Устройство для определения концентрации газа
Иллюстрации
Показать всеИзобретение относится к устройству для определения концентрации газа: оксида серы (SOX), содержащегося в выхлопных газах из двигателя внутреннего сгорания. Устройство определения концентрации газа включает в себя элемент определения концентрации газа и электронный блок управления. Элемент определения концентрации газа включает в себя первый электрохимический элемент и второй электрохимический элемент. Электронный блок управления выполнен с возможностью определения концентрации оксида серы, содержащегося в исследуемом газе, на основании полученного первого определенного значения, согласованного с током, текущим через первый электрохимический элемент, когда первое удаляющее напряжение подано на второй электрохимический элемент, и измерительное напряжение подано на первый электрохимический элемент. Изобретение обеспечивает возможность концентрации газа - оксида серы, содержащегося в выхлопных газах, с наивысшей степенью точности, возможной при использовании газоанализатора предельного тока. 11 з.п. ф-лы, 6 ил.
Реферат
1. Область техники, к которой относится изобретение
[0001] Изобретение относится к устройству для определения концентрации газа, которое способно получать точную концентрацию оксида серы (SOX), содержащегося в выхлопных газах из двигателя внутреннего сгорания
2. Описание предшествующего уровня техники
[0002] Датчик воздушно-топливного отношения (датчик A/F), который получает воздушно-топливное отношение (А/F) воздушно-топливной смеси в камере сгорания на основе концентрации кислорода (O2), содержащегося в выхлопных газах, широко используется для управления двигателем внутреннего сгорания. Газоанализатор предельного тока является примером этого типа датчика воздушно-топливного отношения.
[0003] Газоанализатор предельного тока, используемый как датчик воздушно-топливного отношения, упомянутый выше, оснащен перекачивающим элементом, который является электрохимическим элементом, который включает в себя элемент из твердого электролита, имеющий кислородно-ионную проводимость и пару электродов, жестко прикрепленных к поверхностям элемента из твердого электролита. Один из парных электродов открыт воздействию выхлопных газов из двигателя внутреннего сгорания, например, исследуемого газа, который вводится с помощью блока сопротивления диффузии, а другая пара электродов открыта воздействию атмосферы. Когда напряжение равное или большее, чем напряжение, при котором инициируется разложение кислорода (напряжение начала разложения), применяется между парой электродов, при этом одним из парных электродов является катодом, а другой парный электрод представляет собой анод, кислород, содержащийся в исследуемом газе, через восстановительное разложение становится ионом кислорода (O2-). Этот ион кислорода поступает на анод через элемент из твердого электролита, становится молекулой кислорода, и выпускается в атмосферу. Это движение кислорода на основе проводимости ионов кислорода через элемент из твердого электролита от катодной стороны к анодной стороне именуется «действием накачки кислорода» (перекачки кислорода).
[0004] Проводимость ионов кислорода в результате действия перекачки накачки кислорода заставляет ток течь между парой электродов. Этот ток, который течет между парой электродов, именуется «током электрода». Этот ток электрода стремится стать сильнее, при увеличении напряжения, приложенного между парой электродов (далее в некоторых случаях именуемого просто «приложенное напряжение»). Однако расход исследуемого газа, достигающего электрода (катода), ограничивается блоком сопротивления диффузии, и, таким образом, скорость потребления кислорода в результате действия накачки кислорода скоро превышает скорость подачи кислорода на катод. Другими словами, реакция восстановительного разложения кислорода в катоде достигает состояния, управляемого скоростью диффузии.
[0005] В состоянии, управляемом скоростью диффузии, ток электрода не увеличивается, но остается, по существу, постоянным, несмотря на рост приложенного напряжения. Характеристики именуются «предельными токовыми характеристиками», и диапазон приложенного напряжения, в котором проявляются (наблюдаются) предельные токовые характеристики, именуется «областью предельного тока». Ток электрода в области предельного тока именуется «предельным током», и величина предельного тока (предельного значения тока) соотносится со скоростью подачи кислорода на катод. Поскольку расход исследуемого газа, достигнувшего катода, поддерживается постоянным с помощью блока сопротивления диффузии, как описано выше, скорость подачи кислорода на катод согласуется с концентрацией кислорода, содержащегося в исследуемом газе.
[0006] Соответственно, в газоанализаторе предельного тока, используемом в качестве датчика воздушно-топливного отношения, ток электрода (предельный ток), относящийся к случаю, когда приложенное напряжение устанавливается на «заданное напряжение в области предельного тока» согласуется с концентрацией кислорода, содержащегося в исследуемом газе. При использовании предельных токовых характеристик кислорода, описанных выше, датчик воздушно-топливного отношения может определить концентрацию кислорода, содержащегося в исследуемом газе, и получить воздушно-топливное отношение воздушно-топливной смеси в камере сгорания на этой основе.
[0007] Предельные токовые характеристики, описанные выше, не являются характеристиками, ограниченными кислородом. В частности, предельные токовые характеристики могут быть выражены на основе соответствующего выбора приложенного напряжения и конфигурации катода в некоторых газах, содержащих атомы кислорода в молекулах (далее в некоторых случаях именуемых «газами, содержащими кислород»). Примеры газов, содержащих кислород, включают в себя оксид серы (SOx), воду (H2O), и диоксид углерода (CO2).
[0008] Топливо для двигателя внутреннего сгорания (например, легкая нефть и бензин) содержит небольшое количество серного (S) компонента. Однако топливо, которое именуется также бедным топливом, может иметь относительно высокое содержание компонентов серы. Когда содержание компонента серы (далее в некоторых случаях именуемого просто «содержанием серы») в топливе является высоким, возрастает вероятность проблем, например, ухудшение характеристик и/или сбои в работе элементов, составляющих двигатель внутреннего сгорания, отравление катализатора очистки выхлопных газов, и появление белого дыма в выхлопных газах. Соответственно, желательно, чтобы содержание компонентов серы в топливе определяли таким образом, что это определенное содержание серы, например, отражалось при управлении двигателем внутреннего сгорания, и использовалось при выдаче предупреждения о неисправности двигателя внутреннего сгорания, или использовалось при совершенствовании бортовой самодиагностики (OBD) катализатора очистки выхлопных газов.
[0009] Когда топливо для двигателя внутреннего сгорания содержит компоненты серы, в выхлопных газах содержится оксид серы, который выпускается из камеры сгорания. Кроме того, концентрация оксида серы, содержащегося в выхлопных газах (далее в некоторых случаях именуемая просто «концентрацией оксидов серы») увеличивается, если увеличивается содержание компонента серы (содержание серы) в топливе. Соответственно, считается, что точное содержание серы может быть получено на основе полученной концентрации оксидов серы, когда можно получить эту точную концентрацию оксидов серы в выхлопных газах.
[0010] В данной области техники, делались попытки получить концентрацию оксида серы, содержащегося в выхлопных газах из двигателя внутреннего сгорания, при использовании газоанализатора предельного тока, который использует действия перекачки кислорода, описанные выше. В частности, используется газоанализатор предельного тока (двухэлементный газоанализатор предельного тока), который оснащен двумя перекачивающими элементами, расположенными в ряд с катодами, обращенными друг к другу во внутренней полости, в которую выхлопные газы из двигателя внутреннего сгорания вводятся в качестве исследуемого газа через блок сопротивления диффузии.
[0011] В этом датчике, кислород, содержащийся в исследуемом газе, удаляется действием перекачки кислорода перекачивающим элементом с впускной стороны, когда относительно низкое напряжение приложено между электродами перекачивающего элемента с впускной стороны. Кроме того, оксид серы, содержащийся в исследуемом газе, подвергается восстановительному разложению на катоде перекачивающим элементом с выпускной стороны, когда относительно высокое напряжение приложено между электродами перекачивающего элемента с выпускной стороны, и ионы кислорода, которые генерируются в результате, подаются на анод. Концентрацию оксида серы, содержащегося в исследуемом газе, получают на основе изменений значения тока электрода, связанных с действиями перекачки кислорода (например, см. публикацию японской патентной заявки 11-190721).
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0012] Как описано выше, делались попытки в этой области техники получить концентрацию оксида серы, содержащегося в выхлопных газах двигателя внутреннего сгорания, при использовании газоанализатора предельного тока, который использует действие перекачки кислорода. Однако оксид серы, который содержится в выхлопных газах, имеет крайне низкий уровень концентрации, и ток (ток разложения), относящийся к разложению оксида серы, чрезвычайно слаб. Кроме того, токи разложения, связанные с газами, содержащими кислород, кроме оксида серы (например, вода и диоксид углерода), также могут протекать между электродами. Соответственно, трудно с точностью отличить и обнаружить только ток разложения, который связан с оксидом серы.
[0013] Изобретение обеспечивает создание устройства определения концентрации газа, которое способно получать концентрацию оксида серы, содержащегося в выхлопных газах, в качестве исследуемого газа, с наивысшей степенью точности, возможной при использовании газоанализатора предельного тока.
[0014] Автор изобретения провел интенсивные исследования, с тем, чтобы решить задачу, описанную выше. В результате было обнаружено, что ток электрода, относящийся к случаю, когда вода и оксид серы разлагаются при заданном приложенном напряжении в электрохимическом элементе (перекачивающем элементе), пригодном для действия перекачки кислорода, меняется в соответствии с концентрацией оксида серы в выхлопных газах из двигателя внутреннего сгорания, в качестве исследуемого газа.
[0015] Более конкретно, в газоанализаторе предельного тока двухэлементного типа, кислород, содержащийся в исследуемом газе, удаляется действием перекачки кислорода перекачивающим элементом с впускной стороны, когда относительно низкое напряжение подается между электродами перекачивающего элемента с впускной стороны. Кроме того, вода и оксид серы, содержащееся в исследуемом газе, разлагаются перекачивающим элементом с выпускной стороны, когда относительно высокое напряжение подается между электродами перекачивающего элемента с выпускной стороны. В этом случае, ток электрода перекачивающего элемента с выпускной стороны включает в себя ток разложения, связанный с водой, и ток разложения, связанный с оксидом серы.
[0016] Обычно, вода в выхлопных газах двигателя внутреннего сгорания имеет более высокую концентрацию, чем оксид серы в выхлопных газах двигателя внутреннего сгорания, и, таким образом, ток электрода сильнее, чем ток разложения, который относится только к оксиду серы, содержащемуся в исследуемом газе, и может быть легко и с точностью определен. Автор изобретения обнаружил, что величина упомянутого тока электрода меняется в соответствии с концентрацией оксида серы, содержащегося в исследуемом газе. Кроме того, ток электрода перекачивающего элемента с выпускной стороны не включает в себя ток разложения, связанный с кислородом согласно этой конфигурации, поскольку кислород, содержащийся в исследуемом газе, удаляется перекачивающим элементом с впускной стороны. Соответственно, автор изобретения пришел к выводу, что концентрация оксида серы, содержащегося в исследуемом газе, может быть с точностью получена на основе получения определенного значения, соотносящегося с током электрода.
[0017] В некоторых случаях, оксид азота (NOx) содержится в выхлопных газах двигателя внутреннего сгорания, и концентрация оксида азота (далее, именуемая в некоторых случаях просто «концентрацией NOx») меняется, в зависимости от воздушно-топливного отношения и состояния сгорания воздушно-топливной смеси, сжигаемой в камере сгорания двигателя внутреннего сгорания. Этот оксид азота также разлагается перекачивающим элементом с выпускной стороны, и генерируется ток разложения, связанный с оксидом азота. Соответственно, предпочтительно, чтобы оксид азота, содержащийся в исследуемом газе, удалялся перекачивающим элементом с впускной стороны для получения точной концентрации оксида серы, содержащегося в исследуемом газе.
[0018] Согласно объекту изобретения, предлагается устройство для определения концентрации газа, включающее в себя элемент определения концентрации газа, первый датчик тока, первый источник электропитания, второй источник электропитания и электронный блок управления (ЭБУ).
[0019] Элемент определения концентрации газа включает в себя первый электрохимический элемент, второй электрохимический элемент, непроницаемый корпус и блок сопротивления диффузии. Первый электрохимический элемент включает в себя первый элемент из твердого электролита, первый электрод и второй электрод. Первый элемент из твердого электролита имеет кислородно-ионную проводимость. Первый электрод и второй электрод расположены на соответствующих поверхностях первого элемента из твердого электролита. Второй электрохимический элемент включает в себя второй элемент из твердого электролита, третий электрод, и четвертый электрод. Второй элемент из твердого электролита имеет кислородно-ионную проводимость. Третий электрод и четвертый электрод расположены на соответствующих поверхностях второго элемента из твердого электролита. Первый элемент из твердого электролита и второй элемент из твердого электролита могут представлять собой отдельные элементы из твердого электролита (например, тонколистовые элементы). В качестве альтернативного варианта, первый электрохимический элемент и второй электрохимический элемент могут совместно использовать один элемент из твердого электролита (например, тонколистовой элемент).
[0020] Первый элемент из твердого электролита, второй элемент из твердого электролита, непроницаемый корпус и блок сопротивления диффузии выполнены с возможностью образования внутренней полости. Блок сопротивления диффузии выполнен с возможностью введения выхлопных газов двигателя внутреннего сгорания в качестве исследуемого газа в эту внутреннюю полость через блок сопротивления диффузии. Первый электрод обращен во внутреннюю полость. Второй электрод обращен в первую отдельную полость, как в полость, отличную от этой внутренней полости. Третий электрод расположен в положении во внутренней полости, которое ближе к блоку сопротивления диффузии, чем первый электрод. Четвертый электрод обращен во вторую отдельную полость, как в полость, отличную от упомянутой внутренней полости. Первый электрод выполнен с возможностью разложения воды и оксида серы, содержащихся в исследуемом газе, когда напряжение, равное или большее, чем первое заданное напряжение, подано на первую электродную пару из первого электрода и второго электрода. Третий электрод выполнен с возможностью разложения кислорода и оксида азота, содержащихся в исследуемом газе, когда напряжение, равное или большее, чем второе заданное напряжение, подано на вторую электродную пару из третьего электрода и четвертого электрода.
[0021] Первый датчик тока выполнен с возможностью выдачи первого определенного значения, согласованного с током, текущим через первую пару электродов. Первый источник электропитания выполнен с возможностью подачи напряжения на первую электродную пару. Второй источник электропитания выполнен с возможностью подачи напряжения на вторую электродную пару. Блок ЭБУ выполнен с возможностью управления вторым источником электропитания так, что первое удаляющее напряжение подается на вторую электродную пару. Первое удаляющее напряжение представляет собой напряжение, равное или большее, чем второе заданное напряжение, напряжение равное или большее, чем нижний предел диапазона напряжения, в котором отображены характеристики предельного тока для оксида азота на третьем электроде, и напряжение, которое ниже, чем напряжение, при котором инициируется разложение оксида серы. Блок ЭБУ выполнен с возможностью управления первым источником электропитания так, что измерительное напряжение подается на первую электродную пару. Измерительное напряжение представляет собой напряжение, равное или большее, чем первое заданное напряжение и напряжение равное или большее, чем напряжение, при котором разложение воды инициируется на первом электроде. Блок ЭБУ выполнен с возможностью получения первого определенного значения от первого датчика тока, когда первое удаляющее напряжение подано на вторую электродную пару, и измерительное напряжение подано на первую электродную пару. Блок ЭБУ выполнен с возможностью определения концентрации оксида серы, содержащегося в исследуемом газе на основании полученного первого определенного значения.
[0022] Согласно устройству для определения концентрации газа в объекте, описанном выше, первый электрод выполнен с возможностью разложения воды (H2O) и оксида серы (SOx), содержащихся в исследуемом газе, когда первое заданное напряжение приложено между первым электродом и вторым электродом. Первый электрод, который способен разлагать воду и оксид серы при заданном приложенном напряжении, как описано выше, может быть изготовлен путем соответствующего выбора, например, типа вещества, образующего материал электрода, и режима термообработки, относящихся к производству электрода.
[0023] Третий электрод выполнен с возможностью разложения кислорода и азота, содержащихся в исследуемом газе, когда напряжение, равное или большее, чем второе заданное напряжение, подано между третьим электродом и четвертым электродом. Третий электрод, способный разлагать кислород и оксид азота при заданном приложенном напряжении, как описано выше, может быть изготовлен путем соответствующего подбора, например, типа вещества, образующего материал электрода, а также режима термообработки, относящихся к производству электрода.
[0024] Блок ЭБУ управляет вторым источником электропитания так, что заданное первое удаляющее напряжение, которое представляет собой напряжение, равное или большее, чем второе заданное напряжение, напряжение, равное или большее, чем нижний предел диапазона напряжения, в котором выражены предельные токовые характеристики для оксида азота на третьем электроде, и напряжение, которое ниже, чем напряжение, при котором инициируется разложение оксида серы, подается на вторую электродную пару. Соответственно, отображены предельные токовые характеристики для кислорода и оксида азота, содержащихся в исследуемом газе, и кислород и оксид азота, содержащиеся в исследуемом газе, удаляются из внутренней полости, когда первое удаляющее напряжение подано на вторую электродную пару. Вода и оксид серы, содержащиеся в исследуемом газе, не разлагаются на третьем электроде, на который подано первое удаляющее напряжение.
[0025] Блок ЭБУ управляет первым источником электропитания так, что заданное измерительное напряжение, которое представляет собой напряжение, равное или большее, чем первое заданное напряжение, и напряжение равное или большее, чем напряжение, при котором разложение воды инициируется на первом электроде, подается на первую электродную пару. «Напряжение, при котором инициируется разложение воды», больше, чем «напряжение, при котором инициируется разложение оксида серы». Соответственно, ток электрода, связанный с разложением воды и оксида серы, содержащихся в исследуемом газе, течет между электродами, когда измерительное напряжение подается на первую электродную пару. Сила этого тока электрода меняется в соответствии с концентрацией оксида серы, содержащегося в исследуемом газе как описано выше.
[0026] Блок ЭБУ выполнен с возможностью определения концентрации оксида серы, содержащегося в исследуемом газе, на основании первого определенного значения, получаемого в случае, когда первое удаляющее напряжение подано на вторую электродную пару, и измерительное напряжение подано на первую электродную пару. Как описано выше, первое удаляющее напряжение представляет собой заданное напряжение, которое представляет собой напряжение, равное или большее, чем второе заданное напряжение, напряжение, равное или большее, чем нижний предел диапазона напряжения, в котором характеристики предельного тока для оксида азота выражены на третьем электроде, и напряжение, которое ниже, чем напряжение, при котором инициируется разложение оксида серы. Соответственно, характеристики предельного тока для кислорода и оксида азота выражены, и кислород и оксид азота, содержащиеся в исследуемом газе, удаляются действием перекачки кислорода второго электрохимического элемента в случае, когда первое удаляющее напряжение подано на вторую электродную пару.
[0027] Измерительное напряжение представляет собой заданное напряжение, которое представляет собой напряжение, равное или большее, чем первое заданное напряжение, и напряжение равное или большее, чем напряжение, при котором разложение воды инициируется на первом электроде. Соответственно, в случае, когда измерительное напряжение подано на первую электродную пару, вода и оксид серы, содержащиеся в исследуемом газе, разлагаются первым электрохимическим элементом, и ток разложения, связанный с этими компонентами, течет в качестве тока электрода. Кроме того, не только кислород, содержащийся в исследуемом газе, но и также оксид азота, содержащийся в исследуемом газе, удаляется из исследуемого газа вторым электрохимическим элементом на впускной стороне первого электрохимического элемента во внутренней полости. Соответственно, сила этого тока электрода меняется в соответствии с концентрацией оксида серы, содержащегося в исследуемом газе, на что не влияют кислород и оксид азота, содержащиеся в исследуемом газе во время введения его во внутреннюю полость.
[0028] Другими словами, блок ЭБУ может получить точную концентрацию оксида серы, содержащегося в исследуемом газе, на основании первого определенного значения. Более конкретно, блок ЭБУ может задать концентрацию Sox, согласующуюся с полученным первым определенным значением на основании, например, полученной заранее соответствующей взаимосвязи между концентрацией оксида серы, содержащегося в исследуемом газе (концентрацией SOx), и первым определенным значением. Таким образом, концентрацию оксида серы, содержащегося в исследуемом газе, можно определить с очень высокой степенью точности.
[0029] В этом случае, соответствующая взаимосвязь между первым определенным значением (например, силой тока электрода), получаемым в случае, когда, например, первое удаляющее напряжение подано на вторую электродную пару, и измерительным напряжением, поданным на первую электродную пару, и концентрацией оксида серы, содержащегося в исследуемом газе, получают заранее в ходе предварительного эксперимента и пр. Таблица данных (например, карта данных), показывающая соответствующую взаимосвязь, может храниться, например, в устройстве хранения данных (например, ПЗУ) блока ЭБУ при этом ЦП может обращаться к таблице данных во время определения. Таким образом, концентрацию оксида серы, содержащегося в исследуемом газе, можно получить из первого определенного значения.
[0030] Концентрация воды, содержащейся в выхлопных газах, выпускаемых из двигателя внутреннего сгорания, меняется в соответствии, например, с воздушно-топливным отношением воздушно-топливной смеси, сжигаемой в камере сгорания двигателя внутреннего сгорания. Когда концентрация воды, содержащейся в выхлопных газах, из двигателя внутреннего сгорания, как в исследуемом газе меняется, точность концентрации оксида серы, определяемой на основании первого определенного значения, может понизиться. Соответственно, предпочтительно, чтобы первое определенное значение определялось, когда воздушно-топливное отношение воздушно-топливной смеси, сжигаемой в камере сгорания двигателя внутреннего сгорания, поддерживалось на заданном значении, примеры чего включают в себя устойчивую работу двигателя внутреннего сгорания, для того чтобы концентрацию оксида серы, содержащегося в испытательном газе, можно было точно определить на основании этого первого определенного значения.
[0031] Детали механизма, в котором первое определенное значение, полученное в случае, когда первое заданное напряжение приложено между первым электродом и вторым электродом, как описано выше, меняется в соответствии с концентрацией оксида серы в исследуемом газе, неизвестны. Однако не только вода, содержащаяся в исследуемом газе, но и оксид серы, содержащийся в исследуемом газе, разлагаются, при приложении первого заданного напряжения между первым электродом и вторым электродом, как описано выше. В результате, считается, что продукты разложения оксида серы (примеры включают в себя серу (S) и соединения серы) адсорбируются на первом электроде, который представляет собой катод, и уменьшают площадь первого электрода, способного внести вклад в разложение воды. Соответственно, считается, что первое определенное значение, которое согласуется с током электрода, относящимся к применению первого заданного напряжения между первым электродом и вторым электродом, меняется в соответствии с концентрацией оксида серы, содержащегося в исследуемом газе.
[0032] Согласно механизму, описанному выше, большее количество продуктов разложения оксида серы адсорбируются на первом электроде, и скорость снижения тока электрода, соотносящегося с первым определенным значением, увеличивается при увеличении периода, в котором первое заданное напряжение приложено между первым электродом и вторым электродом. Другими словами, скорость снижения тока электрода, соотносящегося с первым определенным значением, меняется в соответствии с длительностью периода, в котором первое заданное напряжение приложено между первым электродом и вторым электродом. Соответственно, желательно, чтобы первое определенное значение было определено в момент, когда первое заданное напряжение приложено между первым электродом и вторым электродом в течение заданного периода, определенного заранее, чтобы концентрация оксида серы, содержащегося в исследуемом газе, была точно определена на основе первого определенного значения. Кроме того, желательно, чтобы соответствующая взаимосвязь между концентрацией оксидов серы и первым определенным значением, описанным выше, была получена при использовании первого определенного значения во временной точке, когда первое заданное напряжение приложено между первым электродом и вторым электродом в течение заданного периода, определенного заранее.
[0033] Кроме того, продукт разложения, адсорбируемый на первом электроде, должен быть удален в случае, когда концентрация оксида серы, содержащегося в исследуемом газе, определяется снова путем повторного использования этого устройства для определения концентрации газа, примененного для определения концентрации оксида серы, содержащегося в исследуемом газе. Способ удаления продукта разложения, адсорбируемого на первом электроде, специально не ограничен, и его примеры могут включать в себя повторное окисление продукта разложения, при этом продукт разложения снова превращается в оксид серы. Это повторное окисление может быть выполнено с помощью, например, подачи заданного напряжения, что позволяет продукту разложения окисляться, между первым электродом и вторым электродом, причем первый электрод является анодом, а второй электрод является катодом (что является противоположным случаю восстановительного разложения оксида серы).
[0034] Первое определенное значение не обязательно ограничено в качестве первого определенного значения значением какого-либо сигнала, соотносящегося с током электрода (примеры включают в себя значение напряжения, значение тока, а также значение сопротивления). Как правило, первое определенное значение может представлять собой силу тока. Другими словами, блок ЭБУ может быть сконфигурирован для получения силы тока, текущего через первую электродную пару в качестве первого определенного значения.
[0035] Как описано выше, сила тока электрода, текущего между первым электродом и вторым электродом в случае, когда измерительное напряжение подано между первым электродом и вторым электродом, меняется в соответствии с концентрацией оксида серы, содержащегося в исследуемом газе. Более конкретно, ток электрода ослабевает, когда концентрация оксида серы, содержащегося в исследуемом азе, увеличивается, как описано ниже. Соответственно, блок ЭБУ может быть выполнен с возможностью определения более высокого значения концентрации оксида серы (SOx), содержащегося в исследуемом газе, учитывая, что первое определенное значение, получаемое в случае, когда первое удаляющее напряжение подается на вторую электродную пару, и измерительное напряжение подается на первую электродную пару, уменьшается в случае, когда сила тока, текущего через первую электродную пару, представляет собой первое определенное значение, как описано выше.
[0036] Как описано выше, характеристики предельного тока для кислорода выражены в случае, когда первое удаляющее напряжение подано на вторую электродную пару, второго электрохимического элемента. Как описано в начале данного описания, сила предельного тока меняется в соответствии с концентрацией кислорода, содержащегося в исследуемом газе, и, таким образом, концентрацию кислорода, содержащегося в исследуемом газе, можно определить с помощью характеристики предельного тока для кислорода.
[0037] Блок ЭБУ может быть сконфигурирован для получения второго определенного значения, согласующегося с током, текущим через вторую электродную пару. В этом случае, блок ЭБУ может быть выполнен с возможностью определения концентрации кислорода, содержащегося в исследуемом газе, на основании второго определенного значения, получаемого в случае, когда первое удаляющее напряжение подано на вторую электродную пару.
[0038] Согласно объекту, описанному выше, и концентрация оксида серы, содержащегося в исследуемом газе, и концентрация кислорода, содержащегося в исследуемом газе, могут быть определены. Кроме того, воздушно-топливное отношение воздушно-топливной смеси, сжигаемой в камере сгорания двигателя внутреннего сгорания, может быть получено на основании концентрации кислорода, полученной таким образом. Соответственно, это обеспечивает, например, снижение затрат и/или размеров системы управления для двигателя внутреннего сгорания.
[0039] Концентрацию кислорода, содержащегося в исследуемом газе, определяют на основании второго определенного значения, согласующегося с током, текущим через вторую электродную пару, когда первое удаляющее напряжение подано на вторую электродную пару. Первое удаляющее напряжение представляет собой заданное напряжение, которое является напряжением, равным или большим, чем второе заданное напряжение, напряжение, равное или большее, чем нижний предел диапазона напряжения, в котором отражены характеристики предельного тока для оксида азота, на третьем электроде, и напряжение, которое ниже, чем напряжение, при котором инициируется разложение оксида серы. Третий электрод выполнен с возможностью разложения кислорода и оксида азота, содержащихся в исследуемом газе, когда первое удаляющее напряжение подано на вторую электродную пару. Соответственно, не только предельный ток кислорода, но и также предельный ток оксида азота включены в ток электрода, согласующийся со вторым определенным значением.
[0040] Другими словами, строго говоря, не только концентрация кислорода, но также и концентрация оксида азота включена в концентрацию кислорода, определяемую, как описано выше. Однако концентрация оксида азота, содержащегося в исследуемом газе, достаточно ниже концентрации кислорода. Соответственно, не возникает существенных проблем в отношении общих задач (например, расчете воздушно-топливного отношения воздушно-топливной смеси), даже когда концентрация кислорода, определяемая, как описано выше, рассматривается как концентрация только кислорода.
[0041] Второе определенное значение не имеет особых ограничений, как и в случае с первым определенным значением, поскольку второе определенное значение представляет собой значение любого сигнала (примеры включают в себя значение напряжения, значение силы тока, а также значение сопротивления), Как правило, второе определенное значение может являться силой тока, текущего через вторую электродную пару. Другими словами, блок ЭБУ может быть приспособлен для получения силы тока, текущего через вторую электродную пару в качестве второго определенного значения.
[0042] Ток электрода, который течет между этими электродами в случае, когда первое удаляющее напряжение подано на вторую электродную пару, равен предельному току для кислорода (и оксида азота), содержащегося в исследуемом газе, и предельная сила тока меняется в соответствии с концентрацией кислорода, содержащегося в исследуемом газе, как описано в начале данного описания. Более конкретно, предельный ток становится сильнее при увеличении концентрации кислорода, содержащегося в исследуемом газе. Соответственно, блок ЭБУ может быть выполнен с возможностью определения более высокого значения концентрации кислорода, содержащегося в исследуемом газе, учитывая, что второе определенное значение, получаемое в случае, когда первое удаляющее напряжение подано на вторую электродную пару, увеличивается в случае, когда сила тока, текущего через вторую электродную пару, представляет собой второе определенное значение, как описано выше.
[0043] Согласно объекту, описанному выше, и кислород, и оксид азота, содержащиеся в исследуемом газе, удаляются перекачивающим элементом (второй электрохимический элемент) на впускной стороне. Устройство согласно изобретению, тем не менее, может также быть выполнено с возможностью удаления кислорода и оксида азота, содержащихся в исследуемом газе, с помощью отдельных перекачивающих элементов.
[0044] В этом случае, элемент определения концентрации газа может быть дополнительно оснащен третьим электрохимическим элементом, который включает в себя третий элемент из твердого электролита, который имеет кислородно-ионную проводимость, и пятый электрод и шестой электрод, которые образованы на соответствующих поверхностях третьего элемента из твердого электролита. Третий элемент из твердого электролита может быть элементом из твердого электролита (например, тонколистовым элементом), отделенным от первого элемента из твердого электролита и второго элемента из! твердого электролита. В качестве альтернативного варианта, третий электрохимический элемент может использовать элемент из твердого электролита (например, тонколистовой элемент) совместно с одним из элементов или с обоими элементами- из первого электрохимического элемента и второго электрохимического элемента.
[0045] Элемент определения концентрации газа может быть сконфигурирован для пятого электрода, обращенного во внутреннюю полость, расположенного в положении, ближе к блоку сопротивления диффузии, чем третий электрод, и для шестого электрода, обращенного в третью отдельную полость, как в полость, отличную от этой внутренней полости. Другими словами, пятый электрод может быть сформирован положении во внутренней полости, которое находится дальше по впускной стороне, чем третий электрод (стороне, близкой к блоку сопротивления диффузии). Другими словами, третий электрохимический элемент может быть образован дальше по впускной стороне, чем второй электрохимический элемент.
[0046] Согласно объекту, описанному выше, блок ЭБУ может управлять третьим источником электропитания так, что напряжение подается на третью электродную пару из пятого электрода и шестого электрода. Блок ЭБУ может представлять собой ЭБУ для двигателя внутреннего сгорания, который подает заданное напряжение на каждый электрод третьей электродной пары путем управления электрической энергией, подаваемой из аккумулятора и пр.
[0047] Пятый электрод может быть выполнен с возможностью разложения кислорода без разложения оксида азота, содержащегося в исследуемом газе, когда напряжение, равное или большее, чем третье заданное напряжение, подано на третью электродную пару. Пятый электрод, способный разлагать кислород без разложения оксида азота при заданном приложенном напряжен