Способы определения индекса реакционной способности цементирующих компонентов, связанные с ними композиции и способы их применения

Иллюстрации

Показать все

Изобретение относится к способам и композициям, включая, в одном варианте осуществления, способ цементирования, содержащий: получение отверждаемой композиции, содержащей воду и цементирующий компонент, имеющий расчетный индекс реакционной способности, и обеспечение отверждения композиции для формирования твердой массы. Технический результат - повышение эффективности цементирования. 4 н. и 16 з.п. ф-лы, 4 ил., 3 табл.

Реферат

Уровень техники

Настоящее изобретение относится к цементирующим компонентам и, более конкретно, в некоторых вариантах осуществления, к способам определения индекса реакционной способности цементирующих компонентов.

В общем случае, обработка скважин включает в себя широкий спектр способов, которые могут выполняться в нефтяных, газовых, геотермальных и/или водных скважинах, таких как бурение, освоение и способы капитального ремонта скважин. Бурение, освоение и способы капитального ремонта скважин могут включать, но этим не ограничиваются, бурение, разрыв пласта, кислотную обработку скважины, каротажные работы, цементирование, гравийную набивку, перфорирование отверстий и соответствующие способы. Многие из этих способов обработки скважины направлены на повышение и/или облегчение извлечения желаемых текучих сред из подземной скважины. Эти текучие среды могут включать углеводороды, такие как нефть и/или газ.

В цементирующих способах, таких как формирование скважины и ремонтное цементирование скважины, обычно используются отверждаемые композиции. Используемый в настоящем документе термин "отверждаемая композиция" относится к композиции(ям), которая гидравлически отверждается или иначе проявляет устойчивость к сжимающим нагрузкам. Отверждаемые композиции могут использоваться в основных операциях цементирования, посредством чего колонна труб, таких как обсадные трубы и направляющие колонны, цементируются в буровых скважинах. При выполнении основного цементирования отверждаемая композиция может закачиваться в затрубное/кольцевое пространство между подземной формацией и колонной обсадных труб, расположенных в подземной формации, или между колонной труб и трубопроводом большего диаметра, расположенным в подземном пласте месторождения. Отверждаемая композиция должна располагаться в кольцевом пространстве между колоннами, тем самым, формируя кольцевую предохранительную оболочку из затвердевшего цемента (например, цементная оболочка), которая должна поддерживать и определять местоположение колонны трубопровода в буровой скважине, и связывать внешнюю поверхность колонны трубопровода со стенами буровой скважины или с трубопроводом большего диаметра. Отверждаемые композиции могут также использоваться в способах ремонтного цементирования, таких как размещение цементных пробок и в цементировании путем нагнетания под давлением для герметизации пустот в колонне труб, цементной оболочке, гравийной набивке, пласте и тому подобное. Отверждаемые композиции могут также использоваться в наземном применении, например для цементирования в строительстве.

Отверждаемые композиции для использования в подземных пластах месторождений могут, как правило, включать в себя цементирующий компонент, который гидравлически отверждается, или иначе затвердевает для проявления предела прочности при сжатии. Примеры цементирующих компонентов, которые могут включаться в отверждаемые композиции, содержат портландцемент, кальциево-алюминатный цемент, цементную пыль, известковую печную пыль, зольную пыль, шлак, пемзу и наряду с прочим золу оболочки рисового зерна. Эффективность этих различных цементирующих компонентов в отверждаемых композициях может изменяться и может изменяться даже для конкретного цементирующего компонента в зависимости, например, от отдельно взятого типа компонента или от источника его получения. Например, некоторые из этих цементирующих компонентов могут иметь нежелательные свойства, которые могут сделать их неподходящими для использования в обработках скважины. Кроме того, изменение характеристик цементирующих компонентов может приводить к отсутствию предсказуемости и постоянства цементирующих компонентов при использовании в текучих средах обработки. Это отсутствие предсказуемости может наблюдаться в случае того же самого цементирующего компонента, например, если он поставляется из различных мест.

Сущность изобретения

Настоящее изобретение относится к цементирующим компонентам и, конкретно, в некоторых вариантах осуществления к способам определения индекса реакционной способности цементирующих компонентов.

Варианты осуществления описывают способ цементирования, включающий: обеспечение отверждаемой композиции, содержащей воду и цементирующий компонент, имеющий определенный индекс реакционной способности; и обеспечение отверждения отверждаемой композиции с образованием твердой массы.

Другой вариант осуществления описывает способ измерения реакционной способности цементирующего компонента, включающий: измерение параметра цементирующего компонента, имеющего удельную площадь поверхности; и деление измеренного параметра на удельную площадь поверхности цементирующего компонента для получения индекса реакционной способности цементирующего компонента.

Еще один вариант осуществления описывает отверждаемую композицию, содержащую воду и цементирующий компонент, имеющий расчетный индекс реакционной способности.

Отличительные особенности и преимущества настоящего изобретения должны быть очевидными для специалистов, работающих в данной области техники. Несмотря на то, что многочисленные изменения могут делаться специалистами в данной области техники, такие изменения находятся в пределах сущности настоящего изобретения.

Краткое описание чертежей

Эти чертежи иллюстрируют определенные аспекты некоторых вариантов осуществления настоящего изобретения и не должны использоваться для ограничения или установления границ настоящего изобретения.

На фиг. 1 представлена индикаторная диаграмма, показывающая измеренные показатели реакционной способности различных предложенных источников цементной печной пыли.

На фиг. 2 представлена индикаторная диаграмма, в которой сравниваются фактические и расчетные пределы предела прочности при сжатии для сухих смесей цементной печной пыли.

На фиг. 3 представлена индикаторная диаграмма, содержащая сравнение фактической и расчетной величин среднего значения структурной вязкости при 511 с-1 для сухих смесей цементной печной пыли.

На фиг. 4 представлена таблица, содержащая сравнение фактической и расчетной величины среднего значения структурной вязкости при 51 с-1 для сухих смесей цементной печной пыли.

Описание предпочтительных вариантов осуществления настоящего изобретения

Настоящее изобретение относится к цементирующим компонентами, более конкретно, в некоторых вариантах осуществления, к способам определения индекса реакционной способности для цементирующих компонентов. Благодаря определению индекса реакционной способности цементирующих компонентов, смеси цементирующих компонентов могут использоваться в обработках скважины в соответствии с конкретными вариантами осуществления, которые могут обеспечить более предсказуемую и стабильную эффективность. Кроме того, дополнительные варианты осуществления могут включать использование определенного индекса реакционной способности для обеспечения смесей цементирующих компонентов, у которых один или более параметров были выбраны с оптимальными характеристиками, включая предел прочности при сжатии, модуль Юнга, водоотдачу и/или, например, время схватывания.

Не ограничиваясь теорией, индекс реакционной способности цементирующего компонента может упоминаться в качестве меры реакционной способности цементирующего компонента, с учетом корректировок для площади поверхности. Примеры способов определения индекса реакционной способности могут содержать измерение параметра цементирующего компонента, и затем деление измеренного параметра на удельную площадь поверхности цементирующего компонента. В некоторых вариантах осуществления индекс реакционной способности цементирующего компонента можно подсчитать согласно следующему уравнению:

RI=MP/SSA,

где RI является индексом реакционной способности, MP - измеренный параметр цементирующего компонента, SSA является удельной площадью поверхности безводного цементирующего компонента. Обычно удельная площадь поверхности является свойством твердых частиц, и, используемая в настоящем документе, определяется как общая площадь поверхности цементирующего компонента, деленная на массу цементирующего компонента, или общая площадь поверхности, деленная на объем насыпного цементирующего компонента.

Обычно, цементирующие компоненты являются твердыми частицами, которые гидравлически застывают или иначе затвердевают в присутствии воды для проявления предела прочности при сжатии. Неограничивающие примеры цементирующих компонентов, которые могут быть подходящими для использования в вариантах осуществления настоящего изобретения, включают: портландцементы, алюминат кальция, гипс, пуццолановые материалы и печную пыль. Также могут быть использованы смеси из одного или более различных цементирующих компонентов. В некоторых вариантах осуществления цементирующий компонент может быть объединен с известью.

В некоторых вариантах осуществления цементирующий компонент может содержать портландцемент. Портландцемент является часто используемым цементирующим компонентом, который гидравлически реагирует с водой для проявления предела прочности при сжатии. Примеры подходящих портландцементов могут включать только те цементы, которые классифицированы как классы A, C, G и H, согласно American Petroleum institute, API Specification for Materials and Testing far Well Cements, API Specification 10, Fifth Edition, July 1, 1990. Кроме того, портландцементы, подходящие для использования в вариантах осуществления настоящего изобретения, также могут включать в себя те, которые классифицированы как ASTM тип I, I/II, II, III, IV или V. В некоторых вариантах осуществления могут использоваться смеси цементирующих компонентов, содержащих портландцемент.

В некоторых вариантах осуществления цементирующий компонент может содержать алюминат кальция. Алюминат кальция может гидравлически реагировать с водой для проявления предела прочности. Алюминат кальция может быть включен в цементы, обычно называемые кальциево-алюминатными цементами или цементами с высоким содержанием оксида алюминия. Кальциево-алюминатные цементы можно приготовить в способе производства, который включает смешивание материала, содержащего кальций (например, известняка), и материала, содержащего алюминий (например, боксит).

В некоторых вариантах осуществления цементирующий компонент может содержать гипс. Гипс является материалом, который в присутствии воды затвердевает, проявляя предел прочности. Гипс может быть включен в цементы, обычно относящиеся к так называемым гипсовым цементам. Для использования в цементах, гипс может, в отдельных случаях, подвергаться обжигу при чрезвычайно высоких температурах, и затем быть измельченным, в специфических вариантах осуществления гипс может добавляться к портландцементу.

В некоторых вариантах осуществления цементирующий компонент может содержать пуццолановый материал. Пуццолановые материалы, которые могут быть пригодными для использования, включают широкое разнообразие естественных или искусственных материалов, которые проявляют цементирующие свойства в присутствии гидроксида кальция. Примеры подходящего пуццоланового материала, способного быть пригодным для использования в вариантах осуществления настоящего изобретения, включают природные и искусственные пуццоланы, такие как зольная пыль, микрокремнезем, шлак, горючий сланец, обожженная глина, метакаолин, пемза, кизельгур, вулканический пепел, опаловые глины, туф и сожженные органические материалы, такие как отходы сельскохозяйственного производства, муниципальные отходы (например, зола твердых коммунальных отходов), зола отходов обработки сточных вод, зола отходов животного происхождения, зола промышленных отходов неживотного и нечеловеческого происхождения и их комбинации. Конкретные примеры золы сельскохозяйственных отходов включают, например, золу рисовой шелухи, золу дерева (например, древесных опилок, коры дерева, веток, ветвей и других древесных отходов), золу древесных листьев, золу сердцевины початков кукурузы, золу тростника (например, сахарного тростника), золу сухого измельченного волокна, золу зерна (например, амарантового дерева, ячменя, зерна льняного семени, пшена, овса, лебеды, ржи, пшеницы и т.д.) и золу соответствующего сопутствующего продукта(ов) (например, выжимки, кожицы и т.д.), золу фруктовых деревьев, золу обрезков виноградной лозы, золу травы (например, Корай, Тифтон, природной shiba и т.д.), золу соломы, золу оболочки арахиса, золу растений из семейства бобовых (например, соевого боба) и их комбинации.

В некоторых вариантах осуществления цементирующий компонент может содержать печную пыль. Один из примеров печной пыли включает цементную печную пыль. Так называемая цементная печная пыль, используемая в настоящем документе, относится к частично сожженному сырью для печи, которое удалено из газового потока и собрано, например, в пылесборнике в процессе производства цемента. Цементная печная пыль, как правило, может проявлять цементирующие свойства, заключающиеся в том, что она может густеть и затвердевать в присутствии воды. Как правило, от больших количеств цементной печной пыли, собранной в производстве цемента, обычно избавляются как от отходов. Утилизация цементной печной пыли может добавить нежелательные расходы по отношению к производству цемента, а также могут возникнуть проблемы защиты окружающей среды, связанные с ее утилизацией. Химический анализ цементной печной пыли от различных производств цемента изменяется в зависимости от ряда факторов, включая материал, загружаемый в печь, эффективность операций по производству цемента и связанные с ней системы сбора пыли. Печная цементная пыль обычно может содержать различные оксиды, такие как SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O и K2O. Другой пример цементной печной пыли включает известковую печную пыль. Термин «известковая печная пыль», используемый в настоящем документе, относится к продукту, получаемому в результате производства извести. Известковая печная пыль может быть собрана, например, с помощью системы контроля по улавливанию пыли в процессе обжига известняка.

В некоторых вариантах осуществления один или более параметров цементирующего компонента могут быть измерены и затем использованы в определении индекса реакционной способности. Параметры могут включать в себя ряд различных показателей, которые можно измерить, используя стандартные лабораторные экспериментальные технологии для отверждаемой композиции, содержащей цементирующий компонент и воду. Дополнительные компоненты также могут включаться в отверждаемую композицию, например, для изменения одного или более свойств обрабатывающих составов. Параметры цементирующего компонента или отверждаемой композиции, содержащей эти компоненты, которые могут быть измерены, включают, например, предел прочности при сжатии, модуль Юнга, водоотдачу, время застывания (затвердевания), реологические величины (например, среднюю величину структурной вязкости, пластическую вязкость, предел текучести и т.д.) и/или свободную воду.

Предел прочности при сжатии является обычно способностью материала или структуры выдерживать направленную вдоль оси силу нажатия. Предел прочности цементирующего компонента можно измерить в заданное время после того, как цементирующий компонент был смешан с водой и полученный обрабатывающий состав выдерживают при определенных условиях температуры и давлении. Например, предел прочности при сжатии можно измерить во времени в диапазоне приблизительно от 24 до приблизительно 48 часов после того, как состав смешан и выдержан при температуре 170°F при атмосферном давлении. Предел прочности при сжатии можно измерить с помощью либо разрушающего метода, либо неразрушающего метода. С помощью разрушающего метода физически проверяется прочность образцов обрабатывающего состава в различные моменты времени с помощью разрушения образцов в машине для испытаний на сжатие. Предел прочности при сжатии подсчитывается, исходя из разрушающей нагрузки, деленной на площадь поперечного сечения, сопротивляющейся грузу, и характеризуется в единицах фунт-сила на квадратный дюйм (psi). В неразрушающих методах, как правило, может использоваться ультразвуковой анализатор цемента ("OCA"), доступный от производителя Fann Instrument Company, Houston, TX. Предел прочности при сжатии может быть определен в соответствии с API RP 10B-2, Recommended. Practice for Testing Well Cements, First Edition, July 2005.

Модуль Юнга, также упоминаемый, как модуль упругости, является мерой взаимосвязи приложенного напряжения к разрушению, получающемуся в результате деформации, в общем, очень деформируемый материал (пластик) будет показывать более низкий модуль, когда ограниченное напряжение будет увеличено. Таким образом, модуль Юнга является константой упругости, которая демонстрирует способность испытуемого материала выдерживать приложенные нагрузки. Многие различные лабораторные методы могут использоваться для измерения модуля Юнга обрабатывающего состава, содержащего цементирующий компонент, после того, как обрабатывающий состав выдерживали в течение периода времени в определенных условиях: температуры и давления.

Водоотдача обычно относится к потере жидкости, как например, обрабатывающими составами в подземном пласте месторождения. Многие различные лабораторные методики могут использоваться для измерения водоотдачи у обрабатывающего состава, чтобы дать представление о характере поведения обрабатывающего состава в скважине. Водоотдачу можно измерить с использованием статического теста потери жидкости, либо при статическом положении, либо при ограниченном перемешивании, в соответствии с вышеупомянутой API RP Practice 10B-2.

Время схватывания обычно относится к тому времени, в течение которого жидкость, например обрабатывающий состав, содержащий цементирующий компонент, остается в жидком состоянии и способен перекачиваться. Многие различные лабораторные методики могут использоваться для измерения времени схватывания, чтобы дать представление о количестве времени, необходимом обрабатывающему составу, чтобы оставаться способным к перекачиванию в скважину.

Примером методики для того, чтобы определить является ли обрабатывающий состав способным к перекачиванию, может служить использование высокотемпературного консистометра высокого давления в заданных условиях температуры и давления в соответствии с порядком определения времени схватывания цемента, изложенного в вышеупомянутой API RP Practice 10B-2. Время схватывания может быть временем достижения обрабатывающего состава 70 единиц консистенции Бердена ("Bc"), и может быть охарактеризовано временем достижения 70 Bc.

Реологические величины жидкости могут быть определены для характеристики реологического поведения жидкости. Реологические величины, которые могут быть определены, среди прочих включают среднюю величину структурной вязкости, предел текучести и пластическую вязкость. Пластическая вязкость, как правило, является мерой сопротивления текучей среды течению. В некоторых вариантах осуществления предел текучести может быть параметром пластичной модели Бингема, где предел текучести является угловым коэффициентом линии напряжения сдвига/скорости сдвига выше точки текучести. Предел текучести, как правило, является точкой значения, при котором материал больше не может упруго деформироваться. В некоторых вариантах осуществления предел текучести может быть параметром пластичной модели Бингема, пределом текучести, являющимся напряжением, возникающим при текучести, экстраполируемым к нулевой скорости сдвига. Многие различные лабораторные методики могут использоваться для измерения реологических величин обрабатывающего состава, чтобы дать представление о поведении обрабатывающего состава в скважине. Реологические величины могут быть определены в соответствии со способом, описанным в API RP Practice 10B-2.

Свободную воду, как правило, относят к любой воде в текучей среде, которая находится в избытке по отношению к той, которая требуется для полной гидратации компонентов текучей среды. Свободная вода может быть нежелательной по причине ее физического отделения от цементной композиции при ее застывании. Свободная вода может также упоминаться как свободная текучая среда. Многие различные лабораторные методики могут использоваться для измерения свободной воды обрабатывающего состава, чтобы дать представление о характере поведения обрабатывающего состава в скважине. Свободная вода может быть определена в соответствии со способом, описанным в API RP Practice 10B-2.

Как упоминалось ранее, реакционная способность цементирующих компонентов может изменяться между различными типами цементных компонентов или в зависимости от различных источников получения для конкретного типа цементирующего компонента. Например, реакционная способность портландцемента и другого цементирующего компонента, такого как пуццолановый материал, может различаться. С помощью дальнейшего примера реакционная способность цементирующего компонента может изменяться в зависимости от различных источников получения цементирующего компонента. В некоторых вариантах осуществления индекс реакционной способности цементирующего компонента может изменяться между двумя или более различными источниками с коэффициентом, по меньшей мере, приблизительно 2:1. Например, индекс реакционной способности цементирующего компонента между различными источниками может изменить величину между любым из и/или включая любой из приблизительно 2:1, приблизительно 10:1, приблизительно 50:1, приблизительно 100:1, приблизительно 250:1, приблизительно 500:1 или приблизительно 1000:1. Поскольку реакционная способность изменяется между различными цементирующими компонентами и даже между различными источниками для цементирующего компонента, действие различных цементирующих компонентов может быть непредсказуемым, и может также привести к недостаточной консистенции цементирующих компонентов при использовании в обрабатывающем составе, таком как отверждаемые композиции; в некоторых случаях функциональные показатели отдельно взятого цементирующего компонента могут иметь нежелательные свойства, которые могут сделать его непригодным для использования. Например, у цементирующего компонента, полученного от конкретного источника, могут быть свойства, делающие его непригодным для использования.

В некоторых вариантах осуществления смесь двух или более различных цементирующих компонентов может использоваться для обеспечения смешанного цементирующего компонента, который может иметь свойства, пригодные для использования в конкретном применении. Это может быть особенно полезным, например, когда у одного из цементирующих компонентов в смеси могут быть свойства, делающие его нежелательным для использования в особых применениях. Например, цементирующий компонент такой, как печная цементная пыль от первого источника, может быть смешан с цементирующим компонентом таким, как печная цементная пыль от второго источника. В некоторых вариантах осуществления один или оба цементирующих компонента могут иметь реакционные способности, которые не подходят для использования в конкретном применении. Например, реакционные способности каждого цементирующего компонента могут быть в отдельности слишком медленными или слишком быстрыми для использования в конкретном применении. Смеси цементирующих компонентов от двух различных источников могут формировать смешанный цементирующий компонент, имеющий свойства предела прочности при сжатии, которые являются подходящими для применения. В некоторых вариантах осуществления относительные соотношения (например, массовая доля) каждого цементирующего компонента в смешанном цементирующем компоненте могут затем быть скорректированы с тем, чтобы отрегулировать свойства предела прочности при сжатии смешанного цементирующего компонента.

Два или более цементирующих компонента в смешанном цементирующем компоненте могут включать, например, два или более различных типов цементирующих компонентов, таких как портландцемент и печная цементная пыль. В качестве альтернативы два или более цементирующих компонента в смешанном цементирующем компоненте могут включать, например, цементирующий компонент от двух или более различных источников получения. Например, первый цементирующий компонент может содержать печная цементная пыль от первого источника, а второй цементирующий компонент может содержать печная цементная пыль от второго источника. Следует понимать, что варианты осуществления не ограничены только двумя различными источниками и могут включать цементирующий компонент, такой как печная цементная пыль, от трех, четырех, пяти или даже более разных источников. Два или более различных источника для цементирующего компонента могут включать различные производства, различные цементные промышленные предприятия и тому подобное. Цементирующий компонент, такой как печная цементная пыль, которая является побочным продуктом цементного промышленного предприятия, может иметь несколько различных источников, доступных со всего мира. Например, различные источники для цементной печной пыли могут включать различные промышленные предприятия со всего мира, в которых печная цементная пыль может образовываться.

Два или более цементирующих компонента могут быть смешаны для формирования смешанного цементирующего компонента, например, до смешивания с водой и/или другими компонентами обрабатывающего состава. В конкретных вариантах осуществления два или более цементирующих компонента могут быть смешаны в сухом виде для формирования сухой смешанной смеси, содержащей два или более цементирующих компонента. Сухая смесь затем может быть смешана с водой и/или другими компонентами в любом порядке для формирования обрабатывающего состава. Тем не менее, использование термина "смесь" не предназначено, чтобы подразумевать, что два или более цементирующих компонента были предварительно в сухом виде смешаны до комбинации с водой. Например, смесь двух или более цементирующих компонентов не может быть объединена после того, как один или даже оба цементирующих компонента были уже смешаны с водой.

В некоторых вариантах осуществления индекс реакционной способности может использоваться для оптимизации смешанного цементирующего компонента, где смешанный цементирующий компонент содержит два или более цементирующих компонента. Например, индекс реакционной способности может использоваться для оптимизации одного или более параметров смешанного цементирующего компонента, включая предел прочности при сжатии, модуль Юнга, водоотдачу и/или время застывании. Оптимизация смешанного цементирующего компонента может включать определение индекса реакционной способности для каждого из цементирующих компонентов в смешанном цементирующем компоненте. Показатели реакционной способности для цементирующих компонентов могут затем использоваться для прогнозирования поведения смешанного цементирующего компонента. Отношение каждого цементирующего компонента может быть отрегулировано для оптимизации поведения смешанного цементирующего компонента. Поведение смешанного цементирующего компонента может быть оптимизировано путем выполнения для смешанного цементирующего компонента следующего расчетного уравнения:

где EPсмеси является расчетным параметром для смешанного цементирующего компонента, i является индивидуальным цементирующим компонентом из набора цементирующих компонентов от 1 до n, где n является целым числом, RIi является показателем реакционной способности цементирующего компонента i, SSAi является удельной площадью поверхности цементирующего компонента i, fi является массовой долей цементирующего компонента i, и где m является числом от 1 до 10. Набор цементирующих компонентов может включать 2 или более различных цементирующих компонентов. Два или более различных цементирующих компонентов могут быть различными типами цементирующих компонентов, например, портландцемент и шлак или могут быть от различных источников, например, печная цементная пыль от первого источника и печная цементная пыль от второго источника. В некоторых вариантах осуществления m может быть 1. В альтернативных вариантах осуществления m может быть 7/3.

В некоторых вариантах осуществления средний размер частиц цементирующего компонента может быть изменен от ее исходного размера. Индекс реакционной способности может затем быть измерен для измененного цементирующего компонента. Измененный цементирующий компонент может быть включен в смешанный цементирующий компонент. В соответствии с настоящими вариантами осуществления средний размер частиц цементирующего компонента может быть изменен при помощи использования подходящих технических приемов, включая без ограничения измельчение или разделение, чтобы обеспечить материал с измененным размером частиц. Разделение цементирующего компонента может включать в себя просеивание или другой подходящий способ разделения цементирующего компонента для обеспечения среднего размера частиц, который является измененным относительно своего первоначального размера. Например, просеивание может быть использовано для получения цементирующего компонента с повышенным или пониженным средним размером частиц, который будет желательным для использования в конкретном применении. В качестве еще одного примера измельчение может использоваться для уменьшения среднего размера частиц цементирующего компонента. Комбинация помола и разделения может быть в некоторых вариантах осуществления. Термин "толченный" или "измельченный", применяемый в настоящем документе, означает использование измельчителя (например, шаровую мельницу, стержневую барабанную мельницу и т.д.) для уменьшения размера частиц указанного компонента(ов). Примером подходящего измельчителя является шаровая мельница 8000 Mixer/Mill*, доступная от фирмы SPEX Sample Prep. В некоторых вариантах осуществления цементирующий компонент можно размалывать в течение периода времени в диапазоне приблизительно от 30 минут до приблизительно 1 часа.

Средний размер частицы цементирующего компонента можно изменять до любого размера, подходящего для использования в операциях цементирования. В некоторых вариантах осуществления средний размер частиц цементирующего компонента может быть изменен от его первоначального размера до среднего размера частиц в диапазоне приблизительно от 1 микрона до приблизительно 350 микрон. Средний размер частиц соответствует значению d-50, измеренному с помощью анализатора размера частиц такого, как производит компания Malvern Instruments, Worcestershire, United Kingdom.

В некоторых вариантах осуществления средний размер частиц цементирующего компонента можно повысить от его первоначального размера. Например, средний размер частиц цементирующего компонента может быть, по меньшей мере, на 5% больше его первоначального размера. В некоторых вариантах осуществления, по меньшей мере, у части цементирующего компонента может быть повышен размер частиц, который будет находиться в интервале большем, чем его первоначальный размер, приблизительно от 5% до приблизительно на 500%. В некоторых вариантах осуществления средний размер частиц может быть увеличен до размера, располагающегося между любым из и/или, включая любой из: приблизительно на 5%, приблизительно на 10%, приблизительно на 20%, приблизительно на 30%, приблизительно на 40%, приблизительно на 50%, приблизительно на 60%, приблизительно на 70%, приблизительно на 80%, приблизительно на 90%, приблизительно на 100%, приблизительно на 200%, приблизительно на 300%, приблизительно на 400% или приблизительно на 500% больше, чем его первоначальный размер.

В некоторых вариантах осуществления средний размер частиц цементирующего компонента можно уменьшить от его первоначального размера. Например, средний размер частиц можно уменьшить до величины, достаточной для повышения предела прочности при сжатии. В некоторых вариантах осуществления цементирующий компонент может иметь средний размер частиц, который, по меньшей мере, на 5% меньше его первоначального размера. В некоторых вариантах осуществления, по меньшей мере, у части цементирующего компонента можно уменьшить размер частиц, чтобы иметь средний размер в диапазоне приблизительно от 5% до приблизительно 95% от его первоначального размера. Например, средний размер частиц может быть уменьшен до размера, располагающегося между любым из и/или, включая любой из: приблизительно на уровне 5%, приблизительно на уровне 10%, приблизительно на уровне 15%, приблизительно на уровне 20%, приблизительно на уровне 25%, приблизительно на уровне 30%, приблизительно на уровне 35%, приблизительно на уровне 40%, приблизительно на уровне 45%, приблизительно на уровне 50%, приблизительно на уровне 55%, приблизительно на уровне 60%, приблизительно на уровне 65%, приблизительно на уровне 70%, приблизительно на уровне 75%, приблизительно на уровне 80%, приблизительно на уровне 90% или приблизительно на уровне 95% от его первоначального размера. В качестве примера уменьшенный размер частиц цементирующего компонента может иметь средний размер частиц приблизительно менее чем 15 микрон. В некоторых вариантах осуществления уменьшенный размер частиц цементирующего компонента может иметь средний размер приблизительно менее чем 10 микрон, приблизительно менее чем 5 микрон, приблизительно менее чем 4 микрона, приблизительно менее чем 3 микрона, приблизительно менее чем 2 микрона или приблизительно менее чем 1 микрон. В конкретных вариантах осуществления уменьшенный размер частиц цементирующего компонента может иметь средний размер частиц в диапазоне приблизительно от 0,1 микрона до приблизительно 15 микрон, приблизительно от 0,1 микрона до приблизительно 10 микрон или приблизительно от 1 микрона до приблизительно 10 микрон. Специалист в данной области техники, с преимуществом данного описания должен быть в состоянии выбрать размер частиц для цементирующего компонента, подходящего для конкретного применения.

В некоторых вариантах осуществления средний размер частиц цементной печной пыли можно уменьшить до величины, достаточной, чтобы обеспечить повышение предела прочности при сжатии для отверждаемой композиции. Например, средний размер частицы можно уменьшить, чтобы обеспечить повышение предела прочности, по меньшей мере, приблизительно на 5%, приблизительно на 25%, приблизительно на 50%, приблизительно на 75% или приблизительно на 100%.

В соответствии с настоящими вариантами осуществления цементирующие компоненты можно включать в обрабатывающие составы, которые можно использовать в различных операциях, выполнение которых осуществляется в подземных пластах. Цементирующий компонент может иметь индекс реакционной способности, рассчитанный в соответствии с описанными вариантами осуществления. В некоторых вариантах осуществления может быть использован смешанный цементный компонент. В некоторых вариантах осуществления индекс реакционной способности может использоваться при определении цементирующих компонентов в конкретном смешанном цементирующем компоненте. Как упомянуто в настоящем документе термин "обрабатывающий состав" следует понимать, что он будет относиться к любой текучей среде, которая может использоваться в подземном применении в сочетании с желаемой функцией и/или для желаемой цели. Термин "обрабатывающий состав" не предназначен для того, чтобы подразумевать какое-либо конкретное действие со стороны текучей среды. Обрабатывающий состав часто используются, например, в бурении скважин, процессе бурения, начиная с момента входа в пласт, и в операциях по интенсификации добычи нефти.

Примеры таких обрабатывающих составов включают буровые растворы, жидкости для очистки скважины, жидкости для капремонта скважин, жидкости для охвата площади, жидкости