Способ переработки углеводородного масла и установка для переработки углеводородного масла
Иллюстрации
Показать всеНастоящее изобретение относится к способу переработки углеводородного масла и к установке для его осуществления. Способ включает стадию получения крекированного углеводородного масла и водорода с помощью приведения воды и углеводородного масла, содержащего по меньшей мере одно соединение из числа диена и олефина, в контакт с катализатором крекинга при температуре 375-550°С для осуществления крекинга и стадию уменьшения содержания по меньшей мере одного соединения из числа диена и олефина путем приведения водорода и крекированного углеводородного масла, полученных на предыдущей стадии, в контакт с катализатором гидрогенизации при температуре 100-374°С для осуществления реакции гидрогенизации крекированного углеводородного масла. При этом реакцию гидрогенизации осуществляют таким образом, что если отношение содержания водорода, связанного с концевой двойной углерод-углеродной связью диена или олефина, к содержанию водорода в крекированном углеводородном масле после реакции гидрогенизации обозначается как А и отношение содержания водорода, связанного с внутренней двойной углерод-углеродной связью диена или олефина, к содержанию водорода в крекированном углеводородном масле после реакции гидрогенизации обозначается как В, то значение А/В находится в диапазоне от 0 до 0,5. Предлагаемые объекты позволяют снизить содержание олефинов или диенов в углеводородном масле. 2 н. и 14 з.п. ф-лы, 12 ил., 3 табл., 6 пр.
Реферат
Область техники
[0001]
Настоящее изобретение относится к способу уменьшения содержания олефина или диена в углеводородном масле.
Уровень техники
[0002]
Хотя ожидается, что спрос на сырую нефть в будущем будет расти в первую очередь в развивающихся странах, таких как Китай и Индия, добыча легкой сырой нефти, которая использовалась традиционно, приближается к максимуму, и, следовательно, повышается необходимость использования тяжелой сырой нефти или сверхтяжелой сырой нефти, которые во многом до сих пор не использовались. Среди сверхтяжелых сырых нефтей, в отношении битума канадских нефтеносных песков и венесуэльской битуминозной нефти Ориноко, экономичные способы их добычи уже установлены, и объемы их добычи увеличиваются.
[0003]
Плотность и вязкость такой сверхтяжелой сырой нефти очень высоки, и, следовательно, чтобы транспортировать ее от нефтяной скважины в добывающем регионе к нефтеперерабатывающему заводу в регионе-потребителе с помощью трубопровода или тому подобного необходима предварительная обработка, без которой сверхтяжелая сырая нефть не может транспортироваться. В связи с этим, на участке скважины выбирают следующие два способа: способ разбавления, в котором примешивают разбавитель для понижения вязкости; и способ облагораживания, в котором получают легкую синтетическую сырую нефть с помощью сооружения поблизости установки, называемой облагораживателем.
[0004]
Однако, способ разбавления имеет проблему, заключающуюся в том, что разбавитель, такой как конденсат, должен обеспечиваться в достаточной степени, или в том, что поскольку при добавлении разбавителя возрастает транспортируемый объем, - транспортные расходы повышаются. Кроме того, также в способе облагораживания проблема состоит в том, что поскольку на участке скважины необходима крупномасштабная установка, эквивалентная установке на нефтеперерабатывающем заводе, это экономически оправдано только вблизи крупного нефтяного месторождения, другая проблема заключается в необходимости удаления побочных продуктов, таких как кокс и сера, или иногда может возникать проблема обеспечения водорода, необходимого для облагораживания.
[0005]
В свете этих проблем авторы настоящего изобретения разработали способ получения синтетической сырой нефти, которая может транспортироваться по трубопроводу, не прибегая к разбавителю, с помощью облагораживания тяжелой сырой нефти или сверхтяжелой сырой нефти при использовании сверхкритической воды в соответствии с простой схемой на участке скважины. Однако, получаемая здесь синтетическая сырая нефть подвергается серии нагреваний, при этом углеводороды в нефти подвергаются крекингу или тому подобному, и, следовательно, образуются ненасыщенные углеводороды, что приводит к повышению концентрации олефина или диена. Если концентрация олефина или диена высока, стабильность нефти является низкой, и во время транспортировки происходит полимеризация или тому подобное, и, таким образом, существует риск появления такой проблемы, как осаждение полимеризованного продукта в трубопроводе или забивка трубопровода полимеризованным продуктом. Поэтому, например, в Канаде, концентрация олефинов в технических требованиях к трубопроводам ограничивается 1% или менее. Содержание такого олефина или диена может быть снижено с помощью реакции гидрогенизации, однако, для этого необходимо обеспечивать подачу водорода. В том случае, когда установки для получения водорода нет поблизости, например, на участке скважины, и трудно получить водород, обычно возникает необходимость сооружения установки для получения водорода, использующей природный газ или нафту в качестве сырья. Однако, сооружение такой установки для получения водорода приводит к увеличению затрат на строительство, и также имеет проблему, заключающуюся в том, что в некоторых регионах сложно получать природный газ или нафту для использования в качестве сырья, или тому подобное.
[0006]
С другой стороны, на нефтеперерабатывающем заводе, крекинговое масло, полученное на установке FCC или установке для коксования, имеет относительно высокую концентрацию олефинов, и такие олефины образуют осадок в транспортном трубопроводе или в резервуаре для рафината, и, следовательно, могут вызывать забивку или тому подобное. В связи с этим, иногда может быть необходимо удалять олефиновые компоненты в крекинговом масле, однако, при очистке гидрогенизацией в традиционном способе проблема заключается в том, что расходуются внутренние ресурсы водорода.
[0007]
В PTL 1 - PTL 3 описан способ превращения углеводородного масла в легкий нефтепродукт в отношении смеси углеводородного масла и воды, с помощью осуществления реакции крекинга углеводородного масла в присутствии катализатора или с помощью воды в сверхкритическом состоянии (сверхкритической воды), однако не описан способ, связанный с переработкой углеводородного масла, содержащего олефин или диен.
Перечень ссылок
Патентные документы
[0008]
[PTL 1]: выложенная японская патентная заявка № 2008-297466, пункт формулы изобретения 1, абзац [0017]
[PTL 2]: выложенная японская патентная заявка № 2009-242467, пункт формулы изобретения 1, абзац [0028]
[PTL 3]: выложенная японская патентная заявка № 2006-7151, пункт формулы изобретения 1, абзацы [0017], [0009] - [0010]
Сущность изобретения
Техническая задача
[0009]
Настоящее изобретение было разработано с учетом указанных выше обстоятельств, и задачей настоящего изобретения является создание способа переработки углеводородного масла и установки для переработки углеводородного масла, с помощью которых содержание диенов или олефинов в углеводородном масле может быть уменьшено даже в том случае, когда трудно получить водород.
Решение задачи
[0010]
Способ переработки углеводородного масла в соответствии с изобретением характеризуется тем, что включает в себя:
стадию получения крекированного углеводородного масла и водорода с помощью приведения воды и углеводородного масла, содержащего по меньшей мере одно соединение из числа диена и олефина, в контакт с катализатором крекинга при температуре 375-550°С для осуществления крекинга; и
стадии уменьшения содержания по меньшей мере одного соединения из числа диена и олефина путем приведения водорода и крекированного углеводородного масла в контакт с катализатором гидрогенизации при температуре 100-374°С для осуществления реакции гидрогенизации крекированного углеводородного масла.
[0011]
Способ переработки углеводородного масла может иметь следующие характеристики.
(1) Способ дополнительно включает в себя стадию выделения воды из смеси, содержащей крекированное углеводородное масло и воду, после контактирования с катализатором крекинга, и реакция гидрогенизации осуществляется для крекированного углеводородного масла после отделения воды.
(2) Углеводородное масло содержит облагороженную нефть, полученную с помощью облагораживания нефтяного сырья с использованием воды, и вода, используемая для получения водорода с помощью катализатора крекинга, является водой, отводимой вместе с облагороженной нефтью. Кроме того, углеводородное масло содержит облагороженную нефть, полученную с помощью приведения нефтяного сырья в контакт со сверхкритической водой. Далее, углеводородное масло содержит, по меньшей мере одну фракцию, полученную разделением обогащенной нефти на некоторое число фракций, имеющих различные диапазоны температур кипения, с помощью перегонки.
(3) Реакцию гидрогенизации осуществляют таким образом, что если отношение содержания водорода, связанного с концевой двойной углерод-углеродной связью диена или олефина, к содержанию водорода в крекированном углеводородном масле после реакции гидрогенизации обозначается как А и отношение содержания водорода, связанного с внутренней двойной углерод-углеродной связью диена или олефина, к содержанию водорода в крекированном углеводородном масле после реакции гидрогенизации обозначается как B, то значение A/В находится в диапазоне от 0 до 0,5.
(4) Катализатор крекинга является смешанным оксидом металла, который содержит:
(a) один элемент X, выбранный из элементов группы IVA;
(b) один элемент Y1, выбранный из группы, состоящей из элементов группы IIIA, элементов группы VIA, элементов группы VIIA, элементов группы IVA в 4-6 периодах и элементов группы VIII в 4 периоде (при условии, что элемент Y1 является элементом, отличным от элемента X); и
(c) один элемент Y2, выбранный из группы, состоящей из элементов группы IIIA, элементов группы VIA, элементов группы VIIA, элементов группы IVA в 4-6 периодах и элементов группы VIII в 4 периоде (при условии, что элемент Y2 является элементом, отличным от элемента X и элемента Y1); и в котором
(d) отношение содержания х элемента Х к сумме (y1+y2) содержания у1 элемента Y1 и содержания y2 элемента Y2 составляет 0,5 или более и 2,0 или менее, и
(e) отношение содержания y2 элемента Y2 к содержанию у1 элемента Y1 составляет 0,02 или более и 0,25 или менее.
Например, элемент Х является Zr, элемент Y1 является Се, и элемент Y2 является элементом, выбранным из группы элементов Y2, состоящей из W, Fe и Mn.
(5) Катализатор гидрогенизации выполнен таким образом, что металл, обладающий гидрогенизационной активностью, наносят на носитель, состоящий из оксида металла, который не включает в себя оксид алюминия или диоксид кремния. Например, катализатор гидрогенизации выполнен таким образом, что по меньшей мере один металл, выбранный из группы, состоящей из никеля, кобальта и молибдена, нанесен на носитель, содержащий диоксид циркония или диоксид титана анатазного типа.
[0012]
Далее, установка для переработки углеводородного масла в соответствии с изобретением характеризуется включением в себя:
реактора крекинга, который снабжается водой и углеводородным маслом, содержащим по меньшей мере одно соединение из числа диена и олефина, и загруженный катализатором крекинга, который производит крекированное углеводородное масло и водород из углеводородного масла и воды; и
реактора гидрогенизации, который снабжается водородом, полученным в реакторе крекинга, и крекированным углеводородным маслом, вытекающим из реактора крекинга, и загружен катализатором гидрогенизации, который снижает содержание по меньшей мере одного соединения из числа диена и олефина, давая возможность протекания реакции гидрогенизации крекированного углеводородного масла.
[0013]
Установка для переработки углеводородного масла может иметь следующие характеристики.
(6) Установка дополнительно включает в себя резервуар сепарации масла и воды, в котором вода выделяется из смеси, содержащей воду и крекированное углеводородное масло, вытекающей из реактора крекинга, и крекированное углеводородное масло после отделения воды в сепараторе масла и воды подается в реактор гидрогенизации.
(7) Углеводородное масло содержит облагороженную нефть, полученную из установки облагораживания, которая облагораживает нефтяное сырье при использовании воды, и вода, служащая для получения водорода с помощью катализатора крекинга, является водой, отводимой вместе с облагороженной нефтью. Кроме того, углеводородное масло содержит облагороженную нефть, полученную из установки облагораживания со сверхкритической водой, которая облагораживает нефтяное сырье с помощью приведения нефтяного сырья в контакт со сверхкритической водой. Далее, углеводородное масло содержит, по меньшей мере одну фракцию, полученную из перегонной установки, которая разделяет обогащенную нефть на некоторое число фракций, имеющих различные диапазоны температур кипения, с помощью перегонки.
(8) Реакцию гидрогенизации осуществляют таким образом, что если отношение содержания водорода, связанного с концевой двойной углерод-углеродной связью диена или олефина, к содержанию водорода в крекированном углеводородном масле после реакции гидрогенизации обозначается как А и отношение содержания водорода, связанного с внутренней двойной углерод-углеродной связью диена или олефина, к содержанию водорода в крекированном углеводородном масле после реакции гидрогенизации обозначается как B, то значение A/В находится в диапазоне от 0 до 0,5.
(9) Катализатор крекинга является смешанным оксидом металла, который содержит:
(a) один элемент X, выбранный из элементов группы IVA;
(b) один элемент Y1, выбранный из группы, состоящей из элементов группы IIIA, элементов группы VIA, элементов группы VIIA, элементов группы IVA в 4-6 периодах и элементов группы VIII в 4 периоде (при условии, что элемент Y1 является элементом, отличным от элемента X); и
(c) один элемент Y2, выбранный из группы, состоящей из элементов группы IIIA, элементов группы VIA, элементов группы VIIA, элементов группы IVA в 4-6 периодах и элементов группы VIII в 4 периоде (при условии, что элемент Y2 является элементом, отличным от элемента X и элемента Y1); и в котором
(d) отношение содержания х элемента Х к сумме (y1+y2) содержания у1 элемента Y1 и содержания y2 элемента Y2 составляет 0,5 или более и 2,0 или менее, и
(e) отношение содержания y2 элемента Y2 к содержанию у1 элемента Y1 составляет 0,02 или более и 0,25 или менее.
(10) Катализатор гидрогенизации выполнен таким образом, что металл, обладающий гидрогенизационной активностью, наносят на носитель, состоящий из оксида металла, который не включает в себя оксид алюминия или диоксид кремния.
Полезные эффекты изобретения
[0014]
В соответствии с изобретением с помощью использования водорода, полученного в результате приведения воды и углеводородного масла, содержащего диен или олефин, в контакт с катализатором крекинга, осуществляется реакция гидрогенизации крекированного углеводородного масла, полученного вместе с этим водородом, и, следовательно, даже в ситуации, когда трудно получить водород, может быть получено крекированное углеводородное масло с пониженным содержанием диена или олефина. Кроме того, количество получаемого водорода может быть скорректировано в соответствии с содержанием диена или олефина в перерабатываемом углеводородном масле.
Краткое описание чертежей
[0015]
[Фиг. 1] На Фиг. 1 представлено пояснительное изображение, показывающее схему способа, предлагаемого в изобретении.
[Фиг. 2] На Фиг. 2 приводится схема технологического процесса, иллюстрирующая первый пример конфигурации перерабатывающей установки согласно варианту осуществления изобретения.
[Фиг. 3] На Фиг. 3 приводится схема технологического процесса, иллюстрирующая второй пример конфигурации перерабатывающей установки.
[Фиг. 4] На Фиг. 4 приводится схема технологического процесса, иллюстрирующая третий пример конфигурации перерабатывающей установки.
[Фиг. 5] На Фиг. 5 представлена схема технологического процесса, иллюстрирующая пример, в котором установка переработки объединена с установкой облагораживания со сверхкритической водой.
[Фиг. 6] На Фиг. 6 представлено первое пояснительное изображение, иллюстрирующее результаты примера.
[Фиг. 7] На Фиг. 7 представлено второе пояснительное изображение, иллюстрирующее результаты примера.
[Фиг. 8] На Фиг. 8 представлено третье пояснительное изображение, иллюстрирующее результаты примера.
[Фиг. 9] На Фиг. 9 представлено четвертое пояснительное изображение, иллюстрирующее результаты примера.
[Фиг. 10] На Фиг. 10 представлено пятое пояснительное изображение, иллюстрирующее результаты примера.
[Фиг. 11] На Фиг. 11 представлено шестое пояснительное изображение, иллюстрирующее результаты примера.
[Фиг. 12] На Фиг. 12 представлено седьмое пояснительное изображение, иллюстрирующее результаты примера.
Описание вариантов осуществления
[0016]
Углеводородное масло
Вариант осуществления изобретения применяется для углеводородного масла, содержащего по меньшей мере одно соединение из олефина, имеющего двойную углерод-углеродную связь (в дальнейшем в этом документе просто называется двойной связью) и диена, имеющего две двойные связи в молекулярной структуре углеводорода. Углеводород может быть углеводородом с открытой цепью, нафтеновым углеводородом или ароматическим углеводородом. В случае углеводорода с открытой цепью, углеводород может иметь двойную связь в основной углеродной цепи или может иметь двойную связь в боковой цепи. В случае нафтенового углеводорода или ароматического углеводорода двойная связь в боковой цепи, связанной с нафтеновым кольцом, ароматическим кольцом или их конденсированным кольцом, является мишенью для переработки. В таком углеводороде могут содержаться, например, атомы кислорода, азота или серы. В связи с этим, в изобретении, фокусируя внимания на углеводороде, содержащем одну или две двойные связи и имеющем относительно низкую молекулярную массу, предполагается понижать число двойных связей. Однако, само собой разумеется, что содержание двойных связей в углеводороде, содержащем три или более двойных связей, может быть уменьшено в ходе применения данной переработки.
[0017]
Олефин или диен содержится в углеводородном масле, подвергающемся серии нагреваний, и эта серия нагреваний применяется при осуществлении переработки в способе или подобном превращении нефтяного сырья в легкий нефтепродукт с помощью удаления или крекинга тяжелого нефтяного компонента. Примеры способа, связанного с серией нагреваний, включают коксование, FCC (флюид-каталитический крекинг), Eureka (зарегистрированный товарный знак), в котором термический крекинг нефтяного сырья осуществляется в присутствии пара (воды), CPJ, акваконверсию и обработку сверхкритической водой, в которой легкий нефтяной компонент, полученный с помощью приведения нагретого нефтяного сырья в контакт со сверхкритической водой для осуществления термического крекинга, извлекается в сверхкритическую воду.
[0018]
Примеры нефтяного сырья для переработки таким способом включают тяжелые сырые нефти ближневосточных стран, тяжелые масла, такие как остаток атмосферной перегонки и остаток вакуумной перегонки тяжелой сырой нефти, и сверхтяжелые сырые нефти, такие как битум канадских нефтеносных песков и венесуэльская битуминозная нефть Ориноко. Здесь углеводородное масло, полученное при обработке нефтяного сырья с помощью процесса облагораживания, такого как обработка сверхкритической водой, называется облагороженной нефтью.
[0019]
Известно, что в облагороженной нефти, например, фракция, имеющая температуру перегонки 60-220°С, имеет относительно высокое содержание олефина или диена. Содержание такого олефина или диена может быть уменьшено с помощью реакции гидрогенизации, в которой расщепляется углерод-углеродная связь, однако, как описано в уровне техники, часто трудно получить дешевый водород в процессе обогащения, предусмотренном на участке скважины или тому подобное.
В связи с этим, авторы настоящего изобретения разработали способ, в котором водород образуется с помощью каталитической реакции облагороженной нефти при использовании воды, которая может быть легко получена даже на участке скважины или тому подобное, и содержание олефина или диена в облагороженной нефти снижается с помощью реакции гидрогенизации при использовании образованного водорода.
[0020]
Схема способа
На Фиг. 1 (a) и (b) показана принципиальная технологическая схема способа в соответствии с вариантом осуществления. В соответствии с этими иллюстрациями, вода и облагороженная нефть, содержащая олефин или диен, вытекающие из процесса 3 облагораживания, подаются в реактор 1 крекинга и приводятся в контакт с катализатором крекинга, в результате чего образуются крекированное углеводородное масло и водород (стадия крекинга). Эти крекированное углеводородное масло и водород подаются в реактор 2 гидрогенизации и приводятся в контакт с катализатором гидрогенизации для осуществления реакции гидрогенизации, в результате которой снижается содержание олефина или диена (стадия гидрогенизации). Крекированное углеводородное масло, имеющее низкое содержание олефина или диена, полученное из реактора 2 гидрогенизации, может использоваться в качестве сырьевого материала синтетической сырой нефти или тому подобного.
Реактор 1 крекинга загружен катализатором крекинга, и реактор 2 гидрогенизации загружен катализатором гидрогенизации, однако, способ приведения облагороженной нефти или крекированного углеводородного масла в контакт с каждым катализатором не ограничивается случаем, в котором такая текучая среда проходит через неподвижный слой, и может применяться благоприятный способ, такой как использование установки с псевдоожиженным слоем или установки с кипящем слоем.
[0021]
Здесь, как показано на Фиг. 1 (а), в процессе 3 облагораживания (например, в описанном выше процессе CPJ, Eureka, акваконверсии, обработке сверхкритической водой и т.п.), в котором воду используют при осуществлении обработки, вода, подаваемая в процесс 3 облагораживания для обработки облагораживанием, и далее отводящаяся из процесса 3 облагораживания вместе с облагороженной нефтью, может использоваться в качестве воды для образования водорода. С другой стороны, в случае процесса 3 облагораживания, в котором вода не используется (например, описанное выше коксование, FCC, или тому подобное), вода подается в реактор 1 крекинга отдельно от облагороженной нефти из процесса 3 облагораживания (Фиг. 1(b)).
[0022]
Стадия крекинга
(Реакция)
На стадии крекинга облагороженная нефть и вода приводятся в контакт с катализатором крекинга для крекинга облагороженной нефти и воды, в результате чего получают крекированное углеводородное масло и водород. Что касается реакции крекинга обогащенного масла и воды, например, в то время как облагороженная нефть крекируется при использовании кислорода в решетке оксида, содержащегося в катализаторе крекинга, вода расщепляется с помощью включения катализатора расщепления воды в катализатор крекинга, и дефект решетки компенсируется кислородом. С помощью данного расщепления воды образуется водород, и эти крекированный углеводород и водород подаются на стадию гидрогенизации.
[0023]
(Катализатор крекинга)
В качестве катализатора крекинга для обеспечения возможности протекания описанной выше реакции, например, может использоваться смешанный оксид металла, который представляет собой оксид, полученный путем объединения двух или более оксидов металлов. В частности, в качестве катализатора крекинга может использоваться смешанный оксид металла, содержащий указанные элементы X, Y1 и Y2. Кристаллическая структура смешанного оксида металла, используемого в качестве катализатора крекинга, может быть оценена с помощью, например, рентгеноструктурного анализа.
[0024]
Примером смешанного оксида металла, содержащего указанный элемент X, указанный элемент Y1 и указанный элемент Y2, может служить смешанный оксид металла, содержащий три следующих элемента металлов:
(a) один элемент X, выбранный из элементов группы IVA;
(b) один элемент Y1, выбранный из группы, состоящей из элементов группы IIIA, элементов группы VIA, элементов группы VIIA, элементов группы IVA в 4-6 периодах и элементов группы VIII в 4 периоде (при условии, что элемент Y1 является элементом, отличным от элемента X); и
(c) один элемент Y2, выбранный из группы, состоящей из элементов группы IIIA, элементов группы VIA, элементов группы VIIA, элементов группы IVA в 4-6 периодах и элементов группы VIII в 4 периоде (при условии, что элемент Y2 является элементом, отличным от элемента X и элемента Y1) в указанном отношении.
[0025]
Здесь, в качестве примера «указанного отношения», например, отношения (молярного отношения) содержаний соответствующих элементов X, Y1 и Y2 в катализаторе, определяемых способом плавления/ICP-AES, может служить следующее:
(d) отношение содержания х элемента Х к сумме (y1+y2) содержания у1 элемента Y1 и содержания y2 элемента Y2 составляет 0,5 или более и 2,0 или менее (0,5≤х/(у1+у2)≤2,0), и
(e) отношение содержания y2 элемента Y2 к содержанию у1 элемента Y1 составляет 0,02 или более и 0,25 или менее (0,02≤y2/y1≤0,25).
[0026]
Смешанный оксид металла для использования в качестве катализатора крекинга не ограничивается конкретными элементами до тех пор, пока он отвечает описанным выше требованиям, однако конкретные примеры элемента X, элемента Y1 и элемента Y2 включают Ti, Zr, Ce, W, Mn и Fe. Кроме того, примером смешанного оксида металла, в котором эти элементы используются в качестве элемента Х, элемента Y1 и элемента Y2, может служить смешанный оксид металла, содержащий Zr в качестве элемента Х, Се в качестве элемента Y1, и W, Fe или Mn в качестве элемента Y2. В данном примере оксид элемента Y2 крекирует облагороженную нефть, и оксид элемента Х расщепляет воду, и оксид элемента Y1 подавляет деградацию катализатора.
[0027]
В смешанном оксиде металла, содержащем элемент X, элемент Y1 и элемент Y2, особенно предпочтительно, чтобы элемент X являлся цирконием (Zr). Это связано с тем, что, если Zr используется в качестве элемента Х, даже в том случае, когда катализатор используется в условиях высокой температуры и высокого давления, структура смешанного оксида металла может сохраняться. То есть, в случае использования смешанного оксида металла (катализатор крекинга), содержащего Zr в качестве элемента Х, следующая проблема не возникает: кристаллическая структура катализатора в значительной степени изменяется под действием пара высокой температуры и высокого давления, так что катализатор не может использоваться, как в случае катализатора гидрогенизации, содержащего гидротермально синтезированный цеолит, диоксид кремния, или γ-оксид алюминия, используемых для гидрокрекинга углеводородного масла. Кроме того, деградации катализатора почти не происходит, и также нет необходимости осуществлять предварительную обработку (десульфуризацию или деазотирование) углеводородного масла. В связи с этим, с точки зрения того, что структура смешанного оксида металла надежно сохраняется, молярное отношение (x/m) содержания х элемента Х к содержанию m всех элементов металлов в катализаторе предпочтительно составляет 0,55 или более, более предпочтительно 0,60 или более.
[0028]
В связи с этим, описанный выше смешанный оксид металла может быть получен с помощью известного способа, такого как способ соосаждения или золь-гелевый способ. В частности, например, в случае использования способа соосаждения, не существует конкретных ограничений, и, например, смешанный оксид металла может быть получен следующим образом.
(i) Во-первых, получают водный раствор, содержащий элементы металлов, образующих смешанный оксид металла.
(ii) Затем, к полученному таким образом водному раствору добавляют по каплям реагент соосаждения, такой как водный раствор аммиака или водный раствор карбоната натрия, корректируя рН водного раствора так, чтобы не сдвинуть рН в щелочную сторону (например, таким образом, чтобы значение рН находилось в диапазоне от 5 до 8), в результате чего получают продукт совместного осаждения.
(iii) Затем, наконец, полученный осадок отфильтровывают и высушивают, и после этого высушенный осадок прокаливают, в результате чего получают смешанный оксид металла.
Здесь температура, при которой осадок сушат в указанном выше пункте (iii), предпочтительно составляет 100°С или выше, с точки зрения того, что вода эффективно испаряется, и, предпочтительно, 160°С или ниже, с точки зрения того, что предотвращается быстрое высыхание. Кроме того, температура прокаливания для высушенного осадка предпочтительно составляет 500°С или выше с точки зрения того, что достигается структурная устойчивость получаемого смешанного оксида металла (катализатора) (т.е. подавляется изменение в структуре смешанного оксида металла при крекинге углеводородного масла с использованием данного смешанного оксида металла в качестве катализатора), и предпочтительно 900°С или ниже с точки зрения того, что подавляется уменьшение площади поверхности получаемого смешанного оксида металла.
[0029]
В качестве другого примера катализатора крекинга, также может использоваться катализатор, содержащий оксид алюминия и смешанный оксид металла, который не содержит элемента Y1, но содержит следующие два элемента: Zr в качестве элемента Х и Fe в качестве элемента Y2. В качестве еще одного примера катализатора крекинга также может применяться катализатор, содержащий оксид металла из Zr или Ti, который является элементом Х, и оксид алюминия, используемый для гидрокрекинга углеводородного масла.
[0030]
(Условия реакции)
Стадия крекинга с использованием описанного выше катализатора крекинга осуществляется в температурных условиях, например, от 375°С до 550°С, предпочтительно выбирают температурные условия от 390°С до 500°С. Если температура ниже 375°С, вода не находится в сверхкритическом состоянии, и, кроме того, энергия активации, необходимая для реакции, не может быть получена, и следовательно, не может быть получено достаточное количество водорода. С другой стороны, в условиях температуры, превышающей 550°С, образуется большее количество водорода, чем необходимо, и также из-за прогрессирования термического крекинга облагороженная нефть может испаряться с уменьшением выхода жидких продуктов, или образованный водород может потребляться снова. Кроме того, существует также проблема повышения содержания олефина или диена в результате термического крекинга.
[0031]
Кроме того, в качестве условий давления на стадии крекинга выбирают давление от 0,1 до 40 МПа. Если давление меньше 0,1 МПа, реакция не протекает в достаточной степени, или в некоторых случаях трудно добиться равномерного поступления облагороженной нефти и воды в реактор 1 крекинга, и если давление превышает 40 МПа, себестоимость реактора 1 крекинга может возрасти.
[0032]
Стадия гидрогенизации
(Реакция)
На стадии гидрогенизации крекированное углеводородное масло и водород приводятся в контакт с катализатором гидрогенизации для гидрогенизации крекированного углеводородного масла и расщепления двойной связи, в результате чего снижается содержание олефина или диена.
[0033]
(Катализатор гидрогенизации)
Здесь, на стадии крекинга, выше по потоку от стадии гидрогенизации, крекированное углеводородное масло и водород получают с использованием воды, и, следовательно, вода, содержится в некоторых случаях в крекированном углеводородном масле. Соответственно, предпочтительно использовать в качестве катализатора гидрогенизации для обеспечения возможности протекания описанной выше реакции гидрогенизации катализатор, в котором металл, обладающий гидрогенизационной активностью, нанесен на носитель, состоящий из оксида металла, который не содержит оксида алюминия (в частности, γ-оксида алюминия) или диоксида кремния, обусловливающих большие изменения в кристаллической структуре катализатора под воздействием пара высокой температуры и высокого давления, в силу чего катализатор не может использоваться.
[0034]
Примером оксида металла, служащего в качестве носителя, который практически не деградирует под воздействием водяного пара, может быть, например, диоксид циркония или диоксид титана (TiO2) анатазного типа, или смесь, содержащая такой диоксид циркония и диоксид титана анатазного типа. Кристаллическая структура диоксида титана анатазного типа может быть оценена с помощью, например, рентгеноструктурного анализа. В случае диоксида титана анатазного типа появляется дифракционный пик (2θ=25,5°), соответствующий плоскости (101) в рентгеновском дифракционном спектре.
[0035]
В качестве металла (активного металла), обладающего гидрогенизационной активностью, для нанесения на описанный выше носитель может быть выбран по меньшей мере один металл из группы, состоящей из никеля, кобальта и молибдена. В связи с этим, с точки зрения обеспечения достаточной результативности гидрогенизации, общее количество диоксида циркония или диоксида титана анатазного типа для смешивания в смеси, образующей носитель катализатора гидрогенизации, составляет предпочтительно 50% масс. или более, более предпочтительно 55% масс. или более, особенно предпочтительно 60% масс. или более относительно количества смеси.
В случае, когда для снижения содержания воды в углеводородном масле между стадией крекинга и стадией гидрогенизации предусмотрена стадия удаления воды из крекированного углеводородного масла, может использоваться катализатор гидрогенизации, в котором активный металл нанесен на носитель, включающий γ-оксид алюминия или диоксид кремния.
[0036]
(Условия реакции)
Стадия гидрогенизации с использованием описанного выше катализатора гидрогенизации осуществляется в температурных условиях, например, от 100°С до 374°С, предпочтительно выбирают температурные условия от 200°С до 350°С. Если температура ниже 100°С, энергия активации, необходимая для реакции, не может быть получена, и следовательно, содержание олефина или диена не может быть понижено в достаточной степени. С другой стороны, при температуре, превышающей 374°С, реакция гидрогенизации и термический крекинг могут происходить одновременно, и, следовательно, крекированное углеводородное масло может испаряться с уменьшением выхода жидких продуктов.
[0037]
Кроме того, что касается условий давления на стадии гидрогенизации, в качестве верхнего предела давления выбирают давление, эквивалентное существующему перед стадией крекинга, и в качестве нижнего предела давления, выбирают значение давления 0,5 МПа, и в качестве более предпочтительного диапазона выбирают диапазон от 1 до 5 МПа. Если давление составляет менее 0,5 МПа, реакция не протекает в достаточной степени, или в некоторых случаях трудно добиться равномерного поступления крекированного углеводородного масла и водорода в реактор 2 гидрогенизации. С другой стороны, в случае, когда стадия гидрогенизации осуществляется при давлении, превышающем давление на стадии крекинга, необходима повышающая давление операция или тому подобное, и поэтому такой случай не является предпочтительным. Кроме того, может протекать нежелательная реакция, например, реакция, в которой происходит гидрогенизация ядра ароматического углеводорода в углеводородном масле с чрезмерным потреблением водорода и отложением кокса. Кроме того, себестоимость реактора 2 гидрогенизации может возрасти.
[0038]
В данном случае, описанные выше условия реакции заданы таким образом, чтобы соответствовать целевым значениям, определенным ранее с учетом, например, транспортабельности и т.п. тяжелого углеводородного масла, такого как синтетическая сырая нефть. Как описано ранее, в Канаде концентрация олефинов в технических требованиях к трубопроводам ограничена 1% или менее, однако данное значение меняется в зависимости от характеристик сырой нефти, погодных условий района, где происходит транспортировка синтетической сырой нефти, и т.д., и следовательно, трудно определить постоянное значение, применимое во всех случаях.
[0039]
С другой стороны, в случае, когда реакции гидрогенизации дают возможность протекать избыточно, происходит гидрогенизация ядра ароматического углеводорода в углеводородном масле, и, следовательно, водород чрезмерно потребляется, или возможно осаждение кокса на поверхности катализатора, и, следовательно, катализатор может быть инактивирован, и поэтому такой случай является нежелательным. Кроме того, количество образующегося газа может возрастать с соответствующим уменьшением выхода жидкого продукта, и, таким образом, необходимость понижения содержания олефина или диена до значения, меньшего, чем описанное выше целевое значение, низкая. В дополнение к этому, если прогрессирование реакции гидрогенизации ограничивается до такой степени, что можно обеспечить описанную выше транспортабельность, потребление водорода может быть снижено, и, кроме этого также подавляется уменьшение выхода жидкого продукта на стадии крек