Способ получения керамического шликера
Иллюстрации
Показать всеИзобретение относится к области приготовления керамического шликера, применяемого при производстве санитарно-керамических изделий методом шликерного литья. Предлагаемый способ получения керамического шликера, включает в себя мокрый помол в шаровой мельнице глинистых материалов, отощающих компонентов и плавней с введением комплексной добавки, содержащей триполифосфат натрия, гидроксид натрия и суперпластификатор на основе флороглюцина и фурфурола (СБ-ФФ). Приготовленный керамический шликер облучают аргоновой плазмой при силе тока 500 А и расходе аргона 1,30 м3/час. Технический результат изобретения заключается в получении керамического шликера с меньшей влажностью при сохранении его подвижности, что обеспечивает получение изделий с большей прочностью и плотностью. 1 пр., 3 табл.
Реферат
Изобретение относится к области приготовления керамического шликера, применяемого при производстве керамических изделий методом шликерного литья.
Из уровня техники известны способы получения керамического шликера.
Недостатками данных способов является недостаточная подвижность керамического шликера при уменьшении влажности и, как следствие, недостаточная прочность керамических изделий и низкое качество готовой продукции.
Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ получения шликера для литья керамических изделий (Патент РФ №2465244), включающий в себя мокрый помол в шаровой мельнице глинистых материалов, отощающих компонентов и плавней с введением комплексной добавки, содержащей триполифосфат натрия, гидроксид натрия и суперпластификатор на основе флороглюцина и фурфурола (СБ-ФФ).
Недостатком известного способа является недостаточная подвижность керамического шликера при уменьшении влажности и, как следствие, недостаточная прочность керамических изделий.
Задачей, на решение которой направлено изобретение, является повышение прочности керамических изделий.
Технический результат предлагаемого изобретения заключается в получении керамического шликера с меньшей влажностью при сохранении его подвижности.
Технический результат достигается тем, что предлагаемый способ получения керамического шликера, включающий в себя мокрый помол в шаровой мельнице глинистых материалов, отощающих компонентов и плавней с введением комплексной добавки, содержащей триполифосфат натрия, гидроксид натрия и суперпластификатор на основе флороглюцина и фурфурола (СБ-ФФ), кроме того, керамический шликер облучают аргоновой плазмой при силе тока 500 А и расходе аргона 1,30 м3/час.
Предложенный способ отличается от прототипа тем, что керамический шликер облучают аргоновой плазмой, активизируя частицы шликера, что повышает его подвижность при снижении влажности.
Пример
Для экспериментальной проверки был приготовлен керамической шликер, который используют для производства санитарно-керамических изделий. Его компонентами являются: глинистые материалы 53 мас. %; отощающие компоненты 32 мас. %; плавни 15 мас. %. В шликер вводили комплексную добавку, содержащую 0,016 мас. % СБ-ФФ, 0,024 мас. % гидроксида натрия и 0,06 мас. % триполифосфата натрия. После чего шликер готовили методом мокрого помола в шаровой мельнице. Приготовленный шликер пропускали через трубопровод, выполненный из кварцевой трубки диаметром 15 мм, и обучали аргоновой плазмой. Для облучения аргоновой плазмой применяли электродуговой плазмотрон УПУ-8М с плазменной горелкой ГН-5р, устанавливаемый на расстоянии 350 мм от кварцевого трубопровода, по которому поступал керамический шликер в емкость для готового материала. В качестве плазмообразующего газа использовали аргон. При прохождении через кварцевый трубопровод шликер облучался аргоновой плазмой. Оптимальные параметры облучения аргоновой плазмой представлены в таблице 1.
Как видно из таблицы 1, шликер, подверженный облучению факелом аргоновой плазмы, по сравнению со шликером-прототипом обладает большей подвижностью, что позволяет снизить его влажность при сохранении реологических параметров.
После облучения аргоновой плазмой керамического шликера исследовали его подвижность (влажность Wшл=32%), которую оценивали по времени истечения 100 мл шликера после выдерживания его в покое в течение 30 с (первая текучесть) и в течение 30 мин (вторая текучесть). Определяли также коэффициент тиксотропии (К). После чего из шликера отливали опытные образцы и обжигали при максимальной температуре обжига 1200°С. Реологические параметры керамического шликера представлены в таблице 2. Физико-химические свойства изделий после обжига показаны в таблице 3.
В ходе исследований установлено, что облучение аргоновой плазмой керамического шликера позволяет сократить его влажность с 32 до 27%. При этом увеличивается скорость набора массы в гипсовых формах при отливке изделий до 13 г/см2*мин, что положительно сказывается на показателях качества готовых изделий.
Увеличение плотности образцов, полученных из предлагаемого шликера, облученного аргоновой плазмой, по сравнению со шликером-прототипом (таблица 3) обусловлено более плотной упаковкой частиц, что является результатом увеличения содержания дисперсной фазы в шликере и благоприятно влияет на процесс спекания, в результате чего снижается пористость и увеличивается прочность готовых изделий, что значительно сокращает брак продукции на всех стадиях технологического процесса.
Из приведенного выше примера видно, что заявляемый способ позволяет получить керамический шликер с меньшей влажностью при сохранении его подвижности и повышении прочности керамических изделий и, как следствие, улучшении качества готовой продукции. Таким образом, заявляемый технический результат достигнут.
Способ получения керамического шликера, включающий в себя мокрый помол в шаровой мельнице глинистых материалов, отощающих компонентов и плавней с введением комплексной добавки, содержащей триполифосфат натрия, гидроксид натрия и суперпластификатор на основе флороглюцина и фурфурола (СБ-ФФ), отличающийся тем, что керамический шликер облучают аргоновой плазмой при силе тока 500 A и расходе аргона 1,30 м3/час.