Способ управления двигателем и система двигателя

Иллюстрации

Показать все

Изобретение относится к системе управления двигателем транспортного средства, а именно к автоматической остановке и автоматическому запуску двигателя. Техническим результатом является снижение расхода топлива. Результат достигается тем, что регулируют условия остановки двигателя при оценке условий работы в соответствии с по меньшей мере одной функцией оптимальности, построенной с привязкой ко времени, прошедшему с момента достижения условий для остановки двигателя, при этом функция оптимальности выдает значение, представляющее собой потери в экономии топлива. Значение может быть сопоставлено с предварительно заданным значением. Если текущее значение выше предварительно заданного значения, то адаптированная задержка остановки двигателя может быть уменьшена. С другой стороны, в случае прерывания процедуры остановки двигателя адаптированная задержка остановки двигателя может быть увеличена на предварительно заданную величину. Таким образом, функция оптимальности является основой для регулировки задержки остановки двигателя. 3 н. и 17 з.п. ф-лы, 8 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к системе для усовершенствования автоматической остановки и запуска двигателя. Способ может быть, в частности, полезен для повышения экономии топлива транспортного средства и улучшения режима езды.

Уровень техники

В целях экономии топлива двигатель может быть автоматически остановлен. Контроллер может принять решение об остановке двигателя на основании комбинации контролируемых условий работы транспортного средства. Например, двигатель может быть остановлен в ситуации, когда скорость транспортного средства равна нулю, а водитель нажимает на педаль тормоза транспортного средства. Остановка двигателя при подобных условиях может позволить сэкономить топливо. Однако водитель также может отпустить педаль тормоза транспортного средства сразу после остановки двигателя, так что топливо практически не будет сэкономлено. Кроме того, кратковременная остановка двигателя может стать причиной неудобства водителя. С другой стороны, если двигатель может поработать на холостом ходу в течение увеличенного периода времени перед остановкой двигателя, то такая остановка двигателя позволит сэкономить лишь незначительное количество топлива. Следовательно, в некоторых условиях движения и при некоторых действиях водителей обеспечить значительную экономию топлива может быть непросто.

Раскрытие изобретения

Авторы изобретения выявили упомянутые выше недостатки и разработали способ эксплуатации двигателя, включающий в себя: автоматическую остановку двигателя при наличии одного или более условий работы транспортного средства, удовлетворяющих критерию остановки двигателя; корректировку критерия остановки двигателя при таких условиях остановки двигателя, которые определены с помощью одной или более функций оптимальности.

Путем корректировки критерия остановки двигателя в результате оценки условий остановки двигателя по одной или более функций оптимальности можно повысить эффективность использования топлива при снижении степени неудобства водителя. Например, если водитель обычно отпускает педаль тормоза транспортного средства сразу после остановки транспортного средства, позволяя транспортному средству медленно двигаться по инерции, может оказаться желательным увеличить время холостого хода двигателя после остановки транспортного средства для снижения вероятности остановки двигателя, когда водитель не нажимает на педаль тормоза. С другой стороны, если водитель обычно ждет несколько минут перед тем, как подать команду на ускорение транспортного средства после остановки транспортного средства, может оказаться желательным остановить двигатель только в случае остановки транспортного средства, чтобы сэкономить больше топлива.

Представленная стратегия обеспечивает ряд преимуществ. В частности, такой подход может обеспечить повышение эффективности использования топлива транспортного средства с автоматическим запуском и остановкой для большего количества водителей. Кроме того, описанный подход может помочь снизить степень неудобства водителей, останавливая двигатель тогда, когда водитель этого ожидает. Кроме того, предложенная методика может повысить согласованность остановки и запуска двигателя.

Указанные выше преимущества, а также прочие преимущества и характеристики настоящего изобретения будут очевидны при ознакомлении с приведенным далее подробным описанием, отдельно или со ссылкой на сопроводительные чертежи.

Следует понимать, что вышеприведенное краткое изложение сущности изобретения представлено для описания в упрощенной форме ряда выбранных концепций, дальнейшее изложение которых приводится ниже в подробном описании. Краткое раскрытие сущности изобретения не направлено на определение основных или существенных характеристик заявленного предмета изобретения, объем которого однозначно определяется формулой изобретения. Кроме того, заявленный предмет изобретения не ограничивается вариантами реализации изобретения, устраняющими какой-либо из недостатков, указанных выше или в любой части данного раскрытия.

Краткое описание чертежей

На Фиг.1 представлено схематическое изображение системы двигателя.

На Фиг.2 приведен пример модели системы транспортного средства.

На Фиг.3 приведены примеры графиков для представляющих интерес сигналов во время смоделированной остановки или перезапуска двигателя.

На Фиг.4 приведены другие примеры графиков для представляющих интерес сигналов во время смоделированной последовательности процессов остановки и запуска двигателя.

На Фиг.5A и 5B приведены примеры функций оптимальности, используемых после остановки двигателя.

Фиг.6 представляет собой блочную диаграмму примера системы остановки и запуска двигателя транспортного средства.

Фиг.7 представляет собой блок-схему примера способа остановки и запуска двигателя.

Осуществление изобретения

Настоящее описание относится к автоматической остановке и автоматическому запуску двигателя. В одном неограничивающем примере двигатель может иметь конфигурацию, показанную на Фиг.1. Двигатель может быть частью транспортного средства, как показано на Фиг.2. Остановка и запуск двигателя могут быть выполнены согласно методике, проиллюстрированной на Фиг.7. На Фиг.6 показан один пример блочной диаграммы способа остановки двигателя, а на Фиг.5A и 5B показана функция оптимальности, которая может быть использована в системе автоматической остановки двигателя. На Фиг. 3 и 4 показаны примеры рабочих последовательностей транспортного средства согласно методике, проиллюстрированной на Фиг.7.

На Фиг.1 показана схема двигателя 10 внутреннего сгорания, содержащего несколько цилиндров, один из которых представлен на Фиг.1, и который управляется электронным контроллером 12 двигателя. Двигатель 10 содержит камеру 30 сгорания и стенки 32 цилиндра с поршнем 36, размещенным в них и соединенным с коленчатым валом 40. Камера 30 сгорания показана сообщающейся с впускным коллектором 44 и выпускным коллектором 48 через соответствующие впускной клапан 52 и выпускной клапан 54. Каждый впускной и выпускной клапан может быть приведен в действие впускным кулачком 51 и выпускным кулачком 53. В другом случае один или больше впускных и выпускных клапанов могут приводиться в действие электромеханической обмоткой клапана и якорем в сборе. Положение впускного кулачка 51 может быть определено датчиком 55 впускного кулачка. Положение выпускного кулачка 53 может быть определено датчиком 57 выпускного кулачка.

Топливная форсунка 66 показана расположенной таким образом, чтобы впрыскивать топливо непосредственно в камеру сгорания 30, что известно специалистам в данной области как «прямой впрыск». Альтернативно, топливо может впрыскиваться во впускные каналы, что известно специалистам как «впрыск во впускные каналы». Топливная форсунка 66 поставляет топливо пропорционально ширине импульса сигнала (FPW) от контроллера 12. Топливо подается к топливной форсунке 66 топливной системой (не показана), содержащей топливный бак, топливный насос и топливную рампу (не показаны). На топливную форсунку 66 подается рабочий ток от привода 68, который реагирует на сигналы контроллера 12. Кроме того, впускной коллектор 44 показан сообщающимся с необязательным электронным дросселем 62, который регулирует положение дроссельной заслонки 64 для контроля воздушного потока от воздухозаборника 42 к впускному коллектору 44. В одном примере, может быть использована система непосредственного впрыска низкого давления, где давление топлива может быть поднято до примерно 20-30 бар. В качестве альтернативы, для создания большего топливного давления топлива может быть использована двухстадийная топливная система высокого давления.

Бесконтактная система 88 зажигания обеспечивает искру зажигания в камере 30 сгорания с помощью свечи 92 зажигания под управлением контроллера 12. Универсальный кислородный датчик 126 (UEGO) показан соединенным с выхлопным коллектором 48 выше по потоку каталитического конвертера 70. Кроме того, бистабильный датчик содержания кислорода в отработавших газах может быть заменен универсальным кислородным датчиком 126 (UEGO).

Согласно одному из примеров, конвертер 70 может содержать несколько блоков катализаторов. В других примерах могут использоваться устройства снижения токсичности отработавших газов, каждое из которых содержит несколько блоков. Конвертер 70 может быть трехкомпонентным каталитическим нейтрализатором.

Контроллер 12 показан на Фиг.1 как традиционный микрокомпьютер, содержащий: микропроцессорный блок 102 (CPU), порты 104 ввода и вывода (I/O), постоянное запоминающее устройство 106 (ROM), оперативную память 108 (RAM), оперативную энергонезависимую память ПО (KAM) и обычную шину данных. Контроллер 12 показан получающим различные сигналы от датчиков, соединенных с двигателем 10. Помимо описанных выше сигналов, контроллер также получает следующие данные: о температуре охлаждающей жидкости двигателя (ECT) от датчика 112 температуры, соединенного с каналом 114 охлаждения; от датчика положения 134, соединенного с педалью газа 130, для измерения силы нажатия ногой 132; измерения давления в коллекторе двигателя (MAP) от датчика давления 122, соединенного с впускным коллектором 44; о фазе двигателя с датчика 118 на эффекте Холла, считывающего положение коленчатого вала 40; показания датчика 120 воздушной массы, поступающей в двигатель; и показания положения дросселя от датчика 58. Также для обработки контроллером 12 может быть измерено барометрическое давление (датчик не показан). Согласно предпочтительному варианту воплощения изобретения, датчик 118 на эффекте Холла производит заранее установленное количество равномерных импульсов в каждый цикл коленчатого вала, на основании которых может быть определена скорость вращения двигателя (RPM).

В некоторых примерах двигатель может быть соединен с электромотором/батареей, как например, в гибридных автомобилях. Автомобиль с гибридным приводом может иметь параллельную и последовательную конфигурации, а также их комбинации и вариации. Кроме того, в некоторых вариантах можно использовать другие конфигурации двигателя, например, дизельный двигатель.

Во время работы каждый цилиндр в двигателе 10 обычно проходит 4 рабочих цикла: впуск, сжатие, рабочий ход и выпуск. Во время впуска обычно выпускной клапан 54 закрывается, а впускной клапан 52 открывается. Воздух поступает в камеру сгорания 30 через впускной коллектор 44, а поршень 36 двигается по направлению к дну цилиндра так, чтобы увеличить объем внутри камеры сгорания 30. Положение, в котором поршень 36 находится рядом с дном цилиндра и в конце своего хода (т.е. когда камера сгорания 30 имеет наибольший объем) обычно называется специалистами в данной области нижней мертвой точкой (HMT). Во время хода сжатия впускной клапан 52 и выпускной клапан 54 закрыты. Поршень 36 двигается по направлению к головке цилиндров, чтобы сжать воздух внутри камеры сгорания 30. Точка, в которой поршень 36 находится в конце своего хода и наиболее близко к головке цилиндров (т.е. когда камера сгорания имеет наименьший объем) обычно называется специалистами в данной области верхней мертвой точкой (BMT). В процессе, здесь и далее обозначаемом «впрыскивание», топливо поступает в камеру сгорания. В процессе, здесь и далее обозначаемом «зажигание», впрыснутое топливо воспламеняют с помощью известных способов зажигания, таких как свеча 92 зажигания, что приводит к сгоранию. Во время рабочего хода расширяющиеся газы толкают поршень 36 обратно к HMT. Коленчатый вал 40 превращает движение поршня в крутящий момент вращающегося вала. Наконец, во время хода выпуска, выпускной клапан 54 открывается, чтобы выпустить воспламененную смесь воздуха и топлива в выпускной коллектор 48, а поршень возвращается к BMT. Можно отметить, что вышеизложенное приведено только в качестве примера, и распределение по времени открывания и/или закрывания впускного и выпускного клапанов может меняться так, чтобы обеспечить положительное или отрицательное перекрытие клапанов, позднее закрывание впускного клапана или различные другие варианты.

Фиг.2 представляет собой блочную диаграмму транспортного средства 200. Транспортное средство 200 может быть приведено в движение с помощью двигателя 10. Двигатель 10 может быть запущен с помощью системы запуска двигателя (не показана). Крутящий момент двигателя 10 может быть отрегулирован с помощью механизма 204 передачи крутящего момента, например, топливной форсунки, дросселя и т.д.

Выходной крутящий момент двигателя может передаваться на преобразователь 206 крутящего момента для привода автоматической трансмиссии 208. Для перемещения транспортного средства может быть использована одна или более муфт сцепления, включая муфту 210 переднего хода. В одном примере преобразователь крутящего момента может относиться к компонентам трансмиссии. Трансмиссия 208 может включать в себя множество зубчатых муфт 288 (например, для передач 1-6), которые при необходимости могут быть включены для активации совокупности фиксированных передаточных отношений. Выходное значение преобразователя крутящего момента может, в свою очередь, быть проконтролировано с помощью блокирующей муфты 212 преобразователя крутящего момента. Например, когда блокирующая муфта 212 преобразователя крутящего момента полностью выключена, преобразователь 206 крутящего момента передает крутящий момент двигателя на автоматическую трансмиссию 208 через гидравлическую связь между турбиной преобразователя крутящего момента и крыльчаткой преобразователя крутящего момента, тем самым обеспечивая увеличение крутящего момента. И наоборот, когда блокирующая муфта 212 преобразователя крутящего момента полностью включена, выходной крутящий момент двигателя напрямую передается через муфту преобразователя крутящего момента ведущему валу (не показан) трансмиссии 208. В качестве альтернативы, блокирующая муфта 212 преобразователя крутящего момента может быть частично включена, тем самым обеспечивая возможность регулирования величины крутящего момента, передаваемого трансмиссии. Контроллер может быть выполнен с возможностью регулировать величину крутящего момента, передаваемого преобразователем крутящего момента 212, путем изменения положения блокирующей муфты преобразователя крутящего момента при различных условиях работы двигателя или на основании запрашиваемого водителем режима работы двигателя.

Выходной крутящий момент от автоматической трансмиссии 208 может, в свою очередь, быть передан на колеса 216 для перемещения транспортного средства. В частности, автоматическая трансмиссия 208 может передавать входной движущий крутящий момент на ведущем валу (не показан) в зависимости от условий движения транспортного средства до передачи выходного движущего крутящего момента на колеса.

Сила торможения может быть приложена к колесам 216 с помощью включения колесных тормозов 218. В одном примере колесные тормоза 218 могут быть включены при нажатии водителем педали тормоза (не показана). Аналогичным образом, сила трения, действующая на колеса 216, может быть уменьшена за счет выключения колесных тормозов 218 при отпускании водителем педали тормоза. Тормоза транспортного средства могут применять силу трения к колесам 216 в качестве части процесса автоматической остановки двигателя.

С автоматической трансмиссией 208 может быть гидравлически соединен механический масляный насос 214, предназначенный для создания гидравлического давления, обеспечивающего включение различных муфт, например, муфты 210 переднего хода и/или блокирующей муфты 212 преобразователя крутящего момента. Работа механического масляного насоса 214 может быть согласована с работой преобразователя крутящего момента 212, и этот насос может, например, приводиться в движение за счет вращения двигателя или ведущего вала трансмиссии. Таким образом, гидравлическое давление, создаваемое механическим масляным насосом 214, может увеличиваться при увеличении скорости двигателя, а также при уменьшении скорости двигателя понижаться. С автоматической трансмиссией также гидравлически соединен электрический масляный насос 220, который, однако, работает независимо от приводной силы двигателя 10 или трансмиссии 208. Он может быть использован для увеличения гидравлического давления механического масляного насоса 214. Электрический масляный насос 220 может быть приведен в движение с помощью электродвигателя (не показан), на который может поступать электрическая мощность, например, от аккумулятора (не показан).

Контроллер 12 может быть выполнен с возможностью принимать сигналы от двигателя 10 и устройства 250 ввода команд водителя, как более подробно показано на Фиг.1, и управлять соответствующим образом выходным крутящим моментом двигателя и/или работой преобразователя крутящего момента, трансмиссии, муфт и/или тормозов. В одном примере выходным крутящим моментом можно управлять с помощью сочетания регулировки моментов зажигания, ширины импульса подачи топлива, моментов генерации импульсов подачи топлива и/или заряда воздуха путем управления моментами открытия дросселя и/или переключения клапана, подъема клапана и наддува для двигателей с наддувом или турбонаддувом. В дизельных двигателях контроллер 12 может управлять выходным крутящим моментом двигателя с помощью контроля комбинации ширины импульса подачи топлива, моментов подачи топлива и/или объема заряда воздуха. В любом случае, управление двигателем может осуществляться на основании принципа поочередной работы с каждым цилиндром (cylinder-by-cylinder) для управления выходным крутящим моментом двигателя. Устройство ввода команд водителя может включать в себя интерактивный дисплей, переключатели и иные известные устройства ввода данных.

При наличии условий для холостого хода контроллер 12 может инициировать остановку двигателя за счет прекращения подачи топлива или искры в двигателе. Для поддержания определенного уровня вращения трансмиссии контроллер может тормозить вращающиеся элементы трансмиссии 208 на корпус трансмиссии, а следовательно, на раму транспортного средства.

Если условия для перезапуска двигателя выполнены, и/или если водитель транспортного средства хочет запустить транспортное средство, контроллер 12 может перезапустить двигатель за счет поддерживания процесса сгорания в цилиндрах двигателя. Для возврата крутящего момента ведущим колесам 216 трансмиссия 208 может быть разблокирована, а колесные тормоза 218 выключены. Давление муфты трансмиссии может быть отрегулировано таким образом, чтобы разблокировать трансмиссию, при этом давление колесных тормозов может быть также изменено для координации выключения тормозов и разблокировки трансмиссии и запуска транспортного средства.

Система, показанная на Фиг.1 и 2, включает в себя: двигатель; контроллер, в постоянном запоминающем устройстве которого хранятся инструкции, обеспечивающие автоматическую остановку двигателя при соответствии одного или более условий работы транспортного средства критериям остановки двигателя, инструкции по регулировке критериев остановки двигателя после оценки условий остановки двигателя с помощью одной или более функций оптимальности, а также инструкции по корректировке одной или более функций оптимальности. Одна или более функций оптимальности могут быть скорректированы при вводе определенных команд водителем. Система также включает в себя устройство ввода команд водителем для корректировки одной или более функций оптимальности. Система также включает в себя дополнительные инструкции для корректировки передаточной функции исполнительного механизма, применяемой во время разгона двигателя к условиям запуска двигателя, которые оценивают с помощью функции оптимальности запуска двигателя. Одна или более функций оптимальности могут оценивать зависимости времени, в течение которого двигатель был остановлен, от степени неудобства водителя.

На Фиг.3 приведены примеры графиков для представляющих интерес сигналов во время смоделированных процессов остановки и перезапуска двигателя. Последовательность процессов, показанная на Фиг.3, может быть реализована путем выполнения инструкций в системе, показанной на Фиг.1 и 2 способом, показанным на Фиг.7. Вертикальные метки в моменты T0-T5 представляют собой интересующие моменты времени в ходе выполнения последовательности. Между возникновением различных условий остановки двигателя в последовательности на Фиг.3 проходит достаточно много времени. В настоящем примере остановка вращения двигателя разрешена во время движения транспортного средства, чтобы повысить эффективность использования топлива, когда между условиями остановки двигателя проходит достаточно много времени.

На первом графике на Фиг.3 показано изменение скорости транспортного средства во времени. По оси Y отложена скорость транспортного средства, которая увеличивается в направлении стрелки на оси Y. По оси X отложено время, которое увеличивается слева направо.

На втором графике на Фиг.3 показано изменение скорости вращения двигателя во времени. По оси Y отложена скорость вращения двигателя, которая увеличивается в направлении стрелки на оси Y. По оси X отложено время, которое увеличивается слева направо. Горизонтальная линия 320 обозначает нужную скорость двигателя на холостом ходу. Пунктирная линия 302 обозначает фактическую скорость вращения двигателя, а точечная линия 304 обозначает нужную скорость вращения двигателя. Если на графике показана только фактическая скорость 302 вращения двигателя, нужная скорость 304 вращения двигателя совпадает с фактической скоростью 302 вращения двигателя.

На третьем графике на Фиг.3 показано изменение положения педали тормоза во времени. По оси Y отложено положение педали тормоза, степень нажатия которой увеличивается в направлении стрелки на оси Y. По оси X отложено время, которое увеличивается слева направо.

На четвертом графике на Фиг.3 показано изменение положения педали акселератора во времени. По оси Y отложено положение педали акселератора, степень нажатия которой увеличивается в направлении стрелки на оси Y. По оси X отложено время, которое увеличивается слева направо.

На пятом графике на Фиг.3 показано изменение наличия команды на автоматическую остановку двигателя во времени. По оси Y отложено наличие команды на автоматическую остановку двигателя, подача которой показана высоким уровнем сигнала по направлению стрелки на оси Y. По оси X отложено время, которое увеличивается слева направо.

На шестом графике сна Фиг.3 показана длительность задержки остановки двигателя после выполнения других выбранных условий остановки двигателя. В настоящем примере временная задержка представляет собой задержку остановки вращения двигателя после выполнения условий остановки во время движения транспортного средства. По оси Y отложена скорректированная задержка остановки, которая увеличивается в направлении стрелки на оси Y. По оси X отложено время, которое увеличивается слева направо.

На седьмом графике на Фиг.3 показан коэффициент усиления передаточной функции педали акселератора во время разгона двигателя. Другими словами, разгон двигателя может быть интерпретирован как время от остановленного двигателя до достижения двигателем предельного значения скорости вращения (например, скорости холостого хода). По оси Y отложен коэффициент усиления передаточной функции педали акселератора, которое увеличивается в направлении стрелки на оси Y. По оси X отложено время, которое увеличивается слева направо.

В момент T0 транспортное средство движется со средней скоростью, а двигатель вращается с ненулевой скоростью, как показано на графике. Педаль тормоза не нажата, а педаль акселератора находится в среднем положении и отвечает на команды водителя. Команда на автоматическую остановку отсутствует, а адаптированная задержка остановки двигателя и коэффициент усиления педали акселератора находятся на фиксированном уровне.

В момент T1 уровень сигнала педали акселератора падает в ответ на отпускание водителем педали акселератора. Скорость вращения двигателя и скорость транспортного средства начинают уменьшаться в ответ на уменьшение запрашиваемого крутящего момента двигателя, связанного со степенью нажатия педали акселератора. Сразу после этого происходит задействование тормозов в ответ на нажатие водителем на педаль тормоза транспортного средства, и скорость замедления возрастает. Команда на остановку двигателя отсутствует, адаптированная задержка остановки двигателя и степень изменения коэффициента усиления педали акселератора остаются на прежнем уровне.

Между моментами T1 и T2 скорость вращения двигателя уменьшается из-за отсутствия команды на ускорение от водителя, а скорость транспортного средства падает в ответ на включение тормозов транспортного средства водителем. Кроме того, непосредственно перед моментом T2 подается команда на остановку двигателя. В настоящем примере команда на остановку двигателя выдается в результате понижения скорости транспортного средства, превышения порогового значения времени с момента отпускания педали акселератора и нажатия педали тормоза. Выдача команды на остановку двигателя прекращает подачу искры и топлива в двигатель, а скорость вращения двигателя падает с увеличенной скоростью.

В момент T2 водитель отпускает педаль тормоза, о чем свидетельствует уменьшение уровня сигнала от педали тормоза. Отпускание водителем педали тормоза меняет состояние команды на остановку двигателя с подтвержденного на неподтвержденное. Происходит перезапуск двигателя путем подачи топлива или искры в двигатель. В момент T2 или сразу после него водитель также нажимает педаль акселератора, для обозначения намерения увеличить скорость транспортного средства. Фактическая скорость вращения двигателя 302 возрастает сразу после подачи топлива и искры в двигатель, а крутящий момент двигателя растет в ответ на нажатие педали акселератора. В одном примере первая передаточная функция педали акселератора, которая соотносит положение педали акселератора с нужным крутящим моментом двигателя, является основанием для увеличения крутящего момента двигателя во время его разгона. Первая передаточная функция педали акселератора умножается на адаптированный коэффициент усиления педали акселератора на седьмом графике для корректировки нужного крутящего момента двигателя. Вторая передаточная функция педали акселератора используется в качестве основания для определения крутящего момента двигателя после того, как скорость вращения двигателя превысит скорость холостого хода в первый раз после остановки двигателя. Первая и вторая передаточные функции педали акселератора обуславливают различные реакции двигателя на нажатие педали акселератора при разных условиях работы двигателя. Однако в некоторых примерах может быть использована только одна передаточная функция педали акселератора. В результате изменения нужного крутящего момента двигателя также будет изменено количество топлива, искры и подаваемого воздуха.

Сразу после момента T2 скорость вращения двигателя возрастает, искра и топливо поступают в двигатель в результате увеличения значения нужного крутящего момента двигателя, обусловленного входным значением степени нажатия педали акселератора умноженным на адаптированный коэффициент усиления педали акселератора. Фактическая скорость вращения двигателя 302 становится выше нужного значения 304. Водитель также частично отпускает педаль акселератора для управления скоростью вращения двигателя, в результате этого фактическая скорость 302 падает ниже желаемого значения 304. Сравнение желаемой скорости 304 вращения двигателя и фактической скорости вращения двигателя происходит во время разгона двигателя и после него в течение заранее заданного времени. Чтобы избежать увеличения уровня неудобства водителя, сравнение обрабатывается с помощью функции оптимальности, значение которой равно разности между нужной и фактической скоростями вращения двигателя. Сразу после этого коэффициент усиления педали акселератора уменьшается в соответствии с полученным значением функции оптимальности. В одном примере сравнение нужной скорости вращения двигателя и фактической скорости вращения двигателя позволяет определить величину, на которую фактическая скорость вращения двигателя превышает нужную скорость вращения двигателя. Сравнение может также помочь определить длительность времени, в течение которого нужная скорость вращения двигателя была превышена. Если фактическая скорость вращения двигателя ниже нужной скорости вращения двигателя, результат сравнения представляет собой самую большую разность между фактической и нужной скоростью вращения двигателя, а также длительность времени, в течение которого такая разность имела место. Затем функция оптимальности позволяет отрегулировать коэффициент усиления педали акселератора на основании сравнения входного значения со значением функции оптимальности. В некоторых примерах уточненный коэффициент усиления педали акселератора может быть использовано только на определенном участке передаточной функции педали акселератора (например, входные значения положения педали, не превышающие 10% от максимального значения нажатия педали). Коэффициент усиления педали акселератора может быть умножено на выходное значение функции оптимальности, или функция оптимальности может позволить отрегулировать коэффициент усиления педали акселератора с помощью другой функции или увеличить/уменьшить его на заранее определенную величину.

Кроме того, после момента Т2, для определения длительности периода, в течение которого двигатель был остановлен, измеряется время между моментами T1 и T2. Длительность времени, в течение которого двигатель был остановлен, является входным значением для функции оптимальности, которая определяет уровень неудобства водителя на основании времени, в течение которого выбранное условие позволяло выполнить остановку двигателя. Значение функции уровня неудобства водителя может быть эмпирически определено для различных водителей путем пробного автоматического запуска и остановки двигателя. В настоящем примере время, в течение которого двигатель остановлен, является небольшим. Таким образом, уровень неудобства высок. Таким образом, адаптированная задержка остановки двигателя (например, время между достижением выбранных условий остановки двигателя и временем выдачи команды на остановку двигателя) растет, увеличивая время до подачи команды на остановку двигателя при аналогичных условиях. В одном примере величина увеличения/уменьшения задержки остановки двигателя может быть скорректирована на заранее определенное значение, когда выходное значение функции оптимальности указывает на то, что уровень неудобства водителя выше порогового значения. В других примерах значение задержки остановки двигателя может быть умножено на выходное значение функции неудобства водителя для регулировки или коррекции задержки остановки двигателя. По окончании задержки остановки двигателя и коррекции усиления педали акселератора скорость транспортного средства возрастает, а в момент T3 начинает падать.

В момент T3 водитель еще раз отпускает педаль акселератора и сразу после этого активирует тормоза транспортного средства в соответствии с дорожными условиями. Скорость транспортного средства начинает падать после того, как крутящий момент двигателя уменьшается в ответ на отсутствие нажатия педали акселератора и включение тормозов транспортного средства. Команда на остановку двигателя не подтверждается, задержка остановки двигателя и коэффициент усиления педали акселератора остаются на постоянных уровнях.

В момент T4 подается команда на остановку двигателя, топливо и искра не поступают в двигатель. Сразу после момента T4 скорость вращения двигателя становится равной нулю, а скорость транспортного средства продолжает уменьшаться. Таким образом, вращение двигателя автоматически останавливается, а транспортное средство продолжает замедляться. Двигатель автоматически останавливается без запроса на остановку от водителя, подаваемого с помощью специального устройства, которое используется исключительно для запуска и/или остановки двигателя (например, выключатель зажигания). Автоматическая остановка двигателя основана на устройствах ввода, отличных от специального устройства ввода команд водителя на запуск и/или остановку двигателя. Педаль акселератора также остается в нажатом состоянии, а задержка остановки двигателя и коэффициент усиления педали акселератора остаются на прежних постоянных уровнях.

Между моментами T4 и T5 скорость транспортного средства падает до нуля, а нога водителя остается на педали тормоза. Двигатель также остается в остановленном состоянии, за счет чего экономится топливо.

В момент T5 водитель отпускает педаль тормоза и нажимает педаль акселератора. Фактическая скорость вращения двигателя почти равна нужной скорости вращения двигателя, транспортное средство начинает ускоряться. После момента T5 команда на остановку двигателя также отменяется и отсутствует.

После момента T5 степень нажатия педали акселератора увеличивается до нужного уровня и остается на этом уровне до конца рассматриваемого процесса. Кроме того, выполняется сравнение нужной и фактической скоростей вращения двигателя, а разность используется для функции оптимальности, которая соотносит ее с уровнем неудобства водителя. Однако на основании нужной и фактической скоростей вращения двигателя в момент T5 адаптированный коэффициент усиления педали акселератора не меняется. Аналогичным образом, время, в течение которого двигатель был остановлен, является входным значением для функции оптимальности, которая определяет уровень неудобства водителя на основании времени, в течение которого выполняются выбранные условия остановки двигателя. Так как двигатель был остановлен в течение достаточного времени, и поскольку процесс остановки двигателя не был прерван, задержка остановки двигателя более не регулируется.

На Фиг.4 представлены примеры графиков для представляющих интерес сигналов во время смоделированных остановки и перезапуска двигателя. Последовательность на Фиг.4 может быть реализована в системе, показанной на Фиг.1 и 2, с помощью методики, показанной на Фиг.7. Вертикальные метки в моменты времени T10-T19 представляют собой ключевые моменты времени в процессе выполнения последовательности. Последовательность процессов на Фиг.4 происходит тогда, когда между условиями остановки двигателя проходит относительно короткий период времени. В настоящем примере остановка вращения двигателя не может быть выполнена во время движения транспортного средства. Это уменьшает вероятность остановки двигателя и перезапуска двигателя без остановки двигателя в течение нужного времени, когда торможение является кратковременным и многократным.

На Фиг.4 показано семь графиков, которые содержат семь переменных, как на Фиг.3. Следовательно, для краткости описание одинаковых переменных будет опущено. На шестом графике показана вторая адаптированная задержка остановки двигателя, которая используется при условиях, когда время между торможениями двигателя небольшое и когда транспортное средство остановлено. В частности вторая адаптированная задержка остановки двигателя представляет собой временную задержку от момента, когда транспортное средство было остановлено, педаль акселератора не нажата, а педаль тормоза находится в нажатом состоянии, до момента подачи команды на остановку двигателя.

В момент Т10 педаль акселератора, скорость вращения двигателя и скорость транспортного средства находятся на среднем уровне. Тормоз не задействован, команда на остановку двигателя не подтверждена. Адаптированная за