Катализатор для полимеризации олефинов и способ его получения

Иллюстрации

Показать все

Изобретение относится к способу получения твердого титанового каталитического компонента для применения в качестве прокатализатора для каталитической системы Циглера-Натта. Способ включает (a) контактирование соединения диалкилмагния, представленного R'RʺMg, с солюбилизирующим магний соединением с образованием реакционной смеси, где каждый из элементов R' и Rʺ представляет собой углеводородную группу, имеющую С120 атомов углерода, при этом контактирование соединения диалкилмагния с солюбилизирующим магний соединением приводит к образованию первой реакционной смеси, содержащей алкоксид магния в реакционной смеси; (b) добавление титанового соединения, представленного Ti(OR'ʺ)pX4-p, где X представляет собой атом галогена; Rʺ' - углеводородную группу и p - целое число, имеющее значение меньше или равное 4, для преобразования алкоксида магния в реакционной смеси с образованием второй реакционной смеси; (c) добавление по меньшей мере одного внутреннего донора электронов либо после этапа (а), либо после этапа (b) с получением каталитического компонента; и (d) активацию каталитического компонента с помощью раствора, содержащего титановое соединение и инертный растворитель, и извлечение твердого титанового каталитического компонента. Также предложены твердый титановый каталитический компонент, каталитическая система Циглера-Натта и способ полимеризации и/или сополимеризации олефинов. Изобретение позволяет упростить способ получения каталитической системы для полимеризации олефинов, при этом каталитическая система демонстрирует превосходную полимеризационную активность и стереорегулярность. 4 н. и 13 з.п. ф-лы, 5 табл., 15 пр.

Реферат

Область изобретения

В изобретении предлагается каталитическая система для полимеризации олефинов. Более конкретно в изобретении представлен простой экономичный способ получения твердого титанового каталитического компонента с требуемыми свойствами для применения в качестве прокатализатора для каталитической системы Циглера-Натта.

Предпосылки создания изобретения

Каталитические системы Циглера-Натта (ЦН) хорошо известны своей способностью к полимеризации олефинов. Они в целом состоят из подложки главным образом на основе магния, к которому добавлен титановый компонент вместе с органическим соединением, известным как внутренний донор. Этот катализатор в сочетании с сокатализатором и/или внешним донором составляет полную каталитическую систему Циглера-Натта.

Каталитическая система Циглера-Натта, которая, как правило, состоит из галогенида переходного металла, обычно галогенида титана, опирающегося на металлическое соединение, которым, как правило, является дихлорид магния. Наряду с переходным металлом также имеется органический компонент, известный как внутренний донор электронов, который играет типичную роль в процессе синтеза катализатора и полимеризации. MgCl2 носитель, где MgCl2b находится в активной форме, может быть создан по различным методикам. Одним из способов является осаждение MgCl2b из органического раствора, где магний присутствует в виде растворимого соединения. Растворимое магниевое соединение можно получить либо исходя из металлического Mg и путем его обработки соответствующим спиртом в присутствии йода, либо исходя из магний алкила и путем его обработки спиртом. После этого этапа выполняется хлорирование Mg алкила или алкокси соединений с помощью хлорирующего агента. Магниевый носитель также может осаждаться в виде «готового» MgCl2. В этом случае MgCl2 нужно растворить сначала в некотором подходящем соединении донора, а затем осадить в углеводородном растворителе. Материал MgCl2 подложки также может осаждаться путем хлорирования растворимого магнийалкильного соединения просто путем его обработки газообразным хлором или хлористоводородной кислотой. После получения нужных характеристик носителя, как правило, выполняется процедура титанирования, которая в конечном счете приводит к синтезу катализатора.

В патенте США 4277589, Montedison & Mitsui, описан способ получения твердого катализатора на основе магний этанол аддукта в качестве исходного материала с последующим добавлением донора электронов при 60°C в галогенирующем агенте. Конечный твердый компонент выделяется, а затем обрабатывается титановым соединением при более высокой температуре, после чего фильтруется. Вышеуказанный этап повторяется трижды, потом углеводородным растворителем. Комплекс магний-этанол имеет вариацию комплексообразования с этанолом в диапазоне от 2 до 6. Галогенирующий реагент, который использовали, имеет алюминийалкильную основу.

В патентах США 4473660, 4156063, 4174299, 4226741, 4315836 и 4331561, Montedison, представлен способ галогенирования магний хлорид этанол аддукта с помощью алюминий-алкилов с последующей обработкой донором, далее титановым компонентом с получением твердого катализатора. Также представлена вариация донора электронов при полимеризации.

В патенте США 7659223 В2, Borealis, представлен способ получения катализатора для олефинов на основе двухфазной системы жидкость/жидкость (эмульсия), где для получения частиц твердого катализатора не требуются отдельные материалы-носители. Частицы катализатора имеют заданный диапазон размеров и формируются путем солюбилизации комплекса магний-высшие спирты и генерации внутреннего донора in situ с последующим добавлением титана, эмульгатора и минимизирующего турбулентность агента. Также добавляется алкил алюминий, что обеспечивает катализатору дополнительную устойчивость для работы при более высоких температурах. Полученный катализатор имеет превосходную морфологию, хорошее распределение частиц по размерам и максимальную активность при более высокой температуре. Одним из недостатков генерации внутреннего донора in situ является вариация состава внутреннего донора.

В патенте США 7608555 описан способ синтеза катализатора контролируемым образом, что ведет к контролю над требуемым химическим составом и морфологией. Он также основан на эмульсионной методике, но здесь дисперсионная фаза берется несмешиваемая и инертная по отношению к средам, например перфторированные органические растворители в качестве дисперсионной фазы. Хотя преимущество действительно заключается в контроле морфологии и химической композиции катализатора, но при этом увеличивается количество этапов синтеза катализатора, а генерация внутреннего донора in situ приводит к вариации состава внутреннего донора.

В патенте США 6420499 описан способ, в котором катализатор синтезируется без образования вредных побочных продуктов, таких как алкокситрихлорид титана или требует большого количества титанирующего реагента, а также растворителя для промывки. Конечный катализатор, синтезированный в результате большого числа этапов, обладает хорошей активностью. Существует способ использования титана без магниевого соединения, содержащего магний, галоген и алкокси, который обрабатывается органическим хлоридом для генерации внутреннего донора in situ с последующим титанированием. Этот способ не включает использование эмульгатора, но генерация внутреннего донора in situ имеет тот недостаток, что происходит вариация состава внутреннего донора.

В патенте США 6849700 описан способ, в котором алкоксид магния, галогенид карбоновой кислоты и тетрагалогенид титана получаются в виде растворенного продукта реакции и затем осаждаются в ароматическом углеводороде и отстаиваются либо путем добавления алифатического углеводорода в реакционную смесь, либо путем осаждения и отстаивания растворенного продукта реакции смесью алифатического и ароматического углеводорода. Здесь снова недостатком является количество этапов, которые используются при промывке промежуточного и конечного продукта.

В патенте США 6706655 представлен способ получения каталитического компонента для полимеризации олефинов, в котором происходит формирование нового каталитического компонента для полимеризации. В этом способе диалкил- или дигалогенид или алкилалкоксид магния контактирует со спиртом и продукт реакции контактирует с дигалогенидом ненасыщенной дикарбоновой кислоты и тетрагалогенидом титана. Катализаторы проявляют хорошую активность и морфологию при использовании многоатомного спирта, например этиленгликоля. Этот способ имеет недостаток генерации in situ нескольких новых типов внутренних доноров и имеет большое количество этапов.

В патенте США 7026265 представлен способ получения катализатора для полимеризации олефинов, который состоит из дигалогенида магния, тетрагалогенида титана и эфира карбоновой кислоты, в котором прекурсоры его составляющих взаимодействуют в растворе, из которого компонент осаждается. Это осаждение дополняется совместным осаждением одного или нескольких олигоэфиров карбоновой кислоты, образованных контролируемым образом. Эта новая методика приводит к улучшению полимерной морфологии и однородности состава продукта.

В патенте США 7220696, Mitsui Chemicals, представлен способ синтеза каталитической системы в результате реакции твердого аддукта галогенида магния со спиртом и внутренним донором электронов, который снова вступает в реакцию с внутренним донором электронов, имеющим две или более простые эфирные связи, и, наконец, обрабатывается титановым соединением один раз или много раз отдельными порциями при суспендировании в инертном углеводородном растворителе. При продвижении от начальной стадии к конечной стадии каталитического синтеза используется большое количество этапов.

В патенте США 4990479 представлена каталитическая система, состоящая из магния, титана и галогена и внутреннего донора на основе фталата вместе с алюминийорганическим соединением и кремнийорганическим соединением, содержащим циклопентильную группу, циклопентенильную группу, циклопентадиенильную группу или их производное с получением полимеров, имеющих высокую стереорегулярность и узкое ММР [молекулярно-массовое распределение]. Синтез катализатора включает использование галогенида магния и высшего спирта для образования растворимого аддукта, в который добавляется фталевый ангидрид, за которым следует титановый компонент. Следовательно, это способ генерации внутреннего донора in situ. Далее он контактирует с органическим соединением на основе фталата перед окончательной обработкой снова титановым компонентом. На двух этапах обработки TiCl4 смываются все побочные продукты и после окончательной углеводородной промывки катализатор имеет состав с содержанием преимущественно аморфного MgCl2. Основным недостатком является большое количество этапов, используемых в синтезе катализатора.

В патенте США 5844046, Mitsui, акцент сделан на использовании внешних доноров для достижения широкого ММР, но в нем также описано получение твердых каталитических компонентов. Синтез катализатора включает использование галогенида магния и высшего спирта для образования растворимого аддукта, к которому добавляется фталевый ангидрид с последующим добавлением титанового компонента. Далее он взаимодействует с внутренним донором на основе фталата с последующей фильтрацией твердого компонента при нагревании, который снова обрабатывается титановым компонентом.

Конечный продукт промывается углеводородом. Аморфный MgCl2 генерируется посредством осаждения растворимого аддукта хлорид магния-спирт путем титанирования. Также имеется этап генерации внутреннего донора in situ, который дает вариацию состава внутреннего донора.

В патенте ЕР 0125911 В1, Mitsui, представлен способ синтеза катализатора, который включает растворение MgCl2 с помощью 2-этил-гексанола (ЕНА) вместе с диизобутилфталатом в качестве внутреннего донора, а затем его осаждение при помощи этилалюминий сесквихлорида, что ведет к образованию аморфного MgCl2. Твердая часть обрабатывается титановым компонентом дважды, а затем промывается углеводородом. Для этого типа синтеза катализатора требуется система утилизации отходов для побочного продукта катализатора и система рециркуляции для TiCl4, а также система рециркуляции для углеводородов для промывки.

В патенте США 6034023, BASF, представлен катализатор, содержащий подложку из оксида алюминия/диоксида кремния, титановаого соединения (TiCl4), магниевого соединения, галогена и эфира карбоновой кислоты. Магний диалкил контактирует с подложкой в инертном растворителе, а затем обрабатывается сильным хлорирующим агентом с образованием аморфного MgCl2. Далее следует обработка титановым соединением и внутренним донором на основе фталата. Для целей промывки выполняется химическая активация катализатора с использованием TiCl4 в толуоле. Этот способ включает большое количество этапов, а также использование титанового компонента во время промывки.

В патентах США 5658840 и 5296431 описан аналогичный способ синтеза катализатора, где магний диалкил контактирует с подложкой в инертном растворителе, а затем обрабатывается сильным хлорирующим агентом с образованием аморфного MgCl2. Перед добавлением титанового соединения добавляется этанол, чтобы уменьшить редуцирующую способность диалкил магния. После этого была выполнена обработка титановым соединением и внутренним донором на основе фталата.

В патенте США 5296431 описано, что обработка конечного катализатора бутиллитием перед полимеризацией улучшает мелкодисперсную генерацию.

В патенте США 5658840 описан еще один этап удаления инертного растворителя из катализатора посредством использования сначала фильтрации, а затем приложения разности давлений при температуре не более 100°C с получением свободно-текучих и сохраняемых катализаторов с высокой продуктивностью и стереоспецифичностью.

В патенте США 6107231 также представлена аналогичная методика синтезирования катализатора, как в указанных выше патентах. Здесь также диалкилмагний сначала контактирует с подложкой, которой представляет собой диоксид кремния, имеющий сфероидальную морфологию, а затем хлорируется газообразным НСl, что приводит к образованию аморфного MgCl2. После этого выполняется обработка титановым соединением и внутренним донором, который основан на фталате. Для целей промывки осуществляется химическая активации катализатора с использованием TiCl4 в различных системах растворителей с разной полярностью. Идея этого патента заключается в том, что использование ароматического растворителя во время химической активации дает каталитические системы, которые продуцируют полимеры, имеющие пониженное содержание ксилола и хлора. Эти типы способов, как правило, дают мелкие фракции в процессе полимеризации, что является основным недостатком. Здесь во всех указанных выше патентах внутренний донор добавляется вместе с титановым компонентом.

В патентах США 4946816, 4866022, 4988656, 5013702 и 5124297 описаны общие способы производства катализаторов, в которых растворимое магниевое соединение получается из магния карбоксилата или магния алкилкарбоната. Затем после осаждения магния в присутствии галогенида переходного металла и органосилана выполняется повторное осаждение твердых компонентов с использованием смешанного раствора, содержащего тетрагидрофуран. И, наконец, повторно осажденные частицы взаимодействуют с соединениями переходного металла и соединениями внутреннего донора электронов с получением катализатора, имеющего хорошую морфологию. Эти способы имеют тот недостаток, что для производства катализатора требуется слишком много этапов.

В патенте США 7232785, ABB Lummus, описан способ синтеза катализатора, который включает большое количество этапов. В изобретении представлен катализатор Циглера-Натта РР на основе носителя из двуокиси кремния с очень высокой полимеризационной активностью. При получении катализатора используется подложка из диоксида кремния, которая затем обрабатывается растворимым в углеводородах магнийорганическим соединением (диалкилмагний в эфире и гептане). Магнийорганическое соединение в твердом катализаторе дополнительно преобразуется в MgCl2 с помощью НСl. После обработки этанолом добавляется титановое соединение, затем внутренний донор на основе фталата. После этого выполняется фильтрация, промывка и химическая активация при помощи титанового соединения в ароматическом растворителе. Здесь прослеживается уже совершенно другой способ генерации MgCl2.

В патенте США 5459116, Samsung, представлен способ синтеза катализатора, который включает обработку безводного хлорида магния высшим спиртом с образованием растворимого комплекса, к которому добавляется внутренний донор электронов, имеющий гидроксильную и эфирную группу. Конечный раствор затем обрабатывается титановым соединением, а затем промывается для удаления примеси. Добавление новых внутренних доноров также может выполняться вместе с растворимым магнийорганическим соединением. Такой способ синтеза катализатора имеет тот недостаток, что требует большого количества этапов.

В патенте США 6034025 описан способ синтеза катализатора, в котором безводный хлорид магния обрабатывается циклическим эфиром в качестве внутреннего донора электронов вместе со смесью низших спиртов с образованием растворимого магнийорганического соединения, которое далее обрабатывается тетрахлоридом титана. После отделения надосадочной жидкости дважды выполняется титанирование в толуоле с последующей промывкой. Вариация смеси спирта идет от низшего спирта к более высоким комбинациям спиртов. В этих способах для производства катализатора требуется большое количество этапов.

Однако для преодоления вышеупомянутой проблемы необходим простой и экономичный способ с меньшим числом этапов с целью синтезирования катализатора для полимеризации олефинов, в котором каталитическая система демонстрирует превосходную полимеризационную активность и стереорегулярность.

Сущность изобретения

Соответственно, в изобретении предлагается способ получения твердого титанового каталитического компонента для применения в качестве прокатализатора для каталитической системы Циглера-Натта, указанный способ включает: (а) контактирование соединения диалкилмагния, представленного R'R''Mg, с солюбилизирующим магний соединением с образованием реакционной смеси, где каждый из элементов R' и R'' представляет собой углеводородную группу, имеющую С120 атомов углерода, согласно изобретению контактирование соединения диалкилмагния с солюбилизирующим магний соединением приводит к образованию первой реакционной смеси, содержащей алкоксид магния в реакционной смеси;

(a) добавление титанового соединения, представленного Ti(OR''')pX4-p, где X представляет собой атом галогена; R''' - углеводородную группу и р - целое число, имеющее значение меньше или равное 4, для преобразования алкоксида магния в реакционной смеси с образованием второй реакционной смеси;

(b) добавление по меньшей мере одного внутреннего донора электронов либо после этапа (а), либо после этапа (b) с получением каталитического компонента; и

(c) активацию каталитического компонента с помощью раствора, содержащего титановое соединение и инертный растворитель, и извлечение твердого титанового каталитического компонента.

В одном варианте осуществления изобретения применение твердого титанового каталитического компонента в качестве прокатализатора для каталитической системы Циглера-Натта включает комбинацию от 15 до 20% по весу магниевого фрагмента, от 1,0 до 6,0% по весу титанового фрагмента, и от 5,0 до 20% по весу внутреннего донора, указанный твердый титановый каталитический компонент имеет средний размер частиц в диапазоне от 1 до 100 мкм, характеризующийся трехточечным распределением частиц по размеру: D10 в диапазоне от 1 до 10 мкм; D50 в диапазоне от 5 до 25 мкм и D90 в диапазоне от 15 до 50 мкм.

В изобретении также предлагается каталитическая система Циглера-Натта, и каталитическая система содержит комбинацию по меньшей мере одного алюминийорганического соединения, по меньшей мере одного внешнего донора электронов и твердого титанового каталитического компонента, содержащего комбинацию от 15 до 20% по весу магниевого фрагмента, от 1,0 до 6,0% по весу титанового фрагмента и от 5,0 до 20% по весу внутреннего донора, указанный твердый титановый каталитический компонент имеет средний размер частиц в диапазоне от 1 до 100 мкм, характеризующийся трехточечным распределением частиц по размеру: D10 в диапазоне от 1 до 10 мкм; D50 в диапазоне от 5 до 25 мкм и D90 в диапазоне от 15 до 50 мкм.

В изобретении также предлагается способ полимеризации и/или сополимеризации олефинов, указанный способ включает этап контактирования олефина, имеющего С2-С20 атомов углерода, в условиях полимеризации с каталитической системой Циглера-Натта, причем указанная каталитическая система содержит комбинацию по меньшей мере одного алюминийорганического соединения, по меньшей мере одного внешнего донора электронов и твердого титанового каталитического компонента, содержащего комбинацию от 15 до 20% по весу магниевого фрагмента, от 1,0 до 6,0% по весу титанового фрагмента и от 5,0 до 20% по весу внутреннего донора, указанный твердый титановый каталитический компонент имеет средний размер частиц в диапазоне от 1 до 100 мкм, характеризующийся трехточечным распределением частиц по размеру: D10 в диапазоне от 1 до 10 мкм; D50 в диапазоне от 5 до 25 мкм и D90 в диапазоне от 15 до 50 мкм.

Краткое описание чертежей

На фиг. 1 демонстрируется эффект добавления донора на распределение частиц по размеру для примера 4, показывающий большее количество мелких фракций.

На фиг. 2 демонстрируется эффект добавления донора на распределение частиц по размеру для примера 8, показывающий меньшее количество мелких фракций.

На фиг. 3 демонстрируется эффект добавления донора на распределение частиц по размеру для примера 9, показывающий меньшее количество мелких фракций.

На фиг. 4 демонстрируется эффект добавления донора на распределение частиц по размеру для примера 10, показывающий узкое распределение частиц по размеру.

Подробное описание изобретения

Хотя изобретение допускает различные модификации и альтернативные формы, ниже приводится подробное описание конкретного варианта его осуществления. Однако следует понимать, что описание не направлено на ограничение изобретения конкретными раскрытыми формами, а напротив, изобретение охватывает все модификации, эквиваленты и альтернативы, попадающие в объем изобретения, как определено прилагаемой патентной формулой.

В изобретении описан простой способ синтеза каталитической системы, который включает меньше этапов полимеризации олефинов, обладающих превосходной активностью и стереорегулярностью.

Еще одним предметом изобретения является усовершенствованный способ получения каталитического компонента, имеющего требуемый химический состав, морфологию и свойства поверхности. Способ включает манипуляции во время производства катализатора, предусматривающие контактирование растворимого магниевого компонента с титаном и добавление внутреннего донора электронов на любом этапе. Способ по изобретению более простой с меньшим количеством этапов, экономичный и экологически чистый. Кроме того, способ повышает активность каталитической системы при сохранении основных требуемых характеристик в отношении катализатора для полимеризации олефинов.

Еще одним предметом изобретения является способ полимеризации и/или сополимеризации олефина с помощью каталитического компонента, полученного способом по изобретению.

Способ получения каталитического компонента в соответствии с изобретением включает:

(i) контактирование компонента на основе магния с соединением, обладающим способностью солюбилизировать магниевое соединение,

(ii) взаимодействие этого солюбилизированного магниевого соединения с титановым компонентом,

(iii) контактирование с внутренним донором электронов либо после этапа (i), либо как этап (ii),

(iv) активацию вышеуказанного каталитического компонента титановым компонентом в инертном растворителе,

(v) извлечение твердой каталитической системы путем осаждения и декантации с последующей промывкой растворителем.

Соответственно, в изобретении предлагается способ получения твердого титанового каталитического компонента для применения в качестве прокатализатора для каталитической системы Циглера-Натта, включающий:

а. контактирование соединения диалкилмагния, представленного R'R''Mg, с солюбилизирующим магний соединением с образованием реакционной смеси, где каждый из элементов R' и R'' пpeдcтaвляeт собой углеводородную группу, имеющую С120 атомов углерода, при этом контактирование соединения диалкилмагния с магний солюбилизирующим соединением приводит к образованию первой реакционной смеси, содержащей алкоксид магния в реакционной смеси;

b. добавление титанового соединения, представленного Ti(OR''')pX4-p, где X представляет собой атом галогена; R''' - углеводородную группу и р - целое число, имеющее значение меньше или равное 4, для преобразования алкоксида магния в реакционной смеси с образованием второй реакционной смеси;

c. добавление по меньшей мере одного внутреннего донора электронов либо после этапа (а), либо после этапа (b) с получением каталитического компонента; и

d. активацию каталитического компонента с помощью раствора, содержащего титановое соединение и инертный растворитель, и извлечение твердого титанового каталитического компонента.

В одном варианте осуществления изобретения способ получения твердого титанового каталитического компонента включает добавление донора в конце и этап включает:

a. контактирование соединения диалкилмагния, представленного R'R''Mg, с солюбилизирующим магний жидким спиртом, представленным ROH, с образованием первой реакционной смеси, содержащей алкоксид магния, при этом контактирование соединения диалкилмагния с жидким спиртом вызывает следующую реакцию:

R'R''Mg+2ROH→Mg(OR)2+R'H+R''H

где каждый из элементов R, R' и R'' пpeдcтaвляeт собой углеводородную группу, имеющую С120 атомов углерода;

b. добавление титанового соединения, представленного Ti(OR''')pX4-p, где X представляет собой атом галогена; R''' - углеводородную группу и р - целое число, имеющее значение меньше или равное 4, к первой реакционной смеси с получением второй реакционной смеси, содержащей дигалогенид магния;

c. добавление по меньшей мере одного внутреннего донора электронов к второй смеси с получением каталитического компонента; и

d. активацию каталитического компонента с помощью раствора, содержащего титановое соединение и инертный растворитель, и извлечение твердого титанового каталитического компонента.

Способ, как описано выше, в котором этап (а) включает:

i. контактирование соединения диалкилмагния с жидким спиртом при температуре, поддерживаемой в диапазоне от 2 до 8°C, с получением третьей реакционной смеси; и

ii. постепенное увеличение температуры третьей реакционной смеси до величины в диапазоне от 50 до 70°C и поддержание температуры в течение периода времени от примерно 15 до 45 мин с образованием первой реакционной смеси, содержащей алкоксид магния.

Способ, как описано выше, в котором этап (b) включает:

i. разбавление первой реакционной смеси инертным растворителем и охлаждение смеси до температуры в диапазоне от -35 до -10°C;

ii. растворение титанового соединения в растворителе с получением раствора и охлаждение раствора; и

iii. постепенное смешивание раствора, полученного таким образом выше на этапе (ii), с разбавленной реакционной смесью этапа (i) при температуре в диапазоне от -35 до -10°C с получением второй реакционной смеси.

Способ, как описано выше, в котором этап (с) включает:

i. постепенное увеличение температуры второй реакционной смеси до величины в диапазоне от 25 до 50°C;

ii. добавление источника внутреннего донора электронов;

iii. постепенное увеличение температуры до величины в диапазоне от 100 до 130°C и поддержание температуры в течение периода времени от примерно 10 до 20 мин с образованием каталитического компонента; и

iv. извлечение образованного таким образом каталитического компонента.

Способ, как описано выше, в котором этап (d) включает:

i. обработку каталитического компонента раствором, содержащим титановое соединение и инертный растворитель, и поддержание значения температуры в диапазоне от 100 до 120°C в течение примерно от 10 до 20 мин; и

ii. по выбору, повторение вышеуказанного этапа заданное число раз.

В другом варианте осуществления изобретения способ получения твердого титанового каталитического компонента включает добавление донора в начале и этап включает:

А. контактирование соединения диалкилмагния, представленного R'R''Mg, с жидким спиртом, представленным ROH, с получением первой реакционной смеси, содержащей алкоксид магния, при этом контактирование соединения диалкилмагния с жидким спиртом вызывает следующую реакцию:

R'R''Mg+2ROH→Mg(OR)2+R'H+R''H

где каждый из элементов R, R' и R'' представляет собой углеводородную группу;

B. добавление по меньшей мере одного внутреннего донора электронов к первой реакционной смеси с получением второй реакционной смеси;

C. добавление титанового соединения, представленного Ti(OR''')pX4-p, где X представляет собой атом галогена; R''' - углеводородную группу и р - целое число, имеющее значение меньше или равное 4, к второй реакционной смеси этапа (b) с получением каталитического компонента; и

D. активацию каталитического компонента с помощью раствора, содержащего титановое соединение и инертный растворитель, и извлечение твердого титанового каталитического компонента.

Способ, как описано выше, в котором этап (А) включает:

i. контактирование соединения диалкилмагния с жидким спиртом при температуре, поддерживаемой в диапазоне от 2 до 8°C, с получением третьей реакционной смеси, и

ii. постепенное увеличение температуры третьей реакционной смеси до величины в диапазоне от 50 до 70°C и поддержание температуры в течение периода времени от примерно 15 до 45 мин с образованием первой реакционной смеси, содержащей алкоксид магния.

Способ, как описано выше, в котором этап (В) включает:

i. разбавление первой реакционной смеси инертным растворителем и охлаждение смеси до температуры в диапазоне от -35 до -10°C;

ii. добавление источника внутреннего донора электронов к первой реакционной смеси с получением второй реакционной смеси.

Способ, как описано выше, в котором этап (С) включает:

i. растворение титанового соединения в растворителе с получением раствора и охлаждение раствора; и

ii. постепенное смешивание раствора этапа (i) с второй реакционной смесью при температуре в диапазоне от -35 до -10°C с получением каталитического компонента.

Способ, как описано выше, в котором этап (D) включает:

i. обработку каталитического компонента раствором, содержащим титановое соединение и инертный растворитель, и поддержание значения температуры в диапазоне от 100 до 120°C в течение примерно от 10 до 20 мин; и

ii. по выбору, повторение этапа (i) заданное число раз.

В еще одном варианте осуществления изобретения инертный растворитель выбирают из группы, состоящей из хлорированного ароматического растворителя, нехлорированного ароматического растворителя, хлорированного алифатического растворителя и нехлорированного алифатического растворителя.

В еще одном варианте осуществления изобретения инертный растворитель выбирают из группы, состоящей из бензола, декана, керосина, этилбензола, хлорбензола, дихлорбензола, толуола, о-хлортолуола, ксилола, дихлорметана, хлороформа и циклогексана.

В одном варианте осуществления изобретения применение твердого титанового каталитического компонента в качестве прокатализатора для каталитической системы Циглера-Натта включает комбинацию от 15 до 20% по весу магниевого фрагмента, от 1,0 до 6,0% по весу титанового фрагмента и от 5,0 до 20% по весу внутреннего донора, указанный твердый титановый каталитический компонент имеет средний размер частиц в диапазоне от 1 до 100 мкм, характеризующийся трехточечным распределением частиц по размеру: D10 в диапазоне от 1 до 10 мкм; D50 в диапазоне от 5 до 25 мкм и D90 в диапазоне от 15 до 50 мкм.

В изобретении также предлагается каталитическая система Циглера-Натта и каталитическая система содержит комбинацию по меньшей мере одного алюминийорганического соединения, по меньшей мере одного внешнего донора электронов и твердого титанового каталитического компонента, содержащего комбинацию от 15 до 20% по весу магниевого фрагмента, от 1,0 до 6,0% по весу титанового фрагмента и от 5,0 до 20% по весу внутреннего донора, указанный твердый титановый каталитический компонент имеет средний размер частиц в диапазоне от 1 до 100 мкм, характеризующийся трехточечным распределением частиц по размеру: D10 в диапазоне от 1 до 10 мкм; D50 в диапазоне от 5 до 25 мкм и D90 в диапазоне от 15 до 50 мкм.

В еще одном варианте осуществления изобретения внешний донор электронов и внутренний донор одинаковые или разные.

В еще одном варианте осуществления изобретения соотношение титан (из твердого титанового каталитического компонента):алюминий (из алюминийорганического соединения):внешний донор находится в диапазоне от 1:5-1000:0-250 и предпочтительно находится в диапазоне 1:25-500:25-100.

В изобретении также предлагается способ полимеризации и/или сополимеризации олефинов, указанный способ включает этап контактирования олефина, имеющего С2-С20 атомов углерода, в условиях полимеризации с каталитической системой Циглера-Натта, причем указанная каталитическая система содержит комбинацию по меньшей мере одного алюминийорганического соединения, по меньшей мере одного внешнего донора электронов и твердого титанового каталитического компонента, содержащего комбинацию от 15 до 20% по весу магниевого фрагмента, от 1,0 до 6,0% по весу титанового фрагмента и от 5,0 до 20% по весу внутреннего донора, указанный твердый титановый каталитический компонент имеет средний размер частиц в диапазоне от 1 до 100 мкм, характеризующийся трехточечным распределением частиц по размеру: D10 в диапазоне от 1 до 10 мкм; D50 в диапазоне от 5 до 25 мкм и D90 в диапазоне от 15 до 50 мкм.

В одном варианте осуществления способ обеспечивает твердый каталитический компонент, содержащий магний, титан, галоген и внутренний донор электронов, который может добавляться на любом этапе с использованием солюбилизированного магниевого соединения в органическом компоненте в качестве исходного материала.

Магниевый компонент выбирают из группы, представленной диалкилмагнием, где алкильная группа может быть от С120, которые могут быть либо одинаковыми, либо разными, например диалкилмагний, такой как диметилмагний, диэтилмагний, диизопропилмагний, дибутилмагний, дигексилмагний, диоктилмагний, этилбутилмагний и бутилоктилмагний. Указанные магниевые соединения могут быть в жидком или твердом состоянии.

Соединение, используемое для солюбилизации магниевого соединения в соответствии с изобретением, выбирают из группы, состоящей из жидкого спирта (ROH), альдегида (RCHO), амина (RNH2), карбоновой кислоты (RCOOH) или их смеси, где R может быть С120 углеводородной группой. В одном варианте осуществления органическое соединение, обладающее способностью солюбилизировать магниевое соединение, предпочтительно представляет собой жидкий спирт (ROH), включающий, но не ограничивающийся этим, например, алифатические спирты, такие как метанол, этанол, пропанол, бутанол, 2-метилпентанол, 2-этилбутанол, н-гептанол, н-октанол, 2-этилгексанол, деканол и додеканол, алициклические спирты, такие как циклогексанол и метилциклогексанол, ароматические спирты, такие как бензиновый спирт и метилбензиловый спирт, и алифатические спирты, содержащие алкоксигруппу, такие как этилгликоль, бутилгликоль; альдегид (RCHO), включающий, но не ограничивающийся этим, например, каприновый альдегид и 2-этилгексил альдегид; амин (RNH2), включающий, но не ограничивающийся этим, например, гептил амин, октил амин, нонил амин, лаурил амин и 2-этилгексил амин; карбоновую кислоту (RCOOH), включающую, но не ограничивающуюся этим, например, каприловую кислоту и 2-этилгексановую кислоту или их смесь, где R может быть С120 углеводородной группой. Органическое соединение предпочтительно представляет собой спирт, особенно предпочтительно 2-этилгексанол. Эти органические соединения могут использоваться по отдельности или в виде их смеси.

Жидкое титановое соединение, которое используется при получении вышеуказанного каталитического компонента, включает соединение четырехвалентного титана, представленного в виде Ti(OR)pX4-p, где X может представлять собой галоген, выбранный из Сl или Br или I, R представляет собой углеводородную группу и р - целое число от 0 до 4. Конкретные примеры титанового соединения включают, но не ограничиваются этим, тетрагалогениды титана, такие как тетрахлорид титана, тетрабромид титана, тетрайодид титана; тригалогенид алкоксититана, такой как трихлорид метоксититана, трихлорид этоксититана, трихлорид бутоксититана, тригалогенид арилоксититана, такой как трихлорид феноксититана; дигалогениды диалкоксититана, такие как дихлорид диэтоксититана; моногалогенид триалкоксититана, такой как хлорид триэтоксититана; и тетраалкоксититан, такие как тетрабутоксититан, тетраэтоксититан и их смеси, предпочтительным является тетрахлорид титана. Эти титановые соединения могут использоваться по отдельности или в виде их смеси.

Растворитель, используемый в изобретении для контактирования солюбилизированного магниевого соединения с титановым соединением, включает хлорированные или нехлорированные ароматические или алифатические по природе, примеры, без ограничения, бензол, декан, керосин, этилбензол, хлорбензол,