Устройство для прохождения сквозь окклюзии сосудов и способ использования устройства

Иллюстрации

Показать все

Изобретение относится к медицинской технике. Система для прохождения окклюзии сосудов содержит устройство, содержащее катетер с проксимальным и дистальным концами и пружинный элемент с проксимальным и дистальным концами. Проксимальный конец пружинного элемента прикреплен к дистальному концу катетера. Элемент натяжения расположен в катетере. Дистальный конец элемента натяжения прикреплен к дистальному элементу, а элемент натяжения функционально соединен с указанным дистальным концом пружинного элемента. Колебательный элемент образует дистальный элемент или соединен с ним. Источник колебательной энергии соединен в рабочем состоянии с проксимальным концом элемента натяжения и выполнен с возможностью формирования колебания в колебательном элементе посредством элемента натяжения и пружинного элемента с помощью натяжения указанного элемента натяжения или снятия с него нагрузки. Управляющий блок выполнен с возможностью управления источником колебательной энергии. Согласно этапам управления получают начальные управляющие параметры, инициируют цикл повторений колебаний, включающий натяжение и снятие нагрузки с элемента натяжения посредством источника колебательной энергии, достаточного для колебания колебательного элемента при силе колебаний, получают входное достигнутое значение амплитуды для указанного цикла повторений колебаний и регулируют силу колебаний в соответствии с достигнутым значением амплитуды. Изобретение обеспечивает облегчение прохода катетера через кровеносные сосуды. 13 з.п. ф-лы, 4 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[001] Изобретение относится к энергетически эффективному устройству и способу использования этого устройства для прохождения сквозь полную окклюзию кровеносного сосуда при чрескожном коронарном вмешательстве ("PCI") или для улучшения проходимости катетера для чрескожной транслюминальной ангиопластики (РТА) сквозь частичную окклюзию кровеносного сосуда. В частности, устройство обеспечивает передачу энергии дистальному наконечнику устройства для чрескожного коронарного вмешательства посредством тягового усилия для прохождения сквозь окклюзию с минимальными потерями энергии. Кроме того, устройство может быть применено в ходе чрескожных вмешательств в периферийные артерии.

УРОВЕНЬ ТЕХНИКИ

[002] В медицине давно ведется поиск действенных путей лечения заболеваний, касающихся стеноза (сужение или закупорка) полости артерии. Подобное состояние, обычно называемое окклюзией, возникает у пациентов, страдающих от атеросклероза, характеризуется накоплением фиброзной жировой или кальцинированной ткани в артериях, а также такое состояние называется атеросклеротической бляшкой или кровяной бляшкой. Окклюзия может быть частичной или полной, кроме того, она может быть мягкой и пластичной или твердой и кальцинированной. Окклюзия может возникать в различных местах артериальной системы, в том числе в аорте, в коронарных и каротидных артериях и периферийных артериях, и может приводить к повышенному давлению, ишемической болезни, стенокардии, инфаркту миокарда, инсульту или даже к смерти.

[003] Для лечения артериальных окклюзий предпочтительно использование малоинвазивных процедур. В ходе данных процедур катетер - длинное и очень гибкое трубчатое устройство - вводится в главную артерию через небольшой артериальный прокол, выполняемый в паховой области, в области плеча, бедра или шеи. Катетер продвигают и направлен в место стеноза. Для лечения суженных артерий было разработано множество устройств, располагаемых на дистальном конце катетера и доставляемых им в место стеноза. Примерами выполняемых процедур могут быть чрескожная транслюминальная коронарная ангиопластика ("РТСА"), прицельная коронарная атерэктомия ("DCA") и стентирование.

[004] В случае полной окклюзии для начала необходимо обеспечить проход через окклюзию для того, чтобы расположить баллонный/стент катетер в целевом суженном участке сосуда. Поскольку морфология окклюзии сложна и различна для каждого пациента, обычные способы и устройства для устранения указанных окклюзий не давали больших результатов и требуют проведения длительных процедур, потенциально оказывающих негативное воздействие на пациента. К данным негативным воздействиям могут быть отнесены перфорация стенки кровеносного сосуда, высокие дозы радиационного излучения или повреждение почек вследствие широкого использования ангиографического контрастного вещества.

[005] Стенозы или окклюзии могут состоять из различных материалов: от более мягких жировых веществ, таких как холестерин, до более твердых фиброзных веществ или твердого кальцинированного материала. Обычно границы окклюзии, то есть на проксимальном и дистальном колпачках, состоят из более твердого кальцинированного материала. Прохождение через более твердые материалы вызывает больше трудностей, требуется значительное количество энергии, а для прохождения через более мягкие материалы необходимо меньше энергии. Следовательно, для прохождения через окклюзию необходимо сообщить относительно большое количество энергии дистальному концу катетера или проволочному проводнику, особенно в случае наличия кальцинированного материала.

[006] К некоторым известным способам для прохождения через полную окклюзию могут быть отнесены абляционная энергия радиочастотного излучения (использована в системах, распространяемых фирмой Intralumenal Therapeutics под торговой маркой Safecross™), энергия колебаний с частотой приблизительно 20 КГц и малыми амплитудами (использована в системах, распространяемых фирмой FlowCardia Inc. под торговой маркой Crosser™), предназначенный для этой цели жесткий проволочный проводник, продавливающий проход через окклюзию (разработан фирмой Asahi Intec Со и распространяется под названием Confianza 9g/Conquest и проволочные проводники Miracle 12g), и механические колебательные элементы, работающие на высоких частотах (использованы в системах, распространяемых фирмой FlowCardia Inc. под торговой маркой Crosser™). При использовании последних средств для прохождения через окклюзию передача энергии между источником энергии на проксимальном конце катетера и сверлом, расположенным на дистальном конце катетера, сопровождается ее значительными потерями. А также эти средства имеют ограниченный срок эксплуатации вследствие усталости материалов. Например, в ультразвуковом катетере ультразвуковая энергия обычно поступает от ультразвукового преобразователя на проксимальном конце катетера, и затем она передается в дистальную головку катетера в виде гармонического колебания, вызывая колебания дистальной головки и также удаляя или разрушая имеющуюся окклюзию. Для прохождения в места обработки такие катетеры должны иметь достаточную длину - около 90-150 см или более, и, таким образом, большое количество энергии должно быть изначально передано для достижения ею дистального конца. В то же время для обеспечения достаточной гибкости катетера, необходимой для продвижения через извилистые сосуды, катетер должен быть достаточно тонким. Большая длина в сочетании с малым диаметром обуславливают частое возникновение проблемы, связанной с поломкой проволочного проводника вследствие напряжения и износа за счет импульсов высокой энергии. Проволочные проводники, имеющие достаточную жесткость для прохождения сквозь твердые окклюзии, имеют недостаток, связанный с тем, что их негибкость и прямые наконечники усложняют продвижение в нужном направлении сквозь извилистые сосуды и увеличивают риск перфорации сосудов. Твердые материалы, имеющие достаточную гибкость для приспосабливания к извилистости сосудов, имеют недостаток, связанный с их перекручиванием вследствие проксимального расположения толкающего воздействия. Перекручивание приводит к потере энергии посредством передачи ее поперечным силам и трению относительно полости, в которой расположен твердый материал. Для всех подобных устройств показатель эффективности ограничен от 40 до 70%.

[007] Окклюзия содержит различные материалы различной плотности и твердости. Таким образом, природа энергии, использующейся в устройстве для восстановления проходимости сосуда с окклюзией, должна подходить к определенному типу окклюзии, а процесс прохождения сквозь окклюзию необходимо контролировать для предотвращения перфорации стенок артерии или повреждения здоровых тканей. Кроме того, вследствие того, что энергия образуется на проксимальном конце катетера, она должна быть достаточной для достижения дистального конца устройства, находящегося рядом с окклюзией, на уровне, достаточном для прохождения сквозь окклюзию без повреждения проволочных проводников и без влияния на гибкость устройства. Согласно приведенному выше описанию существующие устройства также подвержены недостаткам, связанным с недостаточным количеством энергии, передаваемой на дистальный конец устройства, или несовпадением вида доставляемой энергии и вида окклюзии, что иногда приводит к приложению слишком большой по величине силы, вследствие чего повышается риск повреждения или даже перфорации стенки полости. Соответственно, существует необходимость в создании системы или устройства, которое может передавать подходящую энергию устройству для восстановления проходимости сосуда с окклюзией.

[008] Во внутриполостных устройствах, выполняемых для прохождения сквозь окклюзии сосуда, механическое перемещение, т.е. колебания элемента, взаимодействующего с окклюзией, обычно может быть обеспечено посредством помещения источника энергии на проксимальный конец устройства и передачи энергии дистальному концу устройства механическими средствами. Например, в одном из устройств из уровня техники (т.е. в устройстве Crosser™, выпускаемом FlowCardia Inc.) используется жесткая проволока, выполненная из нитинола. Жесткость проволоки позволяет передавать осевую силу, инициированную на его проксимальном конце, дистальному концу этой проволоки посредством ее продвижения. Однако при подобном способе передачи энергии имеют место значительные и, кроме того, не поддающиеся прогнозу (т.е. переменные по величине) потери энергии вследствие передачи энергии трубке корпуса (т.е. полости катетера). Один из частных недостатков устройства состоит в возможности жесткой проволоки сгибаться для достижения соответствия анатомии кровеносного сосуда. Потери энергии в жестких проволоках происходят зачастую вследствие двух факторов: (1) момента инерции, который может проявлять себя при сгибании твердого тела. Сила, прикладываемая для изгибания жесткой проволоки, может быть преобразована в трение в случае, в котором жесткая проволока заключена в катетерной полости; (2) продольного изгиба проволоки, вызывающего перемещение осевых сил к поперечным силам и в результате приводящего к увеличению сил трения внутри полости корпуса. Дополнительно, при увеличении осевых сил для компенсации потерь энергии продольный изгиб усиливается и, таким образом, еще больше усложняет достижение осевых колебаний и, в частности, управляемых осевых колебаний.

[009] Важное инженерное явление представляет собой продольный изгиб гибких балок при нагрузке. Критическая сила, необходимая для продольного изгибания гибкой балки (в том числе, например, жесткой проволоки), задана Уравнением 1:

где Fc обозначает максимальную силу, которую может выдерживать жесткая проволока без продольного изгиба, L обозначает длину жесткой проволоки и К представляет собой численную постоянную, зависящую от способа закрепления жесткой проволоки на ее концах. Например, в случае, в котором оба конца проволоки закреплены на шарнире (т.е. свободно вращаются) K=1. В случае, в котором один конец закреплен на шарнире, а другой конец зафиксирован K=0,7. В случае, в котором прямая проволока, закрепленная на ее дистальном конце, испытывает воздействие толкающего усилия на ее проксимальном конце вследствие воздействия силы, превышающей критическую силу Fc при продольном изгибе, жесткая проволока будет изогнута в сторону и не будет передавать толкающее усилие далее.

[010] Обмоточная жесткая проволока внутри полости катетера - в частности, катетер, проходящий через извилистый кровеносный сосуд, - будет изогнута. Даже при отсутствии протягивания или продвижения жесткой проволоки присутствуют силы, действующие на жесткую проволоку, для удерживания ее в изогнутом состоянии. Трение, возникающее при взаимодействии изогнутой проволоки и поверхности полости катетера, обуславливает прижимание твердой проволоки к стенке полости до некоторой степени. В случае, в котором трение в точке прижимания выше, чем предел продольного изгиба, проволока будет подвергнута изгибу, негативно влияющему на способность к проталкиванию проволоки. Сопротивление, возникающее при соприкосновении жесткой проволоки и окклюзии сосуда, действует аналогично точке прижимания вследствие трения на сгибе. Жесткая проволока в трубке, такой как катетер, совершает перемещение только в том случае, в котором толкающее усилие больше силы трения или сопротивления, действующего на жесткую проволоку. В случае, в котором прямая часть жесткой проволоки перед точкой сопротивления достаточна длинная, тем не менее, жесткая проволока будет изогнута перед тем, как толкающее усилие достигнет величины, достаточной для преодоления трения. Это объясняет причину трудности передачи силы к одному концу обмоточной жесткой проволоки посредством проталкивания ее с противоположного конца вследствие предположительного изгибания жесткой проволоки.

[011] Следовательно, существует потребность в создании устройства для прохождения сквозь окклюзии сосудов, выполненного с возможностью передачи эффективной энергии управляемым и безопасным способом для открытия прохода сквозь окклюзии сосуда и для улучшения проходимости катетеров, содержащих подобные устройства, через кровеносные сосуды. Кроме того, существует потребность в создании системы, обеспечивающей возможность передачи достаточной энергии и возможность регулирования количества энергии, передаваемой на конец устройства, проникающий в окклюзию, в зависимости от твердости окклюзии.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

[012] Задачей настоящего изобретения является создание усовершенствованного устройства для прохождения сквозь окклюзию сосуда и/или прохождения сквозь частичную окклюзию, при этом устройство имеет колебательный элемент, выполненный для совершения колебаний улучшенным способом, в частности посредством более эффективной передачи энергии от внешнего источника энергии к дистальной части катетера.

Увеличение эффективности может быть достигнуто посредством использования сочетания натяжной проволоки и пружины в устройстве. В частности, устройство формирует силу колебаний, которая воздействует на колебательный элемент посредством тягового, а не толкающего усилия или сочетания толкающего и тягового усилий. Устройство согласно настоящему изобретению менее чувствительно к непредсказуемой геометрии, такой как извилистые изгибы кровеносных сосудов, чем устройства для чрескожного коронарного вмешательства, использующие толкающие усилия.

[013] Дополнительной задачей настоящего изобретения является создание системы, содержащей устройство, обеспечивающее тяговое усилие для прохождения сквозь окклюзию сосуда и выполненное с возможностью регулирования частоты или амплитуды колебаний для приведения ее в соответствие с твердостью окклюзии или натяжением элемента натяжения.

[014] Изобретение относится к устройству для восстановления проходимости в полости тела, такой как кровеносный сосуд с полной или частичной окклюзией.

В частности, устройство согласно настоящему изобретению содержит пружинный элемент, элемент натяжения, колебательный элемент, заключенные в катетере, и внешний источник колебательной энергии, в рабочем состоянии соединенный с элементом натяжения. На дистальном наконечнике устройства расположен колебательный элемент, который может быть представлен, например, в виде колпачка, схожего с колпачком катетера, или в виде колпачка, позволяющего увеличить механическое воздействие и улучшить прохождение сквозь окклюзию. Колебательный элемент совершает колебания в ответ на приложение тягового усилия к элементу натяжения и возвратную силу пружинного элемента. Колебания или вибрация колебательного элемента могут влиять на прохождение сквозь окклюзию. В частности, источник колебательной энергии предназначен для многократного натяжения и снятия нагрузки с элемента натяжения для осуществления колебаний колебательного элемента посредством пружинного элемента. Элемент натяжения выполнен с возможностью одновременного сжатия пружинного элемента в проксимальном направлении и таким образом осуществления передачи энергии колебательному элементу. Пружинный элемент выполнен с возможностью локального преобразования накапливаемой энергии в кинетическую энергию (при снятии нагрузки с элемента натяжения) и таким образом осуществления перемещения колебательного элемента в дистальном направлении. Ускорение кинетической энергии влечет за собой растяжение пружинного элемента для растяжения дистального конца пружинного элемента за пределы положения покоя (без нагрузки) и таким образом осуществления продвижения колебательного элемента далее в дистальном направлении. В кровеносном сосуде с окклюзией кинетическая энергия передается от колебательного элемента для воздействия на окклюзию.

Таким образом, колебательный элемент, расположенный на дистальном наконечнике катетера, выполнен с возможностью осуществления колебания с частотой и амплитудой, достаточной для прохождения сквозь окклюзию в полости тела. Катетер может представлять собой обычный хирургический медицинский катетер, имеющий полость для расположения в ней элемента натяжения, и, кроме того, предпочтительно наличие в катетере полости для расположения в ней проволочного проводника и других элементов, таких как направляющий элемент, измеряющий перемещение, элемент для введения контрастного вещества или элемент для удаления частиц окклюзии из области сверления.

[015] Источник колебательной энергии располагается извне по отношению к катетеру, однако в рабочем состоянии он соединен с элементом натяжения, свободно перемещающимся относительно катетера. Источник колебательной энергии может представлять собой любой источник энергии, выполненный с возможностью формирования по меньшей мере одного колебательного энергетического импульса посредством натяжения и снятия нагрузки. Источник колебательной энергии может представлять собой, к примеру, двигатель, вибрационное устройство, пьезоэлектрический двигатель или привод. Источник колебательной энергии растягивает элемент натяжения для формирования потенциальной энергии в пружинном элементе. Потенциальная энергия переходит в кинетическую энергию при снятии нагрузки в элементе натяжения, увеличении нагрузки на пружине и естественном растяжении пружинного элемента, таким образом происходит локальная передача механической энергии колебательному элементу, который может быть также прикреплен к дистальному концу пружинного элемента или к его части, продвигая колебательный элемент по направлению к окклюзии. Операцию повторяют с частотой и амплитудой, обеспечивающими возможность прохождения колебательного элемента сквозь окклюзию посредством сверления. Количество энергии может быть отрегулировано посредством выбора подходящего "пружинного" элемента с коэффициентом жесткости (k). Сила может быть дополнительно отрегулирована извне посредством задания амплитуды элемента натяжения. Мощностью (энергия в единицу времени), так же как и механическим воздействием, можно управлять с помощью частоты колебаний.

[016] Устройство может дополнительно содержать устройство, закрепляющее катетер относительно кровеносного сосуда для улучшения передачи сил колебаний окклюзии. Устройство может дополнительно содержать направляющее устройство для содействия в направлении движения сквозь окклюзию, особенно для использования в случаях наличия большого количества развилок вблизи искомой окклюзии. Катетер может быть совместимым для использования с другими дополнительными внешними или внутренними элементами для обеспечения возможности визуализации в устройстве или приспособлении и/или для удаления частиц, образующихся при сверлении, например, посредством всасывания.

[017] Система согласно настоящему изобретению содержит устройство согласно настоящему изобретению и управляющий блок, предназначенный для управления источником колебательной энергии и, таким образом, для регулирования частоты и/или амплитуды колебаний колебательного элемента.

В предпочтительном варианте реализации изобретения управляющий блок обладает возможностью регулирования источника колебательной энергии для формирования силы колебаний, соответствующей морфологии и твердости окклюзии, при этом сила колебаний имеет по меньшей мере одну частоту и по меньшей мере одну амплитуду. Подходящая сила колебаний может быть достигнута посредством регулирования частоты, например, в диапазоне от нескольких Гц до нескольких сот Гц и/или регулирования амплитуды натяжения таким образом, что значение проникающей силы колебаний минимизировано и соответствует морфологии и твердости окклюзии. По меньше мере одна частота и по меньшей мере одна амплитуда, сформированные источником колебательной энергии, могут быть отрегулированы посредством управляющего блока для приведения их в соответствие обрабатываемой окклюзии. При необходимости, система согласно настоящему изобретению дополнительно содержит модуль операторского интерфейса и датчики для содействия оператору в управлении частотой и амплитудой колебаний колебательного элемента в зависимости от отклика датчиков касательно твердости окклюзии и/или Δy пружинного элемента.

[018] Предполагается, что посредством обеспечения минимальной силы, достаточной для прохождения сквозь окклюзию, увеличивается безопасность процедуры восстановления проходимости сосуда с окклюзией и потенциальные повреждения полости тела, например артерии, по сравнению с устройствами для восстановления проходимости сосуда с окклюзией, известными из уровня техники, снижаются. Соответственно, частота и/или амплитуда колебаний колебательного элемента может быть изменена вручную врачом-оператором для регулирования ее в соответствии с твердостью конкретной обрабатываемой окклюзии на основании навыков и опыта оператора. В альтернативном варианте реализации изобретения частота и амплитуда колебаний может быть отрегулирована автоматически или вручную на основании измерений твердости окклюзии. Для измерения твердости окклюзии устройство согласно настоящему изобретению может дополнительно содержать датчик или тензометрический датчик. В аналогичных примерах реализации изобретения управляющий блок может дополнительно содержать процессор, или модуль операторского интерфейса, содержащий процессор, который может быть использован, при этом процессор выполнен с возможностью проведения анализа входных данных с датчика или тензометрического датчика для расчета твердости ткани или амплитуды колебаний и модуль операторского интерфейса выполнен с возможностью представления вычислений в доступной для пользователя форме. Управляющий блок или модуль операторского интерфейса может содержать по меньшей мере одно регулировочное средство для управления оператором вручную для регулирования частоты и/или амплитуды тягового усилия, формируемого источником колебательной энергии. При необходимости, модуль операторского интерфейса может дополнительно содержать дисплейный элемент для отображения информации, касающейся твердости окклюзии.

[019] Система может дополнительно включать в себя механизм регулировки натяжения для компенсации неравномерностей в длине пути элемента натяжения в криволинейных или извилистых полостях. Механизм управления нагрузкой может регулировать длину элемента натяжения или амплитуду натяжения элемента натяжения.

[020] Изобретение дополнительно относится к способу осуществления колебаний колебательного элемента, способу использования устройства или системы для восстановления проходимости полости тела, с окклюзией, например, кровеносного сосуда и к способу управления силой колебаний в устройстве. Результат представляет собой универсальное и энергетически эффективное энергетически выгодное передающее устройство, систему и способ прохождения сквозь полную окклюзию и/или улучшения проходимости катетера через полости тела с частичной окклюзией.

ОПИСАНИЕ ЧЕРТЕЖЕЙ

[021] На фиг. 1А-Е показан способ работы согласно примеру реализации устройства настоящего изобретения в течение одного цикла натяжения. На фиг. 1А показано устройство, к которому не приложена нагрузка. На фиг. 1В показано устройство с приложенной к элементу натяжения нагрузкой и сжатой пружиной с нагрузкой (накопленной энергией). Накопленная энергия равна произведению коэффициента жесткости (k) и амплитуды сжатия (х). На фиг. 1С показано устройство после снятия нагрузки с элемента натяжения и с кинетической энергией, высвобождаемой посредством пружины сжатия. На фиг. 1D показано устройство в отсутствие нагрузки в элементе натяжения и пружина сжатия на максимальном уровне растяжения (yx) для амплитуды сжатия (х). На фиг. 1Е показано устройство с вновь приложенной к элементу натяжения нагрузкой.

[022] На фиг. 2 показана последовательность схематических чертежей, иллюстрирующих элементы датчика ткани согласно настоящему изобретению. На фиг. 2а-2с показан способ возможного использования датчика ткани согласно примеру реализации, прикрепленного к пружинному элементу, для определения соответствия силы, приложенной к окклюзиям различной твердости, данным окклюзиям.

[023] На фиг. 3 схематически показан способ возможного использования датчика согласно примеру реализации для прямого измерения достигнутой амплитуды колебаний колебательного элемента.

[024] На фиг. 4 показан один из примеров реализации управляющей схемы для регулирования силы колебаний.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[025] Для преодоления ограничений устройств, известных в уровне техники, связанных с потерями механической энергии, в устройстве согласно настоящему изобретению использован дистальный пружиноподобный элемент, способный накапливать потенциальную энергию. Потенциальная энергия возникает и превращается в кинетическую энергию на требуемой частоте посредством натяжения гибкого элемента натяжения и снятия нагрузки с него.

В данном описании термин «гибкий» обозначает способность к боковому изгибу без возникновения момента инерции, например, для приведения устройства в соответствие форме извилистых сосудов, но не продольному изгибу, например элемент натяжения должен быть выполнен минимально растяжимым или эластичным в длину. «Снятием нагрузки с элемента натяжения» обозначен тот факт, что нагрузка, формируемая в элементе натяжения посредством натяжения элемента натяжения, может быть снята. Одновременно со снятием нагрузки с натяжной проволоки потенциальная энергия пружинного элемента переходит в кинетическую энергию. Накопленная энергия пружинного элемента переходит в окружающие ткани или окклюзию посредством колебательного элемента, воздействующего на окклюзию. Преимущество признака элемента натяжения настоящего изобретения состоит в том, что сила не будет значительно уменьшена по величине от проксимального конца устройства, на котором происходит формирование энергии, к дистальному концу устройства, на котором расположен колебательный элемент, воздействующий на окклюзию. Другое важное преимущество изобретения состоит в обеспечении полного управления силой (амплитудой и частотой) пользователем, что позволяет пользователю приводить силу в соответствие с окклюзией и поддерживать безопасность процедуры.

[026] В отличие от потерь энергии, возникающих при передаче энергии от проксимального к дистальному концу устройства, характерных для устройств, известных из уровня техники, потери энергии в настоящем изобретении сведены к минимуму посредством использования сочетания пружинного элемента и элемента натяжения. Различные сочетания амплитуды и силы могут быть получены вследствие соответствующего выбора пружинного элемента, помещаемого на дистальном конце катетера.

[027] Для преодоления ограничений уровня техники, в частности потерь механической энергии, устройство согласно настоящему изобретению содержит пружинообразный элемент на своем дистальном конце для локальной передачи силы. Пружинный элемент выполнен с возможностью приложения к нему нагрузки, т.е. сжатия для формирования потенциальной энергии, посредством натяжения элемента натяжения. Потенциальная энергия может быть преобразована в кинетическую энергию при снятии нагрузки с элемента натяжения. Таким образом, устройство согласно настоящему изобретению, содержащее процесс натяжения и снятия нагрузки, будет более эффективным по сравнению с проталкиванием жесткой проволоки, даже в случае, в котором траектория элемента натяжения отклонена от прямой траектории, например при изгибе катетера. Особенность настоящего изобретения, связанная с более эффективной передачей энергии, обеспечивает улучшение возможности прохождения сквозь частичную или полную окклюзии в сосудах и также улучшение проходимости катетеров для чрескожной транслюминальной ангиопластики.

[028] Устройство, система и способ согласно настоящему изобретению обеспечивают усовершенствованное устройство и способ осуществления колебаний колебательного элемента для восстановления проходимости кровеносного сосуда с полной окклюзией. Кроме того, устройство согласно настоящему изобретению может быть применено для устранения окклюзий из других полостей тела. В особенности, устройство согласно настоящему изобретению содержит катетер с проксимальным и дистальным концами, пружинный элемент с проксимальным и дистальным концами, при этом проксимальный конец пружинного элемента прикреплен к дистальному концу катетера, элемент натяжения, расположенный в катетере, с проксимальным и дистальным концами, при этом дистальный конец элемента натяжения прикреплен к дистальному элементу, колебательный элемент и источник колебательной энергии, соединенный в рабочем состоянии с проксимальным концом элемента натяжения и выполненный с возможностью формирования по меньшей мере одного колебания в колебательном элементе посредством элемента натяжения и пружинного элемента.

[029] Устройство согласно настоящему изобретению обеспечивает осуществление лечебных колебаний в колебательном элементе на дистальном конце катетера. Источник колебательной энергии, выполненный с возможностью натяжения элемента натяжения на расстояние (х) для формирования нагрузки (Т) и для последующего снятия нагрузки, обеспечивает возникновение силы для формирования лечебных колебаний колебательного элемента. Элемент натяжения функционально соединен на его дистальном конце с пружинным элементом посредством дистального элемента. Пружинный элемент, имеющий коэффициент жесткости (k), обеспечивает возникновение возвратного усилия, так что нагрузка в элементе натяжения может быть определена следующим образом Т=kx. Повторение этапов натяжения элемента натяжения и снятия нагрузки с него формирует колебания колебательного элемента с частотой и амплитудой, достаточной для прохождения сквозь окклюзию сосуда и ее устранения.

[030] Предпочтительно выполнение элемента натяжения в форме гибкого троса. Для выполнения элемента натяжения может быть использован любой полимерный материал с высокой прочностью. Не ограничивающие примеры подходящих материалов включают углеродный полимер, DSM Dyneema® или Dyneema Purity® (фирма DSM, Херлен, Нидерланды) или другой подходящий полимерный материал, такой как полиэтилен или полиэстер.

[031] Пружинный элемент может представлять собой, например, пружину сжатия, цилиндрическую винтовую пружину (например, провод в форме спирали), пластинчатую пружину, гофрированную оболочку, полимерный материал, выполненный с возможностью сжатия, эластичную мембрану, пружину с покрытием или схожий элемент, подходящий для накопления потенциальной энергии при сжатии и высвобождении кинетической энергии при увеличении сжимающей нагрузки. Сжатие и растяжение пружинного элемента может быть таким образом использовано для осуществления колебаний колебательного элемента с частотой и амплитудой, достаточными для прохождения сквозь окклюзию сосуда.

[032] Дистальный элемент, к которому прикреплен элемент натяжения, может представлять собой колебательный элемент или дистальный конец пружинного элемента.

[033] Колебательный элемент является частью устройства, которая воздействует на окклюзию. Колебательный элемент может представлять собой, к примеру, колпачок, прикрепленный к дистальному концу пружинного элемента, дистальный конец активной гофрированной оболочки или внешнюю поверхность эластичной мембраны, например, в случае, в котором эластичная мембрана представляет собой пружинный элемент. Колебания колебательного элемента вызваны натяжением элемента натяжения и снятием нагрузки с него посредством прямого или непрямого воздействия пружинного элемента, в зависимости от того, выполнен ли пружинный элемент с возможностью воздействия на окклюзию. В случае, в котором пружинный элемент выполнен таким образом, что его дистальная часть представляет собой конструкцию, например внешнюю поверхность эластичной мембраны или дистальный конец активной гофрированной оболочки, воздействующую на окклюзию, колебательный элемент представляет собой указанную дистальную часть пружинного элемента.

[034] Источник колебательной энергии может представлять собой, к примеру, вибрационное устройство, привод, электромагнитную катушку, обычный двигатель или любой подобный источник энергии, имеющий элемент, совершающий возвратно-поступательные движения и способный выполнять натяжение элемента натяжения и снятие нагрузки с него. «Снятие нагрузки» означает снятие нагрузки с элемента натяжения, формируемой его натяжением. Источник колебательной энергии расположен вне катетера. Источник колебательной энергии может выполнять натяжение элемента натяжения механическим путем, элемент натяжения может вызывать сжатие пружинного элемента, и таким образом обусловлено возможное проксимальное перемещение колебательного элемента. Далее, снятие нагрузки с элемента натяжения, вызывающее растяжение пружинного элемента, обуславливает возможность большего дистального перемещения колебательного элемента.

[035] Предпочтительно катетер имеет, по меньшей мере, одну полость для расположения в ней элемента(ов) натяжения и полость для проволочного проводника. Кроме того, катетер может включать в себя различные полости, предназначенные для других особенностей, таких как направляющий проводник или другой механизм, контрастные вещества для визуализации, устройства для внутрисосудистого ультразвукового исследования, элементы для измерения амплитуды и силы дистального перемещения, элементы для удаления частиц окклюзии и т.п.

[036] Система согласно настоящему изобретению содержит устройство согласно настоящему изобретению и управляющий блок для управления частотой и/или амплитудой натяжения (и, таким образом, косвенно для управления частотой и/или амплитудой колебаний колебательного элемента).

Амплитуда натяжения не должна превышать предел упругости пружинного элемента, и предпочтительно частота натяжения не должна превышать предел собственной частоты пружины. Оператор может регулировать колебания посредством ручного регулирования частоты и/или амплитуды колебаний непосредственно с помощью управляющего блока. Управляющий блок может содержать регулирующие средства, например рукоятки, индикаторы с круговой шкалой, кнопки, рычаги и аналогичные элементы, цифровые или аналоговые, подобные реостату или потенциометру, обеспечивающие возможность регулирования амплитуды или частоты, при которой источник колебательной энергии выполняет натяжение элемента натяжения. Управление конкретной частотой или амплитудой в любой заданный момент времени возможно посредством регулирования колебательной энергии на входе с помощью управляющего блока, который может быть отрегулирован вручную оператором непосредственно при помощи управляющего блока.

[037] Согласно настоящему изобретению дополнительно предложен способ осуществления колебаний колебательного элемента в устройстве для прохождения сквозь окклюзию (устройство) и способ обработки сосуда с окклюзией с использованием устройства, например, для восстановления проходимости сосуда с окклюзией. Кроме того, предложен способ управления силой колебаний.

[038] Способ колебания колебательного элемента включает этапы, согласно которым берут элемент натяжения, пружинный элемент и колебательный элемент, причем колебательный элемент функционально прикреплен к дистальному концу пружинного элемента, натягивают элемент натяжения для формирования нагрузки, прижимающей дистальный конец пружинного элемента к проксимальному концу пружинного элемента, снимают нагрузку, сформированную элементом натяжения и таким образом обеспечивают возможность растяжения пружинного элемента, повторяют этапы натяжения и снятия нагрузки для осуществления колебаний колебательного элемента. «Функциональн