Способ получения золь-гель чернил для цветной интерференционной струйной печати

Иллюстрации

Показать все

Изобретение относится к неорганической химии, а именно к методу получения седиментационно устойчивого золя кристаллических наночастиц. Описан способ получения золь-гель чернил для цветной интерференционной струйной печати, содержащих нанокристаллический золь диоксида титана, в растворе этилового спирта в воде, в два этапа, на первом этапе получают нанокристаллический золь диоксида титана преимущественно анатазной фазы в воде, а на втором этапе из нанокристаллического золя диоксида титана преимущественно анатазной фазы в воде получают золь-гель чернила для цветной интерференционной струйной печати в виде нанокристаллического золя диоксида титана в растворе этилового спирта в воде, с требуемыми для струйной печати плотностью, вязкостью и поверхностным натяжением. Технический результат: получены золь-гель чернила для интерференционной струйной печати. 3 з.п. ф-лы, 3 ил.

Реферат

Область техники

Изобретение относится к неорганической химии, а именно к методу получения седиментационно устойчивого золя кристаллических наночастиц диоксида титана преимущественно в фазе анатаза, используемого в качестве золь-гель чернил для цветной интерференционной струйной печати, позволяющей получать печатные изделия с цветными интерференционным изображениями, образованными по крайней мере одним прозрачным в видимой области спектра света и в области УФ спектра света рефрактивным слоем ксерогеля диоксида титана с толщиной от 300 нм до 1 мкм, с показателем преломления более 1,7 и изменяющейся цветовой окраской в зависимости от толщины рефрактивного слоя.

Уровень техники

Технология цветной печати бурно развивается и менее чем за 40 лет она преодолела путь от матричных принтеров с красящей лентой до 3D принтеров с печатью объемных цветных материалов, но при этом неизменным остается применение для окрашивания красителей CMYK или RGB цветовой схемы, что неизбежно ограничивает и технологические возможности и цветопередачу.

Наиболее распространенной и доступной является цветная струйная печать, однако для печати цветных изображений при струйной печати обычно требуются наборы цветных чернил и специальная бумага.

При этом чернила для струйной печати некоторых цветов экологически опасны, например, чернила желтого цвета обычно изготавливаются с применением токсичных соединений кадмия (Cd2+), а напечатанные обычными чернилами струйным методом цветные изображения выцветают от действия солнечных лучей, УФ излучения и высоких температур.

Кроме этого высококачественные цветные изображения методом струйной печати возможно получать только при использовании чернил с определенными физическими свойствами (определенной вязкости и поверхностного натяжения) и на пористых подложках (обычно на специальных видах бумаги, на которых чернила впитываются, но не расплываются), которые после высыхания чернил обычно деформируются.

Известны чернила для струйного принтера, и способ струйной печати с подавлением явления скручивания печатных материалов и стабильной эжекцией, включающие 62-77 мас. % воды, 10-18 мас. % красителя, 2,0-15 мас. % водорастворимых органических веществ, включающих X (%) водорастворимого органического вещества 1, и Y (%), водорастворимого органического вещества 2. Причем вязкость чернил составляет от 1 до 5 сП при 25°С, и содержание X (%) вещества 1 и содержание Y (%) вещества 2 удовлетворяет отношению формул (I) и формулы (II): (I) 0,15≤Y/X≤0,9; (II) 15 мас. % ≤X+Y≤32 мас. %. Соединение 1 является влагоудерживающим водорастворимым органическим соединением, имеющим разность между влагоудерживающей способностью в окружающей среде с температурой 23°С и влажностью 45% и влагоудерживающей способностью в окружающей среде с температурой 30°С и влажностью 80% в 36% или менее. Соединение 2 является водорастворимым органическим соединением, отличным от красителя и от водорастворимого органического соединения 1 [RU 2329288 C09D 11/00, B41J 2/01, В41М 5/00. Опубл. 20.07.2008. WO 2005/087879 (22.09.2005)].

Известны краска, устройство и способ струйной печати краской с вязкостью краски 100 мПа⋅с или менее на основе 50 до 80 мас. % органического растворителя, способного к испарению из отпечатанной краски. Краска включает отверждаемый УФ излучением материал, полимеризуемый по механизму свободнорадикальной полимеризации, фотоинициатор и диспергируемый краситель. Отверждаемый излучением материал содержит отверждаемый УФ-излучением олигомер, имеющий полиэфирную, уретановую или эпоксидную основную цепь, молекулярную массу от 500 до 4000 и вязкость от 0,5 до 20 Па⋅с при 60°С. Устройство для струйной печати указанной краской включает печатающий механизм, приспособление для испарения растворителя из отпечатанной краски и источник УФ излучения. Способ струйной печати с использованием указанной краски обеспечивает покрытия на подложках, в том числе на непористых поверхностях, с повышенной устойчивостью к растворителям и сухому трению [RU 2561095 C09D 11/00, C09D 11/10, B41J 2/00, B41J 11/00. Опубл. 20.08.2015, WO 2011/021052 2011.02.24].

Известен способ получения композиции полисилоксана и органического титаната включающий силоксановый фотополимер содержащий титан, предназначенный для производства покрытия с высоким показателем преломления и устойчивого к истиранию для защиты изготовляемых из органических стекол очковых линз, который включает в качестве первого компонента фотополимера практически безводный гидролизат алкоксисилана, полученный путем гидролиза органосилана. В качестве второго компонента фотополимер содержит сложный эфир карбоновой кислоты титана, имеющего формулу , где N является целым числом от 1 до 4 включительно, R является числом атомов водорода или алкильных групп с 1-5 атомами углерода, и R 'представляет собой атом водорода, гидроксильную группу, или алкоксигруппу 1-5 С атомов. Реакция указанных первого и второго компонентов проводится до завершения образования указанного титан силоксанового фотополимера в отсутствии добавленной воды. После добавления воды и гидролиза гидролизуемых групп проходит дальнейшая полимеризация с получением стабильного водного золя, содержащего 20-30% по весу TiO2, относительно массы твердых материалов конечной композиции [US 5357024 C08G 77/58; C08G 79/00; C08K 5/09; C08L 83/04; C09D 183/04; C09D 183/14; 1994.10.18].

Известно напечатанное изделие, включающее подложку и изображение, напечатанное комбинацией цветов из шести чернил разного цвета. Каждый из цветов определен заданным соотношением чернил, имеющим полный тон заданного цвета и полутон заданного цвета. Каждое из шести чернил имеют величину объединенного цветового отличия dE полного тона L-C-H-a-b не более 2. Чернила объединены на изделии для получения цветов, отличных от шести цветов чернил. Каждое из шести чернил имеют величину объединенного цветового отличия dE полутона не более 3. Каждый из шести цветов содержит один или два пигмента. Способ печати изделия на аналоговом печатающем устройстве включает подготовку электронного файла данных заданного художественного изображения, включающего заданные цвета для соответствующих элементов художественного изображения. Выполняют пробную печать художественного изображения, печатая файл данных с помощью цифрового печатающего устройства. Параметры настройки печатающего устройства объединяют с электронным файлом художественного изображения. Обеспечивают множество мест печати копиями объединенных параметров путем настройки печатающего устройства и электронного файла, содержащего визуализацию художественного изображения. С использованием объединенных параметров настройки печатающего устройства и электронного файла данных художественного изображения печатают копии изделия поточечно, формируя полную картину составленного изображения [RU 2468923 В41М 1/14. Опубл. 10.12.2012, WO 2009/083857 2009.07.09].

Известен способ изготовления многокрасочных полиграфических репродукций, заключающийся в последовательном нанесении на поверхность запечатываемого материала красочных слоев различных цветов, несущих однокрасочные растровые изображения с разной линиатурой растра, по которому для повышения качества репродукции, линиатуру растра для каждого однокрасочного изображения выбирают из зависимости а/b*[(рбк)/рб]≤0.0007, где а шаг растра; b расстояние от глаза наблюдателя до рассматриваемого изображения; рб - коэффициент отражения запечатываемого материала; рк - коэффициент отражения соответствующей краски [RU 2043199 В41М 1/14. Опубл. 10.09.1995].

Известно полутоновое изображение, полученное путем печатания на подложке, которое состоит из по меньшей мере двух видов расположенных в виде растра точек изображения различного цвета. Искомый цвет получают путем смешения цветов точек изображения, а на подложке сформированы флюоресцирующие точки изображения печатных красок, которые содержат флюоресцирующие при возбуждении определенным электромагнитным излучением пигменты, а также нефлюоресцирующие точки изображения печатных красок, содержащих цветные, нефлюоресцирующие при возбуждении определенным электромагнитным излучением пигменты. При этом указанные флюоресцирующие точки изображения и нефлюоресцирующие точки изображения размещены на подложке в шахматном порядке относительно друг друга. Таким образом обеспечивается получение полутонового изображения, которое отличается высоким блеском и близкими к реальному цветопередачей [RU 2264296 B41M 1/14, B41M 3/14, B42D 15/10. Опубл. 20.11.2005, WO 03/011606 (13.02.2003)].

Известные чернила для цветной струйной печати не позволяют получать цветные интерференционные изображения.

Известно явление интерференции в тонких пленках, характерное тем, что на границе раздела фаз материалов, отличающихся друг от друга оптической плотностью, происходит формирование отраженного луча, с длиной волны равной толщине слоя материала с большим показателем преломления (RI), что воспринимается человеческим глазом как монохроматический цвет. В частности интерференция наблюдается в мыльных пузырях (воздух/ПАВ в воде), в радужной оболочке многослойной структуры перламутра.

Важным преимуществом интерференции является естественность цветопередачи, так как при формировании интерференционного изображения используется весь спектр солнечного света, включающего максимально возможное количество цветов и оттенков, воспринимаемых человеческим глазом.

Однако, насыщенность окраски - отвечающей за контрастность получаемого изображения во многом зависит от величины разности показателей преломления наносимого слоя и используемой подложки.

Для усиления этого эффекта предпринимались попытки модификации полимеров при помощи различных наноразмерных кристаллических веществ.

Такие подходы позволили получить высокий показатель преломления для органических полимеров, однако оптические свойства органических полимеров при этом резко ухудшались из-за отсутствия гомогенного распределения компонентов между собой и технологически не решенных проблем формирования пленок заданной толщины с точностью до 10 нм, комплиментарных по структуре длине световой волны.

Альтернативой физическим методам получения интерференционных пленок (методами лазерного напыления, температурного прокаливания, лазерного возбуждения металлов в кислороде с образованием оксидных слоев, вакуумного нанесения «масок» и т.п.) может быть получение пленок неорганических полимеров методами растворной химии. В частности, наибольшей перспективой считается технология низкотемпературного золь-гель синтеза, позволяющая получать монолитные пленочные кристаллические материалы при низких температурах и атмосферном давлении.

Ланглет и др. показали применение данной технологии в области создания TiO2 покрытий для оптики и создания фотокаталитических покрытий на пленках.

Известна масштабируемая монохроматичная интерференция на гладкой поверхности, формируемая или жидкой фазой или твердым субстратом с минимальной шероховатостью, например искусственное получение интерферирующих слоев на полированном кремнии и на твердых органических полимерах.

Известно явление интерференции в тонких пленках, являющееся основополагающим для появления переливающегося эффекта при создании красок-хамелеонов.

Известно появление цвета в микроструктурах фотонных кристаллов и коллоидных магнитных материалов, однако все известные методы создания и интерференции не пригодны для цветной струйной печати.

Неорганические коллоиды в настоящее время активно используются для пленочной печати биосенсоров и объектов электроники , но неизвестно их применение для струйной цветной печати.

Вместе с тем до настоящего момента возможности струйной печати фокусировались микродиапазоном, то есть формированием элементов изображений на микронном уровне, большем, чем длины световых волн. Поэтому актуальна разработка неизвестных ранее технологий струйной печати неорганических наноструктур с точностью по толщине до 10 нм для создания основы развития новой стадии развития цветной струйной печати и разработки принципиально новых интерференционных методов формирования оптических структур нанообъектов методами струйной печати.

Струйная печать требует тонкой настройки параметров вязкости и поверхностного натяжения чернил либо тонкой настройкой принтера под определенный состав чернил. В большинстве случаев используют такие добавки как глицерин для увеличения вязкости и ПАВ для уменьшения поверхностного натяжения. Это неизбежно уменьшает показатель преломления, в связи с увеличением объемной доли органической части в сухом остатке.

Известен тонкопленочный элемент с интерференционной слоистой структурой для защищенных от подделки бумаг, ценных документов и подобных объектов, содержащий по меньшей мере два полупрозрачных поглощающих слоя и по меньшей мере один диэлектрический разделительный слой, расположенный между по меньшей мере двумя поглощающими слоями. Каждый из двух поглощающих слоев состоит из материала, имеющего комплексный показатель преломления N, действительная часть n и мнимая часть k которого по меньшей мере в части видимой области спектра отличаются в 5 или большее число раз, при наблюдении в отраженном свете тонкопленочный элемент имеет металлический блеск и по существу нейтральный цвет, а при наблюдении в проходящем свете он воспринимается в цвете, в проходящем свете тонкопленочный элемент имеет насыщенность цвета С*ab, определенную в цветовом пространстве CIELAB, более 15. Два поглощающих слоя состоят из разных материалов, причем действительная часть n1 и мнимая часть k1 материала одного из двух поглощающий слоев отличаются в 5 или большее число раз, по меньшей мере в части видимой области спектра, а действительная часть n2 и мнимая часть k2 материала другого из этих двух поглощающий слоев отличаются в 8 или большее число раз, предпочтительно в 10 или большее число раз, особенно предпочтительно в 15 или большее число раз. Один из поглощающих слоев или оба поглощающих слоя изготовлены из серебра или из алюминия. Диэлектрический разделительный слой изготовлен из SiOx или MgF2. В проходящем свете тонкопленочный элемент имеет насыщенность цвета С*ab, определенную в цветовом пространстве CIELAB, более 20, предпочтительно более 25. Тонкопленочный элемент при наблюдении под прямым углом - в проходящем свете виден зеленым и имеет насыщенность цвета С*ab более 30, предпочтительно более 40, или - в проходящем свете виден желтым и имеет насыщенность цвета С*ab более 20, или - в проходящем свете виден красным и имеет насыщенность цвета С*ab более 20, предпочтительно более 30, или - в проходящем свете виден голубым и имеет насыщенность цвета С*ab более 20, предпочтительно более 30 или тонкопленочный элемент в проходящем свете виден цветным и показывает эффект изменения цвета. Тонкопленочный элемент может быть скомбинирован с цветным светофильтром, предпочтительно с цветным печатным слоем или цветным напыленным слоем. Тонкопленочный элемент скомбинирован с рельефной структурой, в частности нанесен на дифракционную рельефную структуру или микрооптическую рельефную структуру [RU 2514589 B42D 15/00. Опубл. 27.04.2014, WO 2011/032665 2011.03.24].

Известен способ получения дифрагирующих изображений в кристаллических коллоидных массивах включающий: формирование на подложке упорядоченного периодического массива частиц, где массив частиц дифрагирует в полосе длин волн, в зависимости от угла наблюдения; печать композиции изображения на части массива в конфигурации изображения; сдвиг полосы длин волн дифрагированного излучения и/или изменение показателя преломления в отпечатанной части массива, так что отпечатанная часть дифрагирует излучение при полосе длин волн и интенсивности отражения, отличающихся от остальной части массива; и фиксацию отпечатанной части массива таким образом, что отпечатанная часть массива дифрагирует излучение и проявляет изображение. Композиция изображения изменяет размеры и показатель преломления частиц в отпечатанной части массива, в результате чего сдвигается полоса длин волн, дифрагируемая отпечатанной частью массива. Композиция изображения содержит мономеры, которые изменяют размеры и показатель преломления частиц в отпечатанной части массива, и дополнительно содержит растворитель, изменяющий размеры частиц, имеющих структуру «ядро-оболочка», изменением размеров и показателя преломления оболочек частиц. Композиция внешнего слоя покрытия обеспечивает коалесценцию частиц массива в отпечатанной части с получением пленки, проявляющей изображение в отпечатанной части, где остальная часть при этом является практически бесцветной. Стадия печати включает в себя нанесение композиции изображения при помощи ксерографической печати, струйной печати, флексографической печати, шелкографии, металлографии или глубокой печати. Композиция изображения обеспечивает сдвиг дифракционной длины волны части массива в изображении, отпечатанном с использованием композиции изображения, так что часть массива в изображении, напечатанном при использовании композиции изображения, дифрагирует излучение при длине волны, отличной от остальной части изображения [RU 2013125497 G02B 1/00. Опубл. 10.12.2014, WO 2012/061207 2012.05.10].

Известна защитная печатная жидкость и способ печати с наночастицами, позволяющие защитить печатные материалы от поддельных перепечаток, например, при изготовлении денежных знаков, акций, чеков и других представляющих ценность бумаг. Печатная жидкость для печати через узкие сопла на предметы, в частности при изготовлении денежных знаков, акций, чеков, содержит несущую среду и наночастицы солей металлов в виде кристаллических твердых частиц со средним диаметром менее 300 нанометров, флуоресценцирующих или фосфоресцирующих при возбуждении УФ-излучением диапазона А, В или С или видимым светом. Испускаемое при этом излучение флуоресценции или фосфоресценции не лежит в диапазоне частот видимого света, диапазон частот возбуждения и диапазон частот испускания сдвинуты по частоте. Наночастицы содержат дотирующие добавки, по крайней мере, одного вида с диапазоном частот возбуждения и диапазоном частот испускания для флуоресценции или фосфоресценции. Способ печатания, включает операцию подачи вышепредложенной печатной жидкости через одно или несколько узких сопел. Подачу печатной жидкости(ей) проводят через несколько узких сопел, причем сопла регулируются по отдельности или группами относительно наличия или отсутствия подачи печатной жидкости. Сопла по отдельности или в группе регулируются относительно длительности или интенсивности истечения печатной жидкости [RU 2312882 C09K 11/08, C09D 11/00, B41J 2/00, В41М 3/14. Опубл. 20.12.2007, WO 03/052025 26.06.2003].

Аналогов способов получения чернил с наночастицами для цветной струйной печати, позволяющих печатать бесцветными чернилами цветные интерференционные изображениями, образованные по крайней мере одним прозрачным в видимой области спектра рефрактивным слоем ксерогеля, в объеме проведенного поиска, не обнаружено.

Известны золь-гель процессы (англ. sol-gel process) - технологии материалов, в том числе наноматериалов, включающие получение золя с последующим переводом его в гель, то есть в коллоидную систему, состоящую из жидкой дисперсионной среды, заключенной в пространственную сетку, образованную соединившимися частицами дисперсной фазы. [http://ru.wikipedia.org/wiki/Золь-гель_процесс].

Золь (мн.ч. золи, от лат. solutio - раствор) - это высокодисперсная коллоидная система (коллоидный раствор) с жидкой (лиозоль) или газообразной (аэрозоль) дисперсионной средой, в объеме которой распределена другая (дисперсная) фаза в виде капелек жидкости, пузырьков газа или мелких твердых частиц, размер которых лежит в пределе от 1 до 100 нм [phttps://ru.wikipedia.org/wiki/Золи].

(ед.ч. гель, от лат. gelo - «застываю») - структурированные системы, состоящие из высокомолекулярных и низкомолекулярных веществ. Наличие трехмерного полимерного каркаса (сетки) сообщает гелям механические свойства твердых тел: отсутствие текучести, способность сохранять форму, прочность и способность к деформации (пластичность и упругость) [https://ru.wikipedia.org/wiki/Гели].

В противоположность гелям, в золях частицы дисперсной фазы не связаны в пространственную структуру, а свободно участвуют в броуновском движении [http://dic.academic.ru/dic.nsf/nanotechnology/449/Золь].

Известно, что большинство гелей термодинамически неустойчиво; при старении вследствие изотермической переконденсации или рекристаллизации обратимая по отношению к механическому воздействию коагуляцционная структура перерождается в необратимую конденсационно-кристаллизационную. Кроме того, многие гели подвержены синерезису - сокращению объема с выделением жидкой фазы в результате самопроизвольного уплотнения структурной сетки [http://www.xumuk.ru/encyklopedia/958.html].

Общее название «золь-гель процесс» (золь-гель технология, золь-гель способ)» объединяет группу методов получения (синтеза) материалов из растворов, существенным элементом которых является образование геля на одной из стадий процесса.

В основе наиболее известного варианта золь-гель процесса лежат процессы контролируемого гидролиза соединений, обычно алкоксидов M(OR)x (М=Si, Ti, Zr, V, Zn, Al, Sn, Ge, Mo, W и др.) или соответствующих хлоридов, в водной или органической, чаще спиртовой, среде [здесь и далее https://ru.wikipedia.org/wiki/Золь-гель_процесс].

На первой стадии золь-гель процесса реакции гидролиза и поликонденсации приводят к образованию коллоидного раствора - золя - частиц гидроксидов, размер которых не превышает несколько десятков нм.

Увеличение объемной концентрации дисперсной фазы или иное изменение внешних условий (рН, замена растворителя) приводят к интенсивному образованию контактов между частицами и образованию монолитного геля, в котором молекулы растворителя заключены в гибкую, но достаточно устойчивую трехмерную сетку, образованную частицами гидроксидов.

Концентрирование золей с последующим гелеобразованием осуществляют путем диализа, ультрафильтрации, электродиализа, упаривания при относительно низких температурах или экстракции.

Известно, что исключительно важную роль в золь-гель процессе играют процессы удаления растворителя из геля (сушки). В зависимости от метода их осуществления, могут быть получены различные продукты синтеза (ксерогели, амбигели, криогели, аэрогели).

Аэрогель - это общее название для всех гелей с невысоким содержанием твердых веществ, поры которых заполнены воздухом, в более узком смысле они характеризуются тем, что при их получении используют сверхкритическую сушку, при получении криогелей - сублимационную сушку, а при получении ксерогелей -конвекционную субкритическую сушку.

Амбигель - продукт сушки водного или органического геля при атмосферном давлении, характеризующийся, в отличие от ксерогеля, низкими значениями плотности, приближающимися к плотности аэрогелей.

Ксерогель (англ. xerogel) - продукт сушки аква- или алкогелей при атмосферном давлении в условиях, приводящих к коллапсу (схлопыванию) макропор и значительному увеличению плотности материал [http://thesaurus.rusnano.com/wiki/article2155].

Общими особенностями этих продуктов являются сохранение наноразмеров структурных элементов и достаточно высокие значения удельной поверхности (сотни м2/г), хотя их объемная плотность может отличаться в сотни раз.

Большинство продуктов золь-гель синтеза используется в качестве прекурсоров при получении оксидных нанопорошков, тонких пленок покрытия оптических линз или керамики.

В дисперсных системах на поверхности частиц (на границе раздела частица-дисперсионная среда) возникает двойной электрический слой [http://www.photocor.ru/theory/zeta-potential/].

Двойной электрический слой представляет собой слой ионов, образующийся на поверхности частицы в результате адсорбции ионов из раствора или диссоциации поверхностных соединений. Поверхность частицы приобретает слой ионов определенного знака, равномерно распределенный по поверхности и создающий на ней поверхностный заряд.

Теории двойного электрического слоя широко используются для интерпретации поверхностных явлений, однако не существует прямых методов измерения потенциалов на границе адсорбционного слоя. Для количественного определения величины электрического заряда в двойном электрическом слое широко используется дзета-потенциал. Дзета-потенциал не равен адсорбционному потенциалу или поверхностному потенциалу в двойном электрическом слое. Тем не менее, дзета-потенциал часто является единственным доступным способом для оценки свойств двойного электрического слоя.

При движении частицы двойной электрический слой разрывается. Место разрыва при перемещении твердой и жидкой фаз друг относительно друга называется плоскостью скольжения. Плоскость скольжения лежит на границе между диффузными и адсорбционными слоями, либо в диффузном слое вблизи этой границы. Потенциал на плоскости скольжения называют электрокинетическим или дзета-потенциалом (-потенциал).

Иными словами, дзета-потенциал - это разность потенциалов дисперсионной среды и неподвижного слоя жидкости, окружающего частицу [http://thesaurus.rusnano.com/wiki/article2155].

Важность дзета-потенциала состоит в том, что его значение может быть связано с устойчивостью коллоидных дисперсий. Дзета-потенциал определяет степень и характер взаимодействия между частицами дисперсной системы.

Для молекул и частиц, которые достаточно малы, высокий дзета-потенциал будет означать стабильность, т.е. раствор или дисперсия будет устойчивы по отношению к агрегации. Когда дзета-потенциал низкий, притяжение превышает отталкивание, и устойчивость дисперсии будет нарушаться. Так, коллоиды с высоким дзета-потенциалом являются электрически стабилизированными, в то время, как коллоиды с низким дзета-потенциалом склонны коагулировать или флокулировать.

Значение дзета-потенциала равное 30 мВ (положительное или отрицательное) можно рассматривать как характерное значение, для условного разделения низко-заряженных поверхностей и высоко-заряженных поверхностей. Чем больше электрокинетический потенциал, тем устойчивее коллоид.

Известно, что при значениях дзета-потенциала от 0 до ±30 мВ наблюдается плохая устойчивость коллоидных систем (возможна коагуляция или флокуляция), а при значениях больше ±30 мВ - хорошая устойчивость коллоидных систем [http://thesaurus.rusnano.com/wiki/article2155].

Известен способ получения диспергируемых в воде наночастиц золя диоксида титана фазы рутила со средним диаметр частиц менее 30 нм высокой чистоты в водной среде, не имеющей ионных примесей и используемых для оптических материалов, имеющих высокий показатель преломления и имеющие высокую диэлектрическую постоянную и диспергируемость в растворителях без каких-либо ионных примесей, таких как Cl-, NO3-, SO4-2, включающий следующие стадии: производства смешанного растворителя из воды и перекиси водорода; гидролиз пероксида титаната и гидротермическая обработка раствора с растворением пероксида титаната и образованием золя диоксида титана [US 2006110319 C01G 23/047 2006-05-25].

Аналогов золь-гель чернил для цветной струйной печати, позволяющих печатать бесцветными чернилами цветные интерференционные изображениями, образованные по крайней мере одним прозрачным в видимой области спектра рефрактивным слоем ксерогеля, в объеме проведенного поиска, не обнаружено.

Наиболее близким по технической сущности и получаемому техническому результату аналогом-прототипом является способ получения золя оксида титана, включающий стадии: а) повышения температуры реагента раствора, содержащего предшественник оксида титана в качестве растворителя для реакции до температуры реакции 70 до 95; б) получение золя оксида титана с добавлением кислотного катализатора с раствором реагента и проведения реакции золь-гель при удалении растворителя для реакции из него; и в) сушки готового золя методом сублимационной сушки, сушки нормальной давления или вакуумной сушки и повторное диспергирование высушенного титана в растворителе для дисперсии. Золь-гель реакцию при удалении растворителя для реакции на стадии б) проводят при температуре от 70 до 95°С. Растворитель для реакции и растворитель для диспергирования является одинаковым или разным одним или более растворителей, выбранных из группы, состоящей из воды, низшего спирта из С15, высшего спирта С6 или более, этиленгликоль, и ацетил ацетона. Низший спирт представляет собой метанол, этанол, пропанол, изопропиловый спирт, бутиловый спирт, изобутиловый спирт или и высший спирт является поливиниловый спирт. Предшественник оксида титана представляет собой один или несколько соединений, выбранных из группы, состоящей из титана, тетраэтоксисилана тетраизопропоксититан, тетрабутоксицирконий титана, хлорид титанила, титанилсульфата и оксититанилсульфат. Кислотный катализатор представляет собой один или несколько соединений, выбранных из группы, состоящей из азотной кислоты, серной кислоты, соляной кислоты, и уксусной кислоты. Кислотный катализатор добавляют в количестве от 11 до 30 частей по массе в расчете на 100 частей по массе предшественника оксида титана. Один или более неорганических солей, выбранных из группы, состоящей из NaCl, KCl, NaBr и KBr, или одним или несколькими поверхностно-активными веществами, выбранными из группы, состоящей из натрия додецилсульфата, бромид цетилтриметил аммония и цетилтриметил аммония хлорид, добавляется к раствору реагента на стадии а) в количестве от 1 до 10 частей по массе в расчете на 100 частей по массе предшественника оксида титана. Первичные частицы диоксида титана, имеющие средний диаметр от 1 до 200 нм в кристаллической форме анатаза или рутила. Вторичные частицы диоксида титана имеют средний диаметр 200 нм или менее. Золь диоксида титана имеет содержание твердого вещества от 8 до 50 мас. %. Композиция для покрытия очков, очков промышленной безопасности или очков для отдыха содержит золь диоксида титана в количестве от 10 до 70 мас. % [WO 2007073043 2007-06-28 C01G 23/047 прототип].

Технология получения золя наночастиц кристаллического диоксида титана по прототипу WO 2007073043 предполагает выполнение многостадийных операций, направленных на получение функциональных золь-гель порошковых и пленочных материалов. Стадии, описывающие получение порошка, включают протекание гидролиза с последующей протонизацией и дальнейшее осаждение с использованием сушки. При этом полученные в прототипе значения коэффициента преломления, не превышающие величины 1.6, позволяют сосредоточить области применения полученных покрытий на основе нанокристаллических золей TiO2 исключительно в качестве просветляющих (то есть обесцвечивающих!) и УФ защищающих слоев для очков различного функционального предназначения.

Вместе с тем технология по прототипу WO 2007073043 не позволяет получать седментационно устойчивые золи (коллоиды) на основе кристаллического диоксида титана без использования стадии полного обезвоживания или сушки. Это, в свою очередь, не позволяет достигать высоких значений показателя преломления (более 1.7) во всем видимом диапазоне даже после введения легколетучего растворителя и, следовательно, не позволяет формировать цветные интерфереционные наноструктуры.

Задачи и технический результат

Основной задачей предлагаемого изобретения является обеспечение возможности струйной печати цветных интерференционных изображений на непористых поверхностях посредством специально приготовляемых бесцветных золь-гель чернил с возможностью наблюдения цветных изображений в отраженном свете видимого спектра, что само по себе особо уникально для струйного метода печати.

Техническими результатами, получаемым при реализации и использовании изобретения являются:

- формирование методом струйной печати оптических пленочных наноструктур из нанокристаллического золя диоксида титана с точностью до 10 нм, обеспечивающих появление управляемой интерференции, в то время как обычно струйная печать фокусируется на микрометровом манипулировании печатных объектов, и только в исключительных случаях переходит в наномасштаб;

- создание нетоксичных чернил для цветной струйной печати на основе химически инертного диоксида титана, в то время как классические цвета струйной печати являются экологически опасными и включают использование токсических соединений, таких как Cd2+ для желтого картриджа;

- получение чернил для струйной печати не выцветающих от действия солнечных лучей и УФ излучения интерференционно окрашенных изображений, обладающих высокой адгезией к непористой подложке;

- обеспечение возможности повторного нанесения чернилами для струйной печати рефрактивных слоев и повторного использования подложки с возможностью удаления нанесенных слоев водными растворителями.

Раскрытие изобретения

Характерной отличительной оригинальной особенностью изобретения является использование технологии струйной печати для создания цветных интерференционных нанослоев слоев ксерогеля нанокристаллического диоксида титана с высокой точностью без использования высоких температур и технически сложных физических процессов.

Это стало возможным благодаря созданию технологии получения специальных золь-гель чернил на основе нанокристаллического золя диоксида титана преимущественно анатазной фазы, при естественном высыхании которых образуются оптически монолитные покрытия в виде рефрактивного слоя ксерогеля нанокристаллического диоксида титана с высоким коэффициентом преломления (более 2 во всем диапазоне видимого света).

Управление толщиной рефрактивного слоя ксерогеля нанокристаллического диоксида титана с точностью до 10 нм посредством струйного нанесения золь-гель чернил позволяет получать цветные изображения во всем диапазоне цветов видимого спектра света с контролируемой интерференцией с использованием одних бесцветных чернил.

Отсутствие красителей в предлагаемых золь-гель чернилах для цветной струйной печати обладает высокой перспективностью с экологической стороны, так как применяемые системы на основе нанокристаллических золей анатаза диоксида титана нетоксичны и биоинертны.

Согласно изобретения предлагается принципиально новый способ приготовления методами растворной химии золь-гель бесцветных чернил для цветной интерференционной струйной печати для создания цветных интерференционных изображений струйным методом печати, обеспечивающих возможность создания рефрактивных покрытий с заданной толщиной с точностью до 10 нм, необходимых для создания цветных интерференционных изображений даже на неподготовленных гладких полимерных пленках.

Предлагаемый подход закладывает основу для развития принципиально нового направления цветной интерференционной струйной печати и позволяет освоить новые методы формирования оптических нанообъектов с точностью до 10 нм широкодоступными методами струйной печати с использованием обычных струйных принтеров на непористых гладких подложках.

Поставленная задача решается и требуемый технический результат достигается тем, что согласно изобретения получают золь-гель чернила для цветной интерференционной струйной печати, содержащие нанокристаллический золь диоксида титана преимущественно анатазной фазы в растворе этилового спирта в воде, характеризующиеся по крайней мере одним из следующей группы свойств:

наличием наночастиц диоксида титана в виде кристаллов диоксида титана преимущественно анатазной фазы с содержанием аморфной фазы диоксида титана не более 5%,

концентрацией нанокристаллических частиц диоксида титана 1-5 мас. %,

размером нанокристаллических частиц диоксида титана 5-200 нм,

средним гидродинамическим диаметром частиц нанокристаллического золя диоксида титана не более 200 нм, преимущественно 15,8 нм,

дзета-потенциалом наночастиц диоксида титана не менее +30 мВ, преимуществен