Способ получения гидрогелей

Иллюстрации

Показать все

Группа изобретений относится к способам производства гидрогелей. Согласно настоящему изобретению предложен способ получения полимерного гидрогеля, включающий стадии: получения водного раствора водорастворимого производного полисахарида и поликарбоновой кислоты; перемешивания раствора, например путем помешивания; выделения композита производного полисахарида/поликарбоновой кислоты из раствора и нагревания композита производного полисахарида/поликарбоновой кислоты при температуре примерно 80°C с обеспечением тем самым сшивки полисахарида поликарбоновой кислотой. Согласно настоящему изобретению также предложены полимерные гидрогели, полученные при помощи способов согласно настоящему изобретению, применение полимерных гидрогелей в качестве фармацевтической композиции, лекарственного средства для снижения потребления калорий, лечения ожирения, улучшения гликемического контроля, средства для профилактики диабета. Группа изобретений позволяет получить гидрогели, обладающие улучшенными сорбционными свойствами, кроме того, полимерные гидрогели являются относительно плотными, но сохраняют значительную способность поглощать смесь искусственного желудочного сока с водой. 8 н. и 21 з.п. ф-лы, 20 табл., 12 пр., 13 ил.

Реферат

РОДСТВЕННЫЕ ЗАЯВКИ

Настоящая заявка испрашивает приоритет согласно предварительной заявке на патент США №61/494298, поданной 7 июня 2011 г, и предварительной заявке на патент США №61/542494, поданной 3 октября 2011 г. Полное содержание указанной заявки (заявок) включено в настоящее описание посредством ссылки.

Уровень техники изобретения

Полимерные гидрогели представляют собой сшитые гидрофильные полимеры, способные впитывать и удерживать большие количества воды. Некоторые из указанных материалов способны поглощать свыше 1 кг воды на грамм сухого полимера. Поперечные связи между цепями макромолекул образуют сетчатую структуру, которая обеспечивает структурную целостность системы полимер-жидкость и препятствует полной солюбилизации полимера, в то же время обеспечивая возможность удержания водной фазы внутри молекулярной сетчатой структуры. Полимерные гидрогели, обладающие особенно большой способностью удерживать воду, называют супервпитывающими полимерными гидрогелями (СВП). Высокая впитывающая способность под нагрузкой (ВПН) также представляет собой универсальную характеристику СВП, которую, в общем случае, не демонстрируют полимерные гидрогели, обладающие меньшей способностью удерживать воду. Помимо давления на способность полимерного гидрогеля, такого как СВП, удерживать воду могут влиять рН и другие условия окружающей среды. Применение супервпитывающих полимерных гидрогелей включает применение в качестве впитывающих слоев в области впитывающих продуктов для личной гигиены (Masuda, F., Superabsorbent Polymers, Ed. Japan Polymer Society, Kyoritsu Shuppann, (1987)) и применение в качестве устройств для управляемого высвобождения воды и питательных веществ в засушливые почвы.

Карбоксиалкилцеллюлозные материалы и другие карбоксиалкилполисахариды известны в данной области техники. Карбоксиалкилцеллюлозные материалы можно получить при помощи обработки целлюлозного материала карбоксиалкилирующим агентом, таким как хлоралкановая кислота, обычно монохлоруксусная кислота, и щелочью, такой как гидроксид натрия, необязательно в присутствие спирта. Такие карбоксиалкилцеллюлозы в целом растворимы в воде. Известны различные способы, позволяющие сделать такие растворимые в воде карбоксиалкилцеллюлозы нерастворимыми в воде. Тем не менее, указанные способы основаны только на механизме стабилизации, который не включает применение какого-либо сшивающего агента; указанная методика включает выбор соответствующего диапазона температуры и времени термообработки для превращения водорастворимого производного целлюлозы в нерастворимую в воде форму. Полученная стабилизация обусловлена, по-видимому, в основном физическими, а не химическими эффектами. В действительности, при определенных значениях рН, обычно примерно от рН 10 и выше, производные целлюлозы снова становятся растворимыми в воде [Flory, J. P. Principles of Polymer Chemistry; Cornell University: Ithaca, NY, 1953].

Другие способы придания нерастворимости материалам карбоксиалкилцеллюлозы включают термообработку карбоксиалкилцеллюлозы в присутствии избытка карбоксиалкилирующих реагентов и побочных продуктов реакции карбоксиалкилирования с обеспечением нерастворимой в воде карбоксиалкилцеллюлозы, обладающей желаемыми свойствами и характеристиками впитывания и удержания жидкости. В указанных случаях применение ускорителей и катализаторов для содействия стабилизации (т.е. постоянной сшивке) в сочетании с неоднородным распределением степени сшивки дает нерастворимый материал, обладающий низкой способностью к набуханию (Anbergen U., W. Opperman, Polymer, 31, 1854 (1990), Nijenhuis, K. te, Advances in Polymer Science, 130, (1997)).

Гидрогели на основе целлюлозы можно получить путем физической или химической стабилизации водных растворов целлюлозных соединений. Дополнительные природные и/или синтетические полимеры комбинировали с целлюлозой с получением композитных гидрогелей с конкретными свойствами [Chen, H.; Fan, M. Novel thermally sensitive pH-dependent chitosan/carboxymethylcellulose hydrogels. J. Bioact. Compat. Polym. 2008, 23 (1), 38-48. Chang, C.; Lue, A.; Zhang, L. Effects of cross-linking methods on structure and properties of cellulose/PVA hydrogels. Macromol. Chem. Phys., 2008, 209 (12), 1266-1273] (A. Sannino, M. Madaghiele, F. Conversano, A. Maffezzoli, P.A. Netti, L. Ambrosio and L. Nicolais' "Cellulose derivative-hyaluronic acid based microporous hydrogel cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability", Biomacromolecules, Vol.5, n°l (2004) 92-96). Физические термообратимые гели обычно получают из водных растворов метилцеллюлозы и/или гидроксипропилметилцеллюлозы (в концентрации 1-10% по массе) [Sarkar, N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J. Appl. Polym. Sci., 1979, 24 (4), 1073-1087]. Механизм гелеобразования включает образование гидрофобных ассоциаций между макромолекулами, содержащими метоксигруппы. При низких температурах полимерные цепи в растворе гидратированы и просто перепутаны между собой. Когда температура повышается, макромолекулы постепенно теряют гидратационную воду, до тех пор пока не образуются полимер-полимерные гидрофобные ассоциации, таким образом формируя сетчатую структуру гидрогеля. Температура перехода из золя в гель зависит от степени замещения простых эфиров целлюлозы, а также от добавления солей. Более высокая степень замещения производных целлюлозы обеспечивает указанным производным более гидрофобный характер, таким образом понижая температуру перехода, при которой образуются гидрофобные ассоциации. Аналогичный эффект можно получить при добавлении солей в полимерный раствор, поскольку соли уменьшают уровень гидратации макромолекул, притягивая молекулы воды в свое окружение. Как степень замещения, так и концентрацию солей можно соответствующим образом регулировать для получения конкретных составов, превращающихся в гель при 37°С и, следовательно, потенциально подходящих для биомедицинских применений [Tate, M.C.; Shear, D.A.; Hoffman, S.W.; Stein, D.G.; LaPlaca, M.C. Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials, 2001, 22 (10), 1113-1123. Materials, 2009, 2, 370 Chen, С.; Tsai, С.; Chen, W.; Mi, F.; Liang, H.; Chen, S.; Sung, H. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules, 2006e7 (3), 736-743. Stabenfeldt, S.E.; Garcia, A.J.; LaPlaca, M.C. Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J. Biomed. Mater. Res., A 2006, 77 (4), 718-725.]. Тем не менее, физически сшитые гидрогели обратимы [Те Nijenhuis, К. On the nature of cross-links in thermoreversible gels. Polym. Bull., 2007, 58 (1), 27-42], и, следовательно, могут быть текучими в заданных условиях (например, при механической нагрузке) и могут неконтролируемо разрушаться. Из-за указанных недостатков физические гидрогели на основе метилцеллюлозы и гидроксипропилметилцеллюлозы (ГПМЦ) не рекомендуют для применения in vivo.

В отличие от физических гидрогелей, демонстрирующих свойства текучести, стабильные и жесткие сетчатые структуры из целлюлозы можно получить, вызывая образование химических необратимых поперечных связей между цепями целлюлозы. Для создания стабильных сетчатых структур на основе целлюлозы можно применять химические агенты или физические воздействия (например, жесткое излучение). Степень сшивки, определяемая как число мест сшивки на единицу объема полимерной сетчатой структуры, влияет на диффузионные свойства, механические свойства и свойства разрушения гидрогеля, а также на сорбционную термодинамику, и может до некоторой степени регулироваться во время синтеза. До сшивки можно осуществить определенные химические модификации основной цепи целлюлозы для получения стабильных гидрогелей с заданными свойствами. Например, была разработана силилированная ГПМЦ, которую подвергают сшивке посредством реакций конденсации при понижении рН в водных растворах.

В качестве другого примера, была синтезирована модифицированная тирамином натрийкарбоксиметилцеллюлоза (NaКМЦ) для получения составов, способных к ферментативному гелеобразованию, для доставки в клетки [Ogushi, Y.; Sakai, S.; Kawakami, K. Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J. Biosci. Bioeng., 2007, 104 (1), 30-33]. После введения соответствующих функциональных групп в целлюлозу может быть достигнута фотосшивка водных растворов производных целлюлозы. Тем не менее, применение химических сшивающих и/или функционализирующих агентов приводит к получению продукта, не подходящего для перорального введения, особенно в значительных количествах и для длительного применения.

Краткое описание изобретения

Настоящее изобретение связано с обнаружением того факта, что сшивка водорастворимых производных целлюлозы, таких как карбоксиметилцеллюлоза, с применением низких концентраций поликарбоновой кислоты, такой как лимонная кислота (3-карбокси-3-гидрокси-1,5-пентандиовая кислота; здесь и далее также обозначаемая «ЛК»), приводит к образованию полимерных гидрогелей с высокой впитывающей способностью, обладающих значительными водопоглощающими свойствами, механической стабильностью и другими выгодными характеристиками.

Кроме того, настоящее изобретение относится к усовершенствованному способу получения полимерных гидрогелей, включая супервпитывающие полимерные гидрогели, путем сшивки растворимого производного полисахарида, такого как карбоксиалкилполисахарид, гидроксиалкилполисахарид или комбинация указанных соединений, при помощи поликарбоновой кислоты. Далее, настоящее изобретение относится к полимерным гидрогелям, полученным при помощи указанных способов, и полимерным гидрогелям, обладающим выгодными свойствами.

В одном из вариантов реализации настоящего изобретения предложен способ получения полимерного гидрогеля, включающий следующие стадии: (1) получение водного раствора водорастворимого производного полисахарида и поликарбоновой кислоты; (2) необязательно, перемешивание раствора, например, путем размешивания; (3) выделение композита производного полисахарида/поликарбоновой кислоты из раствора и (4) нагревание композита производного полисахарида/поликарбоновой кислоты до температуры по меньшей мере примерно 80°С, с обеспечением тем самым сшивки полисахарида поликарбоновой кислотой. В одном из вариантов реализации композит производного полисахарида/поликарбоновой кислоты гранулируют перед осуществлением стадии (4). В одном из вариантов реализации композит производного полисахарида/поликарбоновой кислоты нагревают на стадии (4) до температуры примерно 100°С или выше.

Водный раствор производного полисахарида и поликарбоновой кислоты предпочтительно готовят путем введения производного полисахарида и поликарбоновой кислоты в воду и перемешивания полученной смеси, например, путем размешивания, в течение времени, достаточного для создания гомогенного раствора.

Производное полисахарида предпочтительно находится в растворе на стадии (1) в концентрации по меньшей мере примерно 0,25% по массе относительно воды, предпочтительно по меньшей мере примерно 0,4% или 0,5%. В одном из вариантов реализации концентрация производного полисахарида составляет примерно от 0,25% примерно до 25% или примерно от 0,25% примерно до 30% по массе относительно воды, предпочтительно примерно от 0,4% примерно до 20% и более предпочтительно примерно от 0,4% примерно до 12%. В некоторых вариантах реализации производное полисахарида находится в растворе в концентрации по меньшей мере примерно 4%, например, примерно от 4% примерно до 30%, примерно от 4% примерно до 20%, примерно от 4% примерно до 10% по массе относительно воды. В одном из вариантов реализации производное полисахарида находится в растворе на стадии (1) в концентрации примерно 6% по массе относительно воды. В некоторых вариантах реализации концентрация полисахарида составляет примерно от 4% примерно до 8%, примерно от 4,5% примерно до 7,5%, примерно от 5% примерно до 7% или примерно от 5,5% примерно до 6,5% по массе относительно воды. В других вариантах реализации концентрация полисахарида составляет примерно от 0,25% примерно до 6%, примерно от 0,4% примерно до 6 % или примерно от 0,5% примерно до 6% по массе относительно воды. В одном из вариантов реализации концентрация производного полисахарида составляет примерно от 0,5% примерно до 1%, 1,5% или 2% по массе относительно воды. В одном из вариантов реализации раствор содержит нерастворенное производное полисахарида, то есть, количество производного полисахарида превышает его растворимость и образуется суспензия или взвесь.

Поликарбоновая кислота предпочтительно находится в растворе на стадии (1) в концентрации примерно от 0,01% примерно до 5% или примерно от 0,05 примерно до 5% по массе относительно производного полисахарида. Предпочтительно поликарбоновая кислота находится в концентрации примерно от 0,3% или менее, или 0,35% или менее, по массе относительно производного полисахарида. В одном из вариантов реализации поликарбоновая кислота находится в растворе на стадии (1) в концентрации примерно от 0,01% примерно до 0,35%, примерно от 0,05% примерно до 0,35%, примерно от 0,1% примерно до 0,35%, примерно от 0,01% примерно до 0,3%, примерно от 0,05% примерно до 0,3%, примерно от 0,1% примерно до 0,3%, примерно от 0,15% примерно до 0,35%, примерно от 0,15% примерно до 0,3%, примерно от 0,2% примерно до 0,35%, примерно от 0,25% примерно до 0,35%, примерно от 0,2% примерно до 0,3%, или примерно от 0,25% примерно до 0,3%, по массе относительно производного полисахарида.

В другом варианте реализации поликарбоновая кислота предпочтительно находится в растворе на стадии (1) в концентрации примерно от 0,05 примерно до 5% (г/г) относительно мономерных звеньев производного полисахарида. Предпочтительно поликарбоновая кислота находится в концентрации примерно 0,35% (г/г) или 0,3% или менее, относительно мономерных звеньев производного полисахарида. В одном из вариантов реализации поликарбоновая кислота находится в растворе на стадии (1) в концентрации примерно от 0,05% примерно до 0,3%, примерно от 0,1% примерно до 0,3%, примерно от 0,2% примерно до 0,3% или примерно от 0,25% примерно до 0,3% (г/г) относительно мономерных звеньев производного полисахарида.

В одном из вариантов реализации водный раствор состоит по существу из производного полисахарида, поликарбоновой кислоты и воды. В предпочтительном варианте реализации раствор состоит по существу из карбоксиметилцеллюлозы, лимонной кислоты и воды.

В другом варианте реализации раствор состоит по существу из карбоксиметилцеллюлозы, гидроксиэтилцеллюлозы, лимонной кислоты и воды. В другом варианте реализации раствор состоит по существу из гидроксиэтилцеллюлозы, лимонной кислоты и воды. Вода предпочтительно представляет собой очищенную воду, такую как дистиллированная или деионизированная вода. В указанном варианте реализации способ осуществляют по существу в отсутствие любого другого агента, который может влиять на рН. В некоторых варрантах реализации раствор по существу не содержит молекулярного разделителя, как указанный термин применяют в WO 2009/021701, включая сахариды, полиолы и сахароспирты, такие как сорбит.

В другом варианте реализации раствор содержит молекулярный разделитель, предпочтительно полигидроксилированное соединение, такое как сахарид, полиол или сахароспирт. В одном из вариантов реализации молекулярный разделитель представляет собой сорбит. Предпочтительно концентрация молекулярного разделителя составляет от 0% примерно до 20% по массе относительно массы воды. В одном из вариантов реализации концентрация молекулярного разделителя составляет примерно от 0,1% примерно до 20% по массе относительно массы воды. В другом варианте реализации концентрация молекулярного разделителя составляет примерно от 4% примерно до 20% или примерно от 8% до 20% по массе относительно массы воды. В другом варианте реализации концентрация молекулярного разделителя составляет менее 0,5% по массе относительно массы воды, например, менее 0,4%, 0,3%, 0,2% или 0,1%. В некоторых вариантах реализации при более низких концентрациях поликарбоновой кислоты часть производного полисахарида не подвергается сшивке в конце способа и может быть вымыта из полученного гидрогеля. В таком случае избыток производного полисахарида служит молекулярным разделителем. Это может наблюдаться, например, когда производное полисахарида представляет собой карбоксиметилцеллюлозу и поликарбоновая кислота представляет собой лимонную кислоту, и концентрация лимонной кислоты составляет примерно 0,5 или менее, примерно 0,35% или менее или примерно 0,3% или менее по массе относительно карбоксиметилцеллюлозы.

Реакцию сшивки предпочтительно проводят по существу в отсутствие катализатора. В предпочтительном варианте реализации реакцию сшивки предпочтительно проводят по существу в отсутствие гипофосфита натрия.

Краткое описание чертежей

Фигура 1 иллюстрирует механизм сшивки целлюлозного полимера лимонной кислотой.

Фигура 2 представляет собой диаграмму, показывающую теоретические поглощение среды и разрушение пищевого полимерного гидрогеля по мере продвижения его по желудочно-кишечному тракту.

Фигура 3 представляет собой график зависимости σ (Па) от 10-1 (мкм) из типичного эксперимента по сжатию, описанного в Примере 5.

Фигура 4 представляет собой график зависимости -σ(α-1/α2)-1 от 1/α из типичного эксперимента по сжатию, описанного в Примере 5.

Фигура 5 представляет собой диаграмму, показывающую степень сшивки сшитой лимонной кислотой карбоксиметилцеллюлозы, полученной при двух различных исходных концентрациях КМЦ, в зависимости от концентрации лимонной кислоты.

Фигура 6 представляет собой диаграмму, показывающую степень сшивки сшитой лимонной кислотой карбоксиметилцеллюлозы, полученной при различных исходных концентрациях КМЦ и концентрации лимонной кислоты 0,3%.

Фигура 7 представляет собой диаграмму, показывающую коэффициент поглощения среды в ИЖС (имитации желудочного сока)/воде 1:8 для карбоксиметилцеллюлозы, полученной при различных исходных концентрациях КМЦ и концентрации лимонной кислоты 0,3%.

На Фигуре 8 представлены спектры ВР-ВМУ ЯМР образцов С и D из Примера 6.

На Фигуре 9 представлены спектры ВР-ВМУ ЯМР образцов А и В из Примера 6.

На Фигуре 10 представлен спектр ВР-ВМУ ЯМР образцов С и D из Примера 6 с фильтрацией Т2.

На Фигуре 11 представлен спектр ВР-ВМУ ЯМР образцов А и В из Примера 6 с фильтрацией Т2.

Фигура 12 представляет собой схематическое изображение, иллюстрирующее приспособление, подходящее для получения полимерного гидрогеля.

На Фигуре 13 представлена диаграмма, показывающая предсказанную зависимость модуля упругости, набухания, модуля вязкости и предпочтительности от концентрации лимонной кислоты, как описано в Примере 9.

Подробное описание изобретения

Согласно настоящему изобретению предложены полимерные гидрогели, способы получения полимерных гидрогелей, способы применения полимерных гидрогелей и готовые изделия, содержащие полимерные гидрогели. Согласно некоторым вариантам реализации настоящее изобретение связано с тем открытием, что полисахаридные гидрогели, такие как карбоксиметилцеллюлоза, химически сшитая лимонной кислотой, обладающие выгодными свойствами, могут быть получены при помощи относительно более низких количеств поликарбоновой кислоты, чем ранее полагали в данной области техники.

Согласно одному из вариантов реализации способ получения полимерного гидрогеля включает следующие стадии: (1) получение водного раствора водорастворимого производного полисахарида и поликарбоновой кислоты; (2) необязательно, перемешивание раствора; (3) выделение композита производного полисахарида/поликарбоновой кислоты из раствора; и (4) нагревание композита производного полисахарида/поликарбоновой кислоты при температуре по меньшей мере примерно 80°С, или по меньшей мере примерно 100°С, с обеспечением тем самым сшивки полисахарида поликарбоновой кислотой и образование полимерного гидрогеля. Согласно одному из вариантов реализации, композит производного полисахарида/поликарбоновой кислоты гранулируют перед осуществлением стадии (4) и, необязательно, просеивают для получения частиц с желаемым диапазоном размеров. Согласно одному из вариантов реализации, продукт полимерного гидрогеля, полученный на стадии (4), гранулируют, например, путем раздробления или размола, и, необязательно, просеивают.

В предпочтительном варианте реализации способ согласно настоящему изобретению включает следующие стадии: (1) получение водного раствора водорастворимого производного полисахарида и поликарбоновой кислоты; (2) перемешивание раствора; (3) нагревание раствора для удаления воды и получения композита -производного полисахарида/поликарбоновой кислоты; (3а) гранулирование композита производного полисахарида/поликарбоновой кислоты для получения частиц композита; (4) нагревание частиц композита при температуре по меньшей мере примерно 80°С, с обеспечением тем самым сшивки полисахарида поликарбоновой кислотой и образование полимерного гидрогеля; (5) промывание полимерного гидрогеля; (6) высушивание полимерного гидрогеля и, необязательно, (7) гранулирование полимерного гидрогеля для получения частиц гидрогеля. Частицы гидрогеля, полученные на стадиях (3а) или (7), или на обеих указанных стадиях, можно просеивать для получения образца частиц с определенным диапазоном размеров.

Термин «композит производного полисахарида/поликарбоновой кислоты» или «композит» в настоящем описании относится по существу к сухому материалу, содержащему смесь производного полисахарида и поликарбоновой кислоты. В тех вариантах реализации, в которых указанный композит получают путем сушки выпариванием водного раствора производного полисахарида и поликарбоновой кислоты, указанный композит представляет собой по существу сухой остаток, остающийся после удаления несвязанной воды. Композиция может удерживать связанную воду, и может содержать, например, до 5, 10 или 20% воды по массе.

Не ограничиваясь какой-либо теорией, полагают, что получение полимерных гидрогелей согласно настоящему описанию происходит посредством ковалентной сшивки производного полисахарида поликарбоновой кислотой. На Фигуре 1 показана сшивка растворимого производного целлюлозы, такого как карбоксиметилцеллюлоза, лимонной кислотой. В указанном механизме C1-карбоксильная группа лимонной кислоты активируется путем образования ангидрида при нейтральном рН и повышенной температуре, в присутствие очень малого количества воды, и в отсутствие катализатора взаимодействует с гидроксильной группой целлюлозы с образованием сложного эфира. Затем С5-карбоксильная группа активируется путем образования ангидрида и взаимодействует с гидроксильной группой другой полимерной цепи целлюлозы, таким образом образуя ковалентную химическую сшивку. Удаление воды из раствора производного полисахарида/поликарбоновой кислоты перед сшивкой, таким образом, необходимо, чтобы обеспечить возможность образования ангидрида/протекания реакции этерификации. Это осуществляют на стадиях (3) и (4), описанных выше. Как показано в Примере 6 ниже, недостаточное удаление воды из раствора перед сшивкой приводит к образованию гидрогеля с физическими сшивками вместо химических сшивок.

Водорастворимое производное полисахарида предпочтительно представляет собой карбоксиалкилполисахарид, гидроксиалкилполисахарид или комбинацию указанных соединений. В некоторых вариантах реализации водорастворимое производное полисахарида представляет собой производное целлюлозы, такое как гидроксиалкилцеллюлоза, например, гидроксиэтилцеллюлоза, или карбоксиалкилцеллюлоза, включая карбоксиметилцеллюлозу, карбоксиэтилцеллюлозу и подобные соединения, или смеси указанных соединений. Предпочтительно производное полисахарида представляет собой карбоксиметилцеллюлозу или соль карбоксиметилцеллюлозы, такую как натриевая соль. В некоторых вариантах реализации производное полисахарида состоит по существу из карбоксиметилцеллюлозы. В других вариантах реализации полисахаридное производное представляет собой комбинацию карбоксиметилцеллюлозы с другим производным полисахарида, таким как другое производное целлюлозы, включая гидроксиалкилцеллюлозу.

Способы получения карбоксиалкилцеллюлозы известны специалистам в данной области техники. Соответственно, обеспечивают целлюлозный материал, такой как распушенная древесная целлюлоза, хлопок, хлопковые очесы и подобный материал. Целлюлозный материал может находиться в форме волокон или волокон, которые были измельчены до пылевидного состояния. Целлюлозный материал диспергируют в инертном растворителе, таком как спирт, и вводят в дисперсию карбоксиалкилирующий агент. Карбоксиалкилирующий агент в общем случае содержит хлоралкановую кислоту, такую как монохлоруксусная кислота, и гидроксид натрия. Возможно осуществлять карбоксиалкилирование исходного полисахарида так, чтобы непосредственно образовывался раствор карбоксиалкилцеллюлозы в воде. То есть, способ карбоксиалкилирования можно осуществлять в водной среде, так чтобы после образования карбоксиалкилцеллюлозы она бы растворялась в воде. В указанном исполнении не требуется стадия извлечения между стадиями образования карбоксиалкилцеллюлозы и образования раствора карбоксиалкилцеллюлозы в воде.

Карбоксиметилцеллюлоза или соли карбоксиметилцеллюлозы предпочтительно имеет среднюю степень замещения примерно от 0,3 примерно до 1,5, более предпочтительно примерно от 0,4 примерно до 1,2. Степень замещения относится к среднему числу карбоксильных групп, приходящихся на одно звено ангидроглюкозы в целлюлозном материале. Карбоксиметилцеллюлозы со средней степенью замещения в диапазоне примерно от 0,3 примерно до 1,5 в целом растворимы в воде. В настоящем описании карбоксиалкилцеллюлозу, такую как карбоксиметилцеллюлоза, считают «растворимой в воде», если она растворяется в воде с образованием истинного раствора.

Карбоксиметилцеллюлоза коммерчески доступна в широком диапазоне молекулярных масс. Карбоксиметилцеллюлоза, имеющая относительно высокую молекулярную массу, предпочтительна для применения согласно настоящему изобретению. В общем случае, проще всего выражать молекулярную массу Карбоксиметилцеллюлозы через ее вязкость в водном растворе концентрацией 1,0 массовых процента. Карбоксиметилцеллюлозы, подходящие для применения в настоящем изобретении, предпочтительно имеют вязкость в водном растворе концентрацией 1,0 массовых процента примерно от 50 сантипуаз примерно до 10000 сантипуаз, более предпочтительно примерно от 500 сантипуаз примерно до 10000 сантипуаз, и наиболее предпочтительно примерно от 1000 сантипуаз примерно до 2800 сантипуаз. В одном предпочтительном варианте реализации карбоксиметилцеллюлоза имеет среднемассовую молекулярную массу от 500 до 800 кДа.

Подходящие карбоксиалкилцеллюлозы коммерчески доступны от множества поставщиков. Примером коммерчески доступной карбоксиалкилцеллюлозы является карбоксиметилцеллюлоза, коммерчески доступная от Ashland/Aqualon Company под торговым обозначением AQUALON™, Blanose и BONDWELL™ в зависимости от географического района продажи. Поликарбоновая кислота предпочтительно представляет собой органическую кислоту, содержащую две или более карбоксильных (СООН) группы и от 2 до 9 атомов углерода в цепи или кольце, к которому присоединены указанные карбоксильные группы; карбоксильные группы не включают при определении числа атомов углерода в цепи или кольце (т.е., 1,2,3-пропантрикарбоновая кислота будет считаться С3-поликарбоновой кислотой, содержащей три карбоксильных группы, а 1,2,3,4-бутантетракарбоновая кислота будет считаться С4-поликарбоновой кислотой, содержащей четыре карбоксильных группы). Как вариант, в поликарбоновой кислоте метиленовая группа может быть заменена гетероатомом, таким как атом кислорода или атом серы. Конкретнее, поликарбоновые кислоты, предпочтительные для применения в качестве сшивающих агентов в настоящем изобретении, включают алифатические и алициклические кислоты, насыщенные или содержащие олефиновую ненасыщенность, содержащие по меньшей мере три карбоксильных группы в молекуле или две карбоксильных группы в молекуле и углерод-углеродную двойную связь, расположенную в положении альфа, бета по отношению к одной или обеим карбоксильным группам. Дополнительно предпочтительно, чтобы поликарбоновая кислота содержала карбоксильную группу в алифатической или алициклической поликарбоновой кислоте, которая отделена от второй карбоксильной группы 2 или 3 атомами углерода. Не ограничиваясь какой-либо теорией, полагают, что карбоксильная группа в поликарбоновой кислоте может предпочтительно образовывать циклическое 5- или 6-членное ангидридное кольцо с соседней карбоксильной группой в молекуле поликарбоновой кислоты. Когда две карбоксильных группы разделены углерод-углеродной двойной связью или присоединены обе к одному и тому же кольцу, две карбоксильные группы должны находиться в г/мс-конфигурации по отношению друг к другу, чтобы взаимодействовать указанным образом.

Подходящие поликарбоновые кислоты включают лимонную кислоту (также известную как 2-гидрокси-1,2,3-пропантрикарбоновая кислота), тартрат моноянтарной кислоты, оксидиянтарную кислоту, также известную как 2,2'-оксибис(бутандиовая кислота), тиодиянтарную кислоту, диянтарную кислоту, малеиновую кислоту, цитраконовую кислоту, также известную как метилмалеиновая кислота, лимонную кислоту, итаконовую кислоту, также известную как метиленянтарная кислота, трикарбоновую кислоту, также известную как 1,2,3-пропантрикарбоновая кислота, трансаконитиновую кислоту, также известную как трапс-1-пропен-1,2,3-трикарбоновая кислота, 1,2,3,4-бутантетракарбоновую кислоту, полностью-цис-1,2,3,4-циклопентантетракарбоновую кислоту, меллитовую кислоту, также известную как бензолгексакарбоновая кислота, и оксидиянтарную кислоту, также известную как 2,2'-оксибис(бутандиовая кислота). Более подробное описание тартрата моноянтарной кислоты, тартрата диянтарной кислоты и солей указанных кислот можно найти в Bushe et al., патенте США №4663071, включенном в настоящее описание посредством ссылки.

Предпочтительно поликарбоновая кислота является насыщенной и содержит по меньшей мере три карбоксильных групп в молекуле. Предпочтительной поликарбоновой кислотой является лимонная кислота. Другие предпочтительные кислоты включают 1,2,3-пропантрикарбоновую кислоту и 1,2,3,4-бутантетракарбоновую кислоту. Особенно предпочтительной является лимонная кислота, поскольку она обеспечивает гидрогели с высокими уровнями смачиваемости, впитываемости и упругости, которые безопасны и не раздражают ткани человека, и обеспечивает стабильные связи. Кроме того, лимонная кислота доступна в больших количествах по относительно низкой цене, что делает коммерчески целесообразным ее применение в качестве сшивающего агента.

Приведенный выше список конкретных поликарбоновых кислот приведен только в качестве примера, и не предназначен включать все возможные варианты. Важно, что сшивающий агент должен быть способен взаимодействовать по меньшей мере с двумя гидроксильными группами в близко расположенных целлюлозных цепях двух соседних молекул целлюлозы. Специалист в данной области техники поймет, что сшивающие агента алифатические и алициклические С29 поликарбоновые кислоты, описанные выше, могут взаимодействовать в ряде форм с образованием сшитых полимерных гидрогелей согласно настоящему описанию, таких как форма свободной кислоты и формы солей указанных соединений. Хотя предпочтительной является форма свободной кислоты, все такие формы считают включенными в объем настоящего изобретения.

В одном из вариантов реализации как производное полисахарида, так и поликарбоновая кислота являются материалами пищевого качества или фармацевтического качества. Например, как карбоксиметилцеллюлозу, так и лимонную кислоту применяют в качестве пищевых добавок и фармацевтических наполнителей, и, следовательно, указанные соединения доступны в формах, подходящих для указанных применений.

Термин «карбоксиметилцеллюлоза» («КМЦ») относится к карбоксиметилцеллюлозе (карбоксиметиловому простому эфиру целлюлозы) в форме кислоты, в форме соли или в комбинации форм кислоты и соли. Предпочтительные формы солей включают карбоксиметилцеллюлозу натрия и карбоксиметилцеллюлозу калия. В особенно предпочтительных вариантах реализации карбоксиметилцеллюлоза находится в растворе в виде натриевой соли (NaКМЦ).

Водный раствор производного целлюлозы и поликарбоновой кислоты можно создавать при любой температуре, при которой производное целлюлозы растворимо в воде. В целом, температура будет находиться в диапазоне примерно от 10°С примерно до 100°С. Предпочтительно, раствор готовят по существу при комнатной температуре, например, между 20°С и 30°С.

Предпочтительно, чтобы раствор имел рН между 5 и 8, более предпочтительно между 6 и 7.

Композит производного полисахарида/поликарбоновой кислоты, выделенный из водного раствора, подходит для химической сшивки с образованием полимерных гидрогелей, обладающих улучшенными впитывающими свойствами благодаря зацеплениям между цепями. Не ограничиваясь какой-либо теорией, полагают, что солюбилизация обеспечивает зацепления между молекулами, которые дают более плотную сетчатую структуру и предпочтительное распределение карбоксильных групп и гидроксильных групп между производным полисахарида и поликарбоновой кислотой. Большее зацепление цепей производного полисахарида, таким образом, приводит к более однородной сшивке при термообработке, давая, в свою очередь, супервпитывающий полимерный гидрогель с большей способностью впитывания среды и значительно улучшенными механическими и реологическими свойствами.

Композит производного полисахарида/поликарбоновой кислоты можно выделить из раствора любым способом, который позволяет избежать существенной утраты впитывающих характеристик получаемого полимерного гидрогеля. Примеры таких способов включают сушку выпариванием, сушку замораживанием, осаждение, центрифугирование, сушку распылением, сушку в критической точке и подобные способы.

Предпочтительно композит производного полисахарида/поликарбоновой кислоты выделяют путем сушки выпариванием при температуре в диапазоне примерно от 10°С примерно до 100°С, предпочтительно примерно от 45°С примерно до 80°С. В некоторых вариантах реализации сушку проводят при начальной температуре выше 80°С, например, от 80°С до 100°С, для существенного уменьшения объема раствора, а затем температуру снижают ниже 80°С для завершения сушки. Например, раствор можно вначале высушивать при 85°С, а затем температуру можно понизить до 50°С для завершения высушивания. Действительно, более высокие температуры можно применять, если раствор помещают под давление. Более низкие температуры можно применять, если раствор помещают в вакуум. В одном предпочтительном варианте реализации сушку выпариванием проводят при температуре примерно 70°С.

Если раствор высушивают путем нагревания, стадию выделения композита производного полисахарида/поликарбоновой кислоты и стадию сшивки композита можно объединить в одну стадию, предпочтительно с изменением температуры. Например, стадию сушки можно проводить при первой температуре, а затем можно повысить температуру до второй, более высокой температуры, после завершения сушки. Как вариант, раствор можно высушивать первоначально при более высокой температуре, например, примерно от 80°С примерно до 100°С, а затем, до того как сушка будет завершена, температуру можно понизить ниже 80°С для завершения сушки. Затем температуру можно повысить выше 80°С для инициирования сшивки. В одном из вариантов реализации сушку проводят при начальной температуре примерно 85°С, температуру понижают примерно до 50°С перед завершением сушки, а затем, после завершения сушки, температуру повышают примерно до 120°С.

Другие способы выделения композита включают осаждение, при котором осаждающий агент (нерастворитель), такой как метанол, этанол или ацетон, вводят в водный раствор для осаждения композита из раствора. Затем можно выделить композит при помощи фильтрования. Если для выделения композита применяют осаждение, композит, необязательно, промывают водой для удаления осаждающего агента. В зависимости от формы, в которой выделяют композит, может быть необходимо или желательно изменить форму композита перед стадией сшивки. Например, ели применяют сушку выпариванием, композит можно выделять в форме пленки или листа. Материал пленки или листа затем можно гранулировать, раздробить, размолоть или измельчи