Выполнение выравнивания символа восходящего потока в условиях fext
Иллюстрации
Показать всеИзобретение относится к области сетевых коммуникаций и предназначено для выравнивания символов восходящего потока в пределах сетевого компонента, причем способ содержит этапы, на которых принимают сигнал синхронизации восходящего потока через инициализирующую цифровую абонентскую линию (DSL) во время фазы обнаружения канала от абонентского оконечного оборудования (СРЕ), определяют скорректированное значение выравнивания символов восходящего потока на основании сигнала синхронизации восходящего потока, и передают скорректированное значение выравнивания символов восходящего потока в СРЕ, при этом значение выравнивания символов восходящего потока определяет выравнивания символов восходящего потока для одной или более передач восходящего потока, и скорректированное значение выравнивания символов восходящего потока определяют до приема множества сигналов данных восходящего потока в пределах позиций символов данных во время фазы обнаружения канала. 3 н. и 17 з.п. ф-лы, 9 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к области сетевых коммуникаций и в конкретных вариантах осуществления к выполнению выравнивания символа восходящего потока в условиях FEXT.
Уровень техники
Технологии, связанные с цифровой абонентской линией (DSL), обеспечивают большую полосу пропускания для цифровой связи по существующим абонентским линиям (например, по медным парам). Для передачи сигналов данных многие современные системы DSL, включая асимметричную DSL 2 (ADSL2), ADSL2+, высокоскоростную DSL (VDSL) и высокоскоростную DSL 2 (VDSL2), а также другие системы DSL, в том числе разрешенный стандарт "быстрый доступ к абонентским терминалам" (G.fast), могут использовать дискретную мультитоновую (DMT) модуляцию. Системы, которые выполняют дуплексную передачу, используя дуплексную связь с частотным разделением каналов (FDD), такую как ADSL2 и VDSL2, отделяют сигналы нисходящего потока от сигналов восходящего потока путем обмена сигналами с использованием различных частотных диапазонов. Альтернативно, системы, которые выполняют дуплексную передачу с использованием дуплексной связи с временным разделением каналов (TDD) могут использовать отдельные интервалы времени для передачи по восходящей линии связи и нисходящей линии связи. Во время передачи восходящего потока из модема на удаленной стороне, например, может отсутствовать передача нисходящего потока в системе G.fast DSL из соответствующего модема в центральной станции (СО), оптоволокне до кабельного шкафа (FTTC) или точке распределения (DPU).
При передаче данных по абонентским линиям, между передаваемыми сигналами по соседним линиям могут возникать перекрестные помехи, например в одном том же или соседнем жгуте линий. Перекрестные помехи, включая переходные помехи на ближнем конце (NEXT) и переходные помехи на дальнем конце (FEXT), могут ограничивать рабочие характеристики различных систем DSL, которые заданы, например, стандартами, включая ADSL2, VDSL, VDSL2 и G.fast. Обычно уровни FEXT увеличиваются и становятся более проблематичными, когда в системах DSL увеличивается край высокочастотного диапазона. Например, система VDLS2 может работать на частоте, соответствующей полосе пропускания, в диапазоне приблизительно от 17 до 30 мегагерц (МГц), в то время как система G.fast DSL может работать на частотах, соответствующих полосе пропускания, в диапазоне от приблизительно 100 МГц и выше. По существу уровни FEXT в пределах системы G.fast DSL могут быть относительно высокими (например, уровни FEXT могут такими же высоким, как у сигнала данных) по сравнению с системами VDSL2.
Технологии векторизации можно использовать для подавления FEXT среди абонентских линий в пределах векторной группы в нисходящем и восходящем направлениях для систем DSL (например, VDSL2 и G.fast). Векторизация подавляет перекрестные помехи путем координирования и организации группы сигналов абонентской линии для того, чтобы уменьшить уровни перекрестных помех. Векторизация описана более подробно в документе сектора стандартизации в области телекоммуникаций Международного союза электросвязи (ITU-T) G.993.5, озаглавленном "Самоподавление (векторизация) FEXT для использования с приемопередатчиками VDSL2", обновленном в апреле 2010 года, который включен сюда путем ссылки, как если бы он была приведен здесь во всей своей полноте. В направленных системах DSL для того, чтобы реализовать векторизацию нисходящего потока и восходящего потока, векторные системы DSL могут реализовывать выравнивание символа. В частности, символы нисходящего потока, переданные приемопередатчиками на конце оператора (TU-O) векторной группы могут быть выровнены между собой в интерфейсе на стороне оператора (контрольная точка U-О), и символы восходящего потока, передаваемые приемопередатчиками на стороне абонента (TU-Rs) векторной группы, могут быть выровнены между собой в контрольной точке U-О. Выравнивание символа в нисходящем направлении можно достичь путем передачи символов DMT в одно и то же время по всем абонентских линиям в векторной группе, так как TU-0 типично совмещаются и синхронизируются по таковой частоте с большей вероятностью в пределах одного и того же оборудования мультиплексора доступа к DSL (DSLAM). К сожалению, по сравнению с нисходящим направлением выравнивание символа в восходящем направлении может быть относительно трудным, так как TU-R обычно располагаются в различных местоположениях.
Раскрытие изобретения
В одном варианте осуществления раскрытие включает в себя устройство, содержащее первый блок приемопередатчика (TU) для соединения с первой инициализирующей DSL, память и процессор, соединенный с памятью и первым TU, причем память включает в себя инструкции, которые при их исполнении процессором предписывают устройству выполнять следующие операции: принять сигнал синхронизации восходящего потока через первый TU, определить значение коррекции, которое соответствует выравниванию символа восходящего потока для первой инициализирующей DSL с использованием сигнала синхронизации восходящего потока, и передать значение коррекции в нисходящем направлении через первый TU, в котором значение коррекции определяется перед приемом многочисленных сигналов восходящего потока, расположенных в многочисленных позициях символов данных.
В другом варианте осуществления раскрытие включает в себя способ реализации выравнивания символа восходящего потока в пределах сетевого компонента, причем способ содержит этапы, на которых: принимают сигнал синхронизации восходящего потока через инициализирующую DSL во время фазы Channel Discovery из абонентского оконечного оборудования (СРЕ), определяют скорректированное значение выравнивания символа восходящего потока на основании сигнала синхронизации восходящего потока, и передают скорректированное значение выравнивания символа восходящего потока в СРЕ, в котором значение выравнивания символа восходящего потока определяет выравнивания символа восходящего потока для одной или более передач восходящего потока, и где скорректированное значение выравнивания символа восходящего потока определяется перед приемом множества сигналов данных восходящего потока в пределах позиций символов данных во время фазы Channel Discovery.
В еще одном варианте осуществления раскрытие включает в себя устройство, содержащее TU для соединения с инициализирующей DSL, память и процессор, соединенный с памятью и первым TU, причем память включает в себя инструкции, которые при их исполнении процессором предписывают устройству выполнять следующие операции: передавать через TU сигнал синхронизации восходящего потока, который содержит символ синхронизации восходящего потока и множество символов без помех, расположенных в пределах позиций символов данных, принимать через TU скорректированное значение выравнивания символа восходящего потока; и регулировать выравнивание символа восходящего потока для передачи восходящего потока через инициализирующую DSL на основании скорректированного значения выравнивания символа восходящего потока, где скорректированное значение выравнивания символа восходящего потока принимается перед передачей сигналов данных восходящего потока в пределах позиций символов данных.
В еще одном варианте осуществления раскрытие включает в себя способ реализации выравнивания символа восходящего потока в пределах сетевого компонента, причем способ содержит этапы передачи сигнала синхронизации восходящего потока по инициализирующей DSL во время фазы Channel Discovery в узел на стороне оператора, приема скорректированного значения выравнивания символа восходящего потока из узла на стороне оператора, и передачи многочисленных сигналов восходящего потока по инициализирующей DSL, которые выравниваются на основании скорректированного значения выравнивания символа восходящего потока в узле на стороне оператора, где скорректированное значение выравнивания символа восходящего потока соответствует промежутку времени между приемом и передачей символов сетевым компонентом, и скорректированное значение выравнивания символа восходящего потока определяется перед передачей множества сигналов данных восходящего потока в пределах позиций символов данных во время фазы Channel Discovery.
В еще одном варианте осуществления раскрытие включает в себя сетевую систему, содержащую TU-O и TU-R, соединенную с TU-O через инициализирующую DSL, в которой TU-O выполнена с возможностью приема сигнала синхронизации восходящего потока по инициализирующей DSL, оценки значения коррекции, которое соответствует выравниванию символа восходящего потока для инициализирующей DSL с использованием сигнала синхронизации восходящего потока, и передачи значения коррекции в TU-R по инициализирующей DSL, в которой TU-R выполнена с возможностью передачи сигнала синхронизации восходящего потока, который содержит символ синхронизации восходящего потока на инициализирующей DSL, приема значения коррекции по инициализирующей DSL, регулировки выравнивания символа восходящего потока для передачи восходящего потока по инициализирующей DSL на основании значения коррекции, и передачи одного или более сигналов восходящего потока по инициализирующей DSL с использованием отрегулированного выравнивания символа восходящего потока, где значение коррекции определяется перед приемом сигналов восходящего потока, которые находятся в многочисленных позициях символов данных в TU-O.
В еще одном варианте осуществления раскрытие включает в себя сетевую систему, содержащую блок приемопередатчика G.fast на стороне оператора (FTU-O), в котором FTU-O сконфигурирована с возможностью выполнения следующих операций во время стадии CHANNEL DISCOVERY 1 для инициализирующей DSL: отправить в блок приемопередатчика G.fast на удаленной стороне (FTU-R) начальное значение промежутка времени Tg1' внутри сообщения О-SIGNATURE, принять сигнал R-P-VECTOR 1, оценить коррекцию начального значения промежутка времени Tg1' и передать коррекцию начального значения промежутка времени Tg1' в FTU-R с использованием сообщения О-TG-UPDATE, в котором промежуток времени Tg1' представляет собой промежуток времени восходящего потока, расположенный между концом приема передачи нисходящего потока и началом передачи восходящего потока FTU-R.
Краткое описание чертежей
Для более полного понимания настоящего раскрытия теперь сделана ссылка на последующее краткое описание, приведенное совместно с прилагаемыми чертежами и подробным описанием, на которых одинаковые ссылочные позиции обозначают одинаковые части.
Фиг. 1 - схема варианта осуществления xDSL системы, где могут работать варианты осуществления настоящего раскрытия.
Фиг. 2 - схема варианта осуществления кадра TDD, используемого во время инициализации и в состоянии представления для абонентской линии.
Фиг. 3 - хронологическая таблица варианта осуществления фазы Channel Discovery в пределах процедуры инициализации для системы G.fast DSL.
Фиг. 4 - хронологическая таблица варианта осуществления начальной стадии фазы Channel Discovery для системы G.fast DSL.
Фиг. 5 - хронологическая таблица варианта осуществления начальной стадии фазы Channel Discovery для системы VDSL (2).
Фиг. 6 - схема варианта осуществления сообщения O-TG-UPDATE, используемого во время инициализации и в состоянии представления для абонентской линии.
Фиг. 7 иллюстрирует блок-схему последовательности операций варианта осуществления способа определения скорректированного значения выравнивания символа восходящего потока для линии инициализации.
Фиг. 8 иллюстрирует блок-схему последовательности операций другого варианта осуществления способа определения скорректированного значения выравнивания символа восходящего потока для линии инициализации.
Фиг. 9 - схема варианта осуществления сетевого элемента.
Осуществление изобретения
Следует понимать на начальном этапе, что хотя иллюстративная реализация одного либо более вариантов осуществления предоставлены ниже, раскрытые системы и/или способы могут быть реализованы, используя любое число методик, известных в настоящее время, либо существующих. Изобретение не должно ни в какой мере ограничиваться иллюстративными вариантами осуществления, чертежами и методами, проиллюстрированными ниже, включая в себя примерные схемы и варианты осуществления, проиллюстрированные и описанные в данном документе, но могут быть модифицированы в пределах объема прилагаемой формулы изобретения вместе с их полным объемом эквивалентов.
В зависимости от поддерживаемого стандарта система DSL может быть обозначена как система xDSL, где ‘х’ может показывать любой стандарт DSL. Например, ‘х’ обозначает ‘А’ в системах ADSL2 или ADSL2+, ‘V’ в системах VDSL или VDSL2 и ‘F’ в системах G.fast. Когда блок приемопередатчика расположен на стороне оператора системы DSL, включая СО, DSLAM, шкаф или DPU, блок приемопередатчика может упоминаться как xTU-O. С другой стороны, когда блок приемопередатчика расположен в удаленном конце или на стороне пользователя, такой как СРЕ, блок приемопередатчика может упоминаться как xTU-R. Например, если системой DSL является система G.fast, блок приемопередатчика на стороне оператора может упоминаться как блок приемопередатчика G.fast на стороне оператора (FTU-О). Аналогичным образом, в системе G.fast приемопередатчик СРЕ может упоминаться как блок приемопередатчика G.fast на удаленной стороне (FTU-R), которая может также упоминаться как абонентская сторона.
В данном документе раскрыты по меньшей мере способ, устройство и система, которые позволяют достичь точного выравнивания символа восходящего потока во время начальной стадии инициализации абонентской линии. Объект управления (СЕ), который содержит вектор СЕ (VCE), может управлять выравниванием символов для одной или более абонентских линий из векторной группы в контрольной точке U-О (например, контрольной точке U-O2) и контрольной точке U-R (например, контрольной точке U-R2). В частности, СЕ может отрегулировать или откорректировать промежуток времени перед с использованием позиций символов данных восходящего потока для обучения. Первоначально, во время начальной стадии фазы Channel Discovery, СЕ может оценить начальное значение промежутка времени между приемом (например, передачей нисходящего потока) и передачей (например, передачей восходящего потока) символов с помощью xTU-R. Начальное значение промежутка времени можно использовать для согласования передачи с помощью xTU-R (например, передача восходящего потока) для соединительной линии с активными линиями. СЕ может затем отрегулировать или откорректировать промежуток времени для абонентской линии во время начальной стадии фазы Channel Discovery. xTU-O может передать скорректированный промежуток времени в xTU-R для того, чтобы xTU-R отрегулировала выравнивание символа восходящего потока на основании скорректированного промежутка времени перед передачей сигналов данных восходящего потока в пределах позиций символов данных.
На всем протяжении раскрытия термин "линия инициализации" относится к абонентской линии, которая находится в состоянии выполнения процедуры инициализации, в то время как "активная линия" относится к абонентской линии, которая находится уже в состоянии представления. "Активная линия" может также взаимозаменяемо упоминаться как "векторная линия" для обозначения абонентской линии, которая находится в состоянии представления и принадлежит векторной группе. Термины "промежуток времени" и "коррекция промежутка времени" могут также быть взаимозаменяемыми на всем протяжении раскрытия с терминами "опережение временной синхронизации" и "коррекция опережения временной синхронизации", соответственно, поэтому термины "промежуток времени" и "коррекция промежутка времени" можно использовать для TDD, основанной на системах DSL, и термины "опережение временной синхронизации" и "коррекция опережения временной синхронизации" можно использовать для FDD, основанной на системах DSL. Дополнительно, для настоящего раскрытия термин "позиции символов данных" во время процедуры инициализации относятся к позициям символов, а не к позиции символа синхронизации в пределах кадра TDD или FDD.
На фиг. 1 показана схема варианта осуществления системы 100 xDSL, где могут работать варианты осуществления настоящего раскрытия. Система 100 xDSL может быть системой ADSL2, ADSL2+, VDSL, VDSL2 и/или G.fast DSL. Система 100 xDSL может быть сконфигурирована для выполнения DMT, множественный доступ с ортогональным частотным разделением (OFDMA) и/или другие способы цифровой модуляции. В одном варианте осуществления система 100 xDSL может быть сконфигурирована для выполнения дуплексной передачи с использованием TDD (например, системы G.fast DSL). В другом варианте осуществления система 100 xDSL может быть сконфигурирована для выполнения дуплексной передачи с использованием FDD (например, система VDSL2). В целях удобства, на всем протяжении настоящего раскрытия сигналы данных, которые передаются из xTU-O 1-N 104 в xTU-R 1-N 112, будут упоминаться как передача нисходящего потока, и данные, принимаемые в xTU-O 1-N 104 и передаваемые из xTU-R 1-N 112, будут упоминаться как передача восходящего потока.
Система 100 xDSL может содержать DPU 118 и множество СРЕ 1-N 122. DPU 118 может устанавливать соединение с СРЕ 1-N 122 через множество абонентских линий 120. Абонентские линии 120 можно формировать пути передачи между DPU 118 и СРЕ 1-N 122. Абонентские линии 120 можно изготавливать из любого подходящего материала, такого как медный провод. На фиг. 1 также показана контрольная точка U-О и контрольная точка U-R. Контрольная точка U-О может относиться к стороне оператора абонентских линий 120 (например, к проводной паре), а контрольная точка U-R может относиться к удаленной стороне абонентских линий 120. В одном варианте осуществления контрольные точки U-O2 и U-R2 могут располагаться в одинаковом местоположении, как и контрольные точки U-О и U-R. Например, фильтры высоких частот, которые обычно находятся в разделителях, можно выполнить как единое целое в пределах xTU-O 104 и xTU-R 112, поэтому контрольные точки U-O2 и U-R2 относятся к тем же самым местоположениям, как и контрольные точки U-О и U-R, соответственно.
DPU 118 может содержать интерфейс 110 физической (PHY) передачи (Тх)/приема (Rx), модуль 108 уровня 2+, СЕ 106, объект 102 управления (ME) и одну или более xTU-O 1-N 104. Каждое из СРЕ 1-N 122 может содержать xTU-R 112, модуль 114 уровня 2+ и PHY-интерфейс 116 Tx/Rx. Каждый из PHY-интерфейсов 110 и 116 Tx/Rx может содержать множество портов и множество приемопередатчиков которые передают и/или принимают сигналы данных в электрической области и/или в оптической области. Модули 108 и 114 уровня 2+ могут быть компонентами, выполненными с возможностью обработки поступающих данных, абстрактно рассматриваемых на уровне 2 взаимодействия открытых систем (OSI) или выше. ME 102 может представлять собой один или более сетевых компонентов и/или устройств, которые обеспечивают информационную поддержку сети для использования ресурсов и отображают компоненты внутри DPU 118. Например, ME 102 можно выполнить с возможностью передачи информации управления в каждый xTU-OS 1-n 104.
СЕ 106 может представлять собой один или более сетевых компонентов и/или устройств, которые выполняют функции управления и передачи рабочего состояния DPU 118, такие как идентификация того, в какую абонентскую линию 120 маршрутизировать сигналы данных, и получение текущей нагрузки трафика для каждой абонентской линии 120. В одном варианте осуществления СЕ 106 может содержать объект управления временной синхронизацией (ТСЕ), VCE и/или динамическое выделение ресурсов (DRA), которое включает в себя объект управления электропитанием (РСЕ). ТСЕ можно выполнить с возможностью координации передачи и приема с синхронным дуплексом с временным разделением (STDD) по всей векторной группе. VCE можно выполнить с возможностью координации подавления перекрестных помех во всей векторной группе. DRA можно сконфигурировать для координации возможностей передачи нисходящего потока и передачи восходящего потока во всей векторной группе. Например, DRA может содержать РСЕ, который позволяет отслеживать потребляемую мощность для пользователей и ограничивать выделение возможностей передачи для каждой абонентской линии в обоих направлениях нисходящего и восходящего потоков. ТСЕ, VCE, DRA и РСЕ обсуждены более подробно в документе ITU-T, Study Group 15, Temporary Document 159 Rev. 2 (PLEN/15), озаглавленном "Draft Recommendation ITU-T G.9701 (for AAP, 16 January 2014)," January 2014, который включен сюда путем ссылки, как если бы он был приведен здесь во всей своей полноте. В другом варианте осуществления СЕ 106 может содержать VCE и не может содержать ТСЕ при осуществлении FDD. VCE можно выполнить с возможностью координации подавления перекрестных помех во всей векторной группе, как описано в ITU-T G.993.5.
На фиг. 2 показана схема варианта осуществления кадра TDD 200, используемого во время инициализации и состояния представления для абонентской линии. Для нисходящего направления на фиг. 2 показано, что TDD-кадр TF1 200 может начаться с помощью FTU-O, передавая символы 202 Тх нисходящего потока в FTU-R. Затем, FTU-0 может принять часть символов 204 Rx восходящего потока TDD-кадра TF1 200 после задержки распространения Tpd передачи символов 208 Тх восходящего потока с помощью восходящего потока FTU-R. Промежуток времени Tg2 существует в промежутке между концом символов 202 Тх нисходящего потока и началом символов 204 Rx восходящего потока в пределах TDD-кадра TF1 200. Другой промежуток времени Tg1 существует между концом символов 204 Rx восходящего потока и началом других символов 202 Тх нисходящего потока, расположенных в пределах следующего TF2 200 кадра TDD. Значения промежутка времени Tg1 и промежутка времени Tg2 относятся к промежуткам времени в контрольной точке U-О (например, интерфейс U-О) FTU-O.
Для восходящего направления на фиг. 2 показано, что для TDD-кадра TF1 200 FTU-R начинает принимать символы 206 Rx нисходящего потока после задержки распространения Tpd FTU-O-передачи символов 202 Тх нисходящего потока. Символы 206 Rx нисходящего потока соответствуют символам 202 Тх нисходящего потока для TDD-кадра TF1 200. Прием символов 206 Rx нисходящего потока следует за FTU-R-передачей символов 208 Тх восходящего потока для TDD-кадра TF1 200 в FTU-O. А промежуток времени Tg1' может существовать между концом символов 206 Rx нисходящего потока и началом символов 208 Тх восходящего потока. Другой промежуток времени Tg2' может существовать между концом символов 208 Тх восходящего потока и началом других символов 206 Rx нисходящего потока для следующего кадра TF2 200 TDD. Значения промежутков времени Tg1' и Tg2' могут относиться к промежуткам времени в U-R-контрольной точке FTU-R.
В системах G.fast DSL из-за поднесущих высокой частоты существенные перекрестные помехи могут существовать между абонентскими линиями, особенно FEXT. Без регулировки или коррекции начального значения промежутка Tg1' времени выравнивание символа восходящего потока может представлять собой грубую оценку в начале передачи сигналов в пределах позиций символов данных кадра TDD. В этом сценарии передача символов данных без точного выравнивания символов восходящего потока (например, грубого выравнивания символов восходящего потока) может влиять на передачу данных активных линий из-за перекрестных помех. Кроме того, без обновления выравнивания символов восходящего потока на начальных стадиях фазы Channel Discovery, уточнение выравнивания и обновление коэффициентов векторизации восходящего потока на основании уточнения выравнивания в дальнейшем может потребовать их повторного вычисления. Вычисление и обновление значения промежутка времени Tg1' для выравнивания символа восходящего потока перед передачей сигналов в пределах позиций символов данных кадра TDD будет обсуждено более подробно ниже.
На фиг. 3 показана хронологическая таблица варианта осуществления фазы 300 Channel Discovery в пределах процедуры инициализации для системы G.fast DSL. Перед фазой 300 Channel Discovery процедура инициализации для линий инициализации в фазу G.994.1 Handshake Phase (подтверждения установления связи) между FTU-O и FTU-R. FTU-R может изначально отправлять запрос на соединение с использованием сигналов установления связи G.994.1. Во время фазы G.994.1 Handshake Phase FTU-O и FTU-R могут обменяться списком возможностей, таких как возможности векторизации, и прийти к соглашению относительно общего режима обучения и работы. Дополнительные подробности фазы G.994.1 Handshake Phase обсуждены более подробно в документе ITU-Т, G.994.1, озаглавленном "Handshake Procedures for Digital Subscriber Line Transceivers", June 2012, который включен сюда путем ссылки, как если бы он был приведен здесь во всей своей полноте. После успешного завершения фазы G.994.1 Handshake Phase процедура инициализации может продолжиться на фазе 300 Channel Discovery и затем на фазе обмена и анализа канала. Фаза обмена и анализа канала обсуждена более подробно в документе ITU-T Temporary Document 159 Rev. 2 (PLEN/15).
На фиг. 3 фаза 300 Channel Discovery разделена на множество стадий, которые соответствуют обоим направлениям нисходящего и восходящего потоков. Направление нисходящего потока соответствует передаче нисходящего потока с помощью FTU-O, тогда как направление восходящего потока относится к передаче восходящего потока с помощью FTU-R. Для линий инициализации, которые завершают фазу G.994.1 Handshake Phase, FTU-O и FTU-R могут переходить на стадию 302 O-QUIET и стадию 304 R-QUIET, соответственно. Хотя на стадии 302 O-QUIET FTU-0 может контролировать статус линий инициализации для определения того, становятся ли линии инициализации элементом группы соединения (например, соединительными линиями) или группы ожидания. Если FTU-O определяет, что линия инициализации находится в группе соединения, то линия инициализации продолжает свою работу на стадии 306 O-VECTOR 1. На стадии 306 О-VECTOR 1 активные линии могут производить оценку каналов с перекрестными помехами нисходящего потока (например, FEXT) из соединительных линий в активные линии.
После завершения стадии 306 О-VECTOR 1, FTU-O переходит на стадию 308 CHANNEL DISCOVERY 1. Во время стадии 308 CHANNEL DISCOVERY 1, FTU-O передает сообщения O-SIGNATURE и сообщения O-TG-UPDATE для выравнивания символов восходящего потока. Чтобы выполнить выравнивание символа восходящего потока, FTU-R переходит на стадию 310 R-VECTOR 1 после приема сообщения О-SIGNATURE из FTU-O. Во время стадии 310 R-VECTOR 1 FTU-R может передать символы синхронизации восходящего потока на основании значений промежутков времени, принятых в сообщении O-SIGNATURE и O-TG-UPDATE. FTU-R не может передавать сигналы восходящего потока, расположенные в пределах позиций символов данных кадра TDD во время стадии 310 R-VECTOR 1. Сообщение O-SIGNATURE может обеспечить начальные значения промежутка времени, и сообщение O-TG-UPDATE может обеспечить отрегулированные или скорректированные значения промежутка времени. После выравнивания передачи символа восходящего потока с использованием O-TG-UPDATE, активные линии могут производить оценку каналов с перекрестными помехами восходящего потока от соединительных линий, и соединительные линии могут производить оценку прямого канала и каналов с перекрестными помехами как от активных линий, так и от других соединительных линий.
На стадии 312 O-SYNCHRO FTU-O может отправить сигнал O-P-SYNCHRO, чтобы показать окончание стадии 308 CHANNEL DISCOVERY 1. Стадия 310 R-VECTOR 1 может закончиться после того, как FTU-R примет сигнал О-Р-SYNCHRO. Аналогично стадии 312 O-SYNCHRO сигнал О-P-SYNCHRO может быть передан FTU-O на стадиях 318, 324 и 330 O-SYNCHRO, чтобы показать окончание стадии 314 CHANNEL DISCOVERY 2, стадии 320 VECTOR 2 и стадии 326 PARAMETER UPDATE, соответственно. FTU-R может закончить стадию 316 CHANNEL DISCOVERY 2, стадию 322 VECTOR 2 и стадию 328 PARAMETER UPDATE после приема сигнала O-P-SYNCHRO на стадиях 318, 324 и 330 O-SYNCHRO, соответственно.
FTU-O и FTU-R могут затем перейти на стадию 314 CHANNEL DISCOVERY 2 и стадию 316 CHANNEL DISCOVERY 2, соответственно. На стадии 316 CHANNEL DISCOVERY 2 FTU-R может начать передавать сигналы восходящего потока, расположенные в пределах позиций символов данных кадра TDD. Например, FTU-R может передать удаленное сообщение 1 (R-MSG 1) в FTU-O. FTU-O, находясь на стадии 314 CHANNEL DISCOVERY 2, может передать сообщение О-UPDATE, которое подтверждает прием R-MSG 1. Сообщение О-UPDATE может также содержать обновленное значение промежутка времени. FTU-R может принять сообщение О-UPDATE и использовать обновленное значение промежутка времени для дальнейшего выравнивания передачи символа восходящего потока.
Остальные стадии для фазы 300 Channel Discovery, которые включают в себя стадию 320 VECTOR 2, стадию 322 VECTOR 2, стадию 326 PARAMETER UPDATE и стадию 328 PARAMETER UPDATE обсуждены более подробно в документе ITU-T Temporary Document 159 Rev. 2 (PLEN/15). На стадии 320 VECTOR 2 СЕ (например, VCE) может выполнить оценку нисходящего канала относительно перекрестных помех из активных линии в соединительные линии и между соединительными линиями. VCE может также вычислить и обновить множество параметров, таких как коэффициенты предкодера и спектральная плотность мощности (PSD). VTU-R в пределах стадии 322 VECTOR 2 может передать сообщение обратной связи об ошибке и выполнить оценку ошибки нисходящего потока для того, чтобы обновить параметры и выполнить оценку нисходящего канала. Во время стадии 326 PARAMETER UPDATE и стадии 328 PARAMETER UPDATE FTU-O может обмениваться с FTU-R обновленными параметрами передачи, такими как PSD и поднесущие. СЕ (например, VCE) может вычислить коэффициенты усиления как для активных линий, так и для соединительных линий, чтобы выполнить оптимизацию спектра нисходящего потока. В конце стадии 326 PARAMETER UPDATE и стадии 328 PARAMETER UPDATE, PSD и параметры передачи обновляются и устанавливаются для FTU-O и FTU-R.
На фиг. 4 показана хронологическая таблица варианта осуществления начальной стадии фазы 400 Channel Discovery для системы G.fast DSL. На начальной стадии фазы 400 Channel Discovery, FTU-O и FTU-R могут обмениваться как сигналами установления связи G.994.1, так и специальными сообщениями канала операций (SOC). Канал SOC можно установить между FTU-O и FTU-R во время инициализации. Во время по меньшей мере некоторой части стадии 308 канала Discovery на фиг. 3, канал SOC может находиться активном состоянии таким образом, чтобы FTU-O могла передавать сообщения SOC, которые разделены на один или более флагов высокоуровневого управления каналом передачи данных (HDLC) в FTU-R. Формат сообщения SOC описан во временном документе ITU-T 159 Rev. 2 (PLEN/15).
Начальная стадия фазы 400 Channel Discovery может начаться после перехода FTU-О на стадию 402 O-QUIET 1 и перехода FTU-R на стадию 404 R-QUIET 1. Во время стадии 402 O-QUIET 1, FTU-O не может передавать какие-либо сигналы данных, и FTU-R не может передавать какие-либо сигналы данных во время стадии 404 R-QUIET 1. Например, во время стадии 402 O-QUIET 1 FTU-O может выработать сигнал O-P-QUIET 1, который обеспечивает приблизительно нулевое выходное напряжение в контрольной точке U-О. Кроме того, FTU-R может выработать сигнал R-P-QUIET 1 во время стадии R-QUIET 1 404, который обеспечивает приблизительно нулевое выходное напряжение в контрольной точке U-R.
FTU-O может в дальнейшем перейти на стадию 406 О-VECTOR 1 для передачи сигнала О-Р-VECTOR 1 по соединительной линии. Сигнал O-P-VECTOR 1 может содержать символы синхронизации нисходящего потока с ненулевым питанием по соединительной линии. В одном варианте осуществления сигнал О-Р-VECTOR 1 может также содержать символы без помех, которые транспортируются во всех позициях символов данных нисходящего потока. На стадии 406 O-VECTOR 1 активные линии могут произвести оценку каналов с перекрестными помехами нисходящего потока из соединительных линий в активные линии. В частности, СЕ (например, VCE) может вычислить коэффициенты предкодера нисходящего потока для активных линий для подавления перекрестных помех от соединительных линий. FTU-O можно выполнить с возможностью определения продолжительности стадии 406 О-VECTOR 1. FTU-R поддерживает стадию 404 R-QUIET 1 и не передает какие-либо сигналы данных в FTU-O (например, передачу восходящего потока), в то время как FTU-O находится на стадии 406 О- VECTOR 1.
После стадии 406 О-VECTOR 1 FTU-O переходит на стадию 410 O-Channel Discovery 1-1. Во время стадии 410 O-Channel Discovery 1-1 FTU-O может продолжить передавать символы синхронизации, модулированные последовательностями зондирования с использованием сигнала O-P-Channel Discovery 1-1. На стадии 410 О-Channel Discovery 1-1 канал SOC может находиться в активном состоянии для передачи сообщений 408 O-IDLE. Сообщения SOC, такие как сообщение 408 O-IDLE, могут передаваться во всех первых М позициях символов данных нисходящего потока, где М -целое число. Например, сигнал SOC может передаваться, начиная с позиции символа данных нисходящего потока с индексом 0 - индексом 2 (например, М=3) из каждого кадра TDD. Кроме того, FTU-R, которая находится на стадии 404 R-QUIET 1, может получить таймирование цикла, включающее в себя восстановление тактового сигнала и символа и выравнивание границ кадра TDD. Сообщение 408 O-IDLE можно принять с помощью FTU-R и использовать для облегчения условий восстановления таймирования. FTU-O может перейти на стадию 412 O-SYNCHRO 1-1 для передачи сигнала О-Р-SYNCHRO в FTU-R, чтобы показать окончание стадии 410 O-Channel Discovery 1-1.
FTU-O может затем перейти на стадию 416 O-Channel Discovery 1 после завершения стадии 412 O-SYNCHRO 1-1. Во время стадии 416 O-Channel Discovery 1 FTU-O продолжает передавать символы синхронизации, модулированные последовательностью зондирования, а также передавать сигналы SOC во всех первых М символах данных нисходящего потока каждого кадра TDD. В одном примерном варианте осуществления канал SOC может передавать сообщения 414 O-IDLE во время восьми сверхкадров после передачи сообщений 418 O-SIGNATURE.
Сообщение 418 O-SIGNATURE может содержать набор параметров, используемых для операции FTU-R, таких как параметры модуляции, последовательности зондирования и начальная маска PSD. В одном варианте осуществления сообщение 418 O-SIGNATURE может содержать начальное значение промежутка времени Tg1'. Промежуток времени Tg1' может представлять собой промежуток времени, применяемый между передачами нисходящего потока и восходящего потока. Другими словами, промежуток времени Tg1' может представлять собой смещение таймирования между принимаемыми и передаваемым символами FTU-R. Промежуток времени Tg1' можно использовать для выравнивания передачи восходящего потока соединительной линии с активными линиями. Начальное значение промежутка времени Tg1' можно вычислить во время стадии 416 О-Channel Discovery 1 на основании функции длины цикла. Например, начальное значение промежутка времени Tg1' может соответствовать максимальной ожидаемой длине цикла для конкретного DPU. Начальное значение промежутка времени Tg1' можно представить в качестве 16-разрядного целого числа без знака в пределах поля в сообщении 418 О-SIGNATURE. В другом варианте осуществления под начальным значением опережения таймирования можно подразумевать другую информацию в пределах сообщения 418 О-SIGNATURE. Промежуток времени Tg1' может обновляться с помощью FTU-O во время последних стадий инициализации.
Во время перекрытия стадии 404 R-QUIET 1 и стадии 416 O-Channel Discovery 1 FTU-R может синхронизировать свои тактовые импульсы с FTU-O для достижения таймирования символа и синхронизация кадра TDD. FTU-R может поддерживать подавление передачи (например, поддерживать приблизительно нулевое выходное напряжение) на стадии 404 R-QUIET 1 до успешного декодирования сообщение 418 О-SIGNATURE. После декодирования сообщения 418 O-SIGNATURE FTU-R может синхронизировать последовательности зондирования восходящего поток и нисходящего потока и применять установки параметров, таких как начальное значение промежутка времени Tg1', полученное из сообщения 418 O-SIGNATURE. FTU-R может затем перейти на стадию 420 R-VECTOR 1 после декодирования сообщения 418 O-SIGNATURE.
На стадии 420 R-VECTOR 1 FTU-R передает сигналы R-P-VECTOR 1, которые содержат символы синхронизации восходящего потока, модулированные последовательностью зондирования. Другими словами, во время стадия 420 R-VECTOR 1, FTU-R не передает сигналы данных, расположенные в пределах позиций символов данных кадра TDD. В одном варианте осуществления FTU-R может передавать только символы синхронизации восходящего потока в сигналов R-P-VECTOR 1. Как показано на фиг. 4, FTU-R не передает сообщение SOC через каналы SOC. В одном варианте осуществления FTU-R может передать символы без помех в каждой из позиций символов данных восходящего потока для сигналов R-P-VECTOR 1. Содержание FTU-R' последовательности зондирования, временные позиции и другие параметры передачи на стадии 420 R-VECTOR 1 могут соответствовать информации, принятой в сообщении 418 O-SIGNATURE. Например, при передаче символов синхронизации восходящего потока FTU-R может первоначально выровнять символы восходящего потока с использованием начальных значений промежутка времени Tg1'.
После того как FTU-0 обнаруживает сигнал R-P-VECTOR 1, FTU-O может остановить передачу сообщений 418 O-SIGNATURE и начать передачу сообщений 422 О-IDLE. Во время передачи сообщений 422 O-IDLE FTU-O можно выполнить с возможностью оценки коррекции начального значения промежутка времени Tg1' на оснований символов синхронизации восходящего потока в сигнале R-