемых растворителей составляет менее 25% масс., наиболее предпочтительно менее 10% масс. и наиболее менее 5% масс. В частности, ни один из невстраиваемых растворителей не вводится в отвердитель.

Помимо этого описанный отвердитель может содержать другие вещества, вступающие в реакцию с эпоксидными группами, в частности, такие как

- моноамины, такие как, в частности, бензиламин, циклогексиламин, 2-фенилэтиламин, 2-метоксифенилэтиламиа, 4-метоксифенилэтиламин, 3,4-диметоксифенилэтиламин (гомовератриламин), 1- и 2-бутиламин, изобутиламин, трет-бутиламин, 3-метил-2-бутиламин, 1-гексиламин, 1-октиламин, 2-этил-1-гексиламин, 2-метокси-1-этиламин, 2-этокси-1-этиламин, 3-метокси-1-пропиламин, 3-этокси-1-пропиламин, 3-(2-этилгексилокси) пропиламин, 3-(2-метоксиэтокси) пропиламин;

- вторичные алифатические полиамины, полиамины, в частности такие как N,N'-дибутил-этилен диамин, N,N'-ди-трет-бутил-этилен диамин, N,N'-диэтил-1,6-гексан диамин, 1-(1-метилэтил-амино)-3-(1-метилэтил-аминометил)-3,5,5-триметилциклогексан (Jeffink® 754 от компании Huntsman), N4-циклогексил-2-метил-N2-(2-метилпропил)-2,4-пентандиамин, N,N'-диалкил-1,3-ксилилен диамин, би-(4-(N-3-бутиламино)-циклогексил) метан Clearlink® 1000 от компании UOP), N-алкилированные полиэфирамины, такие как разновидности Jeffамин® SD-231, SD-401, ST-404 и SD-2001 (от компании Huntsman), продукты реакции присоединения по Михаэлю с участием первых алифатических полиаминов и нейтрализаторов Михаэля наподобие акрилонитрильной, малеиновой кислоты, диэфиров, диэфиров фумаровой кислоты, диэфиров цитраконовой кислоты, эфиров акриловой кислоты, эфиров метакриловой кислоты, эфиров коричной кислоты, диэфиров итаконовой кислоты, диэфиров винилфосфокислоты, ариловых эфиров винилсульфокислоты, винилсульфонов, винилнитрилов, 1-нитроэтилена или продуктов конденсации Кневенагеля, таких как те, которые получены на основании диэфиров малоновой кислоты и альдегидов, наподобие формальдегида, ацетальдегида или бензальдегида, а также продуктов восстановительного алкилирования первичных алифатических полиаминов с участием бензальдегида либо других альдегидов или кетонов;

- жидкие полимеры в виде полисульфидов с сульфгидрильными концевыми группами, известными под торговой маркой Thiokol® (от компании Morton Thiokol; они, к примеру, доступны для приобретения в компаниях SPI Supplies или Toray Fine Chemicals), в особенности такие разновидности как LP-3, LP-33, LP-980, LP-23, LP-55, LP-56, LP-12, LP-31, LP-32 и LP-2; а также те, которые известны под торговой маркой Thioplast® (от компании Akzo Nobel), в особенности их разновидности G 10, G 112, G 131, G 1, G 12, G 21, G 22, G 44 и G4;

- полиоксиалкиленэфиры с сульфгидрильными концевыми группами, которые можно получить в результате, например, реакции диолов и триолов полиоксиалкилена либо с эпихлоргидрином или с оксидом алкилена с последующей подачей кислого сульфида натрия;

- соединения с сульфгидрильными концевыми группами в виде производных соединений полиоксиалкилена, известных под торговой маркой Capcure® (от компании Cognis), в особенности их разновидности WR-8, LOF и 3-800;

- сложные полиэфиры тиокарбоновых кислот, такие как пентаэритритол тетрамеркаптоацетат, триметиол пропан тримеркаптоацетат, гликоль димеркаптоацетат, пентаэритритол тетра-(3-меркаптопропионат), триметиол пропан три-(3-меркаптопропионат) и гликоль ди-(3-12-меркаптопропионат), а также продукты этерификации диолов и триолов полиоксиалкилена, этоксилированные диолы триметиол-пропана и полиэфиров с участием тиокарбоновых кислот наподобие тиогликолевой и 2- или 3-меркаптопропионовой кислоты; и другие соединения, в состав которых входят меркаптогруппы, в частности, такие как 2,4,6-тримеркапто-1,3,5-триазин, 2,2'-(этилен диокси)-диэтан тиол (триэтиленгликоль димеркаптан) и этандитиол.

Другим предметом данного изобретения является состав эпоксидной смолы, содержащий:

a) По меньшей мере одну эпоксидную смолу, и

b) По меньшей мере один отвердитель, содержащий амин формулы (I), такой как описано выше.

В качестве эпоксидной смолы подходят обычные технические эпоксидные смолы. Их получают известным способом, например, после окисления соответствующих олефинов или в результате реакции эпихлоргидрина с соответствующими полиолами, полифенолами или аминами.

В качестве эпоксидной смолы особенно подходят так называемые полиэпоксидные жидкие смолы, далее называемые «жидкой смолой». Их температура стеклования обычно ниже 25°С в противоположность так называемым твердым смолам, чья температура стеклования выше 25°С. Их можно размельчить в порошки, которые становятся наливными при температуре до 25°С.

В одном из вариантов реализации изобретения жидкая смола - это полиэпоксид с ароматическими звеньями. Для этой роли, например, подходят жидкие смолы формулы (II), где R' и Rʺ независимо друг от друга обозначают атом водорода или метиловую группу, а значение s, в среднем, составляет от 0 до 1. Предпочтительны те смолы формулы (II), показатель s которых, в среднем, имеет значение менее 0,2.

Жидкие смолы формулы (II) представляют собой диглицидные эфиры бифенола-A, бифенола-F и бифенола-A/F, где А представляет собой ацетон, a F - формальдегид, которые служат в качестве продуктов извлечения для получения этих бифенолов. Жидкая смола бифенол-А соответственно содержит метальные группы, жидкая смола бифенол-F - атомы водорода, а жидкая смола бифенол-A/F - как метальные группы, так и атомы водорода, обозначенные как R' и Rʺ в формуле (II). В случае бифенола-F также могут присутствовать позиционные изомеры, в особенности те, которые получены из 2,4'- и 2,2'-гидроксифенилметана.

Другими подходящими жидкими ароматическими смолами являются продукты глицидилизации:

- таких производных дигидроксибензола как резорцин, гидрохинон и пирокатехин;

- других бифенолов или полифенолов наподобие би-(4-гидрокси-3-метилфенил)-метана, 2,2-би-(4-гидрокси-3-метилуфенил)-пропана(бифенол-С), би-(3,5-диметил-4-гидроксифенил)-метана, 2,2-би-(3,5-диметил-4-гидроксифенил)-пропана, 2,2-би-(3,5-дибром-4-гидроксифенил)-пропана, 2,2-би-(4-гидрокси-3-трет.-бутилфенил)-пропана, 2,2-би-(4-гидроксифенил)-бутана (бифенол-В), 3,3-би-(4-гидроксифенил)-пентана, 3,4-би-(4-гидроксифенил)-гексана, 4,4-би-(4-гидроксифенил)-гептана, 2,4-би-(4-гидроксифенил)-2-метилбутана, 2,4-би-(3,5-диметил-4-гидроксифенил)-2-метилбутана, 1,1-би-(4-гидроксифенил)-циклогексана (бифенол-Z), 1,1-би-(4-гидроксифенил)-3,3,5-три-метилциклогексана (бифенол-ТМС), 1,1-би-(4-гидроксифенил)-1-фенилэтана, 1,4-би[2-(4-гадроксифенил)-2-пропил]-бензола) (бифенол-Р), 1,3-би-[2-(4-гидроксифенил)-2-пропил]-бензола) (бифенол-М), 4,4'-дигидроксидифенил (DOD), 4,4'-дигидрокси-бензофенона, би-(2-гидрокси-нафт-1-ил)-метан, би-(4-гидроксинафт-1-ил)-метан-1,5-дигидрокси-нафталина, трис-(4-гидроксифенил)-метана, 1,1,2,2-тетракис-(4-гидроксифенил)-этана, би-(4-гидроксифенил)-эфира, би-(4-гидроксифенил)сульфона;

- продуктов конденсации фенолов с участием формальдегида, получаемых в кислой среде, таких как фенол-новолаки или крезол-новолаки, также известные как новолаки бифенола-F;

- ароматических аминов, подобных анилину, толуидину, 4-аминофенолу, 4,4'-метилен дифенилдиамину (MDA), 4,4'-метилен дифенил ди-(N-метил)-амину, 4,4'-[1,4-фенилен-би-(1-метил-этилиден)]-бианилину (бианилин-Р), 4,4'-[1,3-фенилен-би-(1-метил-этилиден)]-бианилину (бианилин-М).

Также являет