Способ эксплуатации ядерного реактора в уран-ториевом топливном цикле с наработкой изотопа 233u

Иллюстрации

Показать все

Изобретение относится к способу эксплуатации ядерного реактора в уран-ториевом топливном цикле с наработкой изотопа 233U и предназначено для проведения первоначальной загрузки активной зоны реактора оксидным уран-ториевым топливом. В качестве указанного топлива используют (235Uα238Uβ232Th1-α-β)O2 топливо с высоким обогащением по изотопу 235U (235U0.9 238U0.1) и выбором объемов вода/топливо в диапазоне значений 1,5-1,7, используя в качестве замедлителя и теплоносителя тяжелую воду (D2O). При этом формируют интенсивность нейтронного потока и его энергетического распределения в начале кампании реактора в спектре, в котором доля быстрых нейтронов превалирует над тепловыми, и управление работой реактора на мощности путем удержания его в критическом состоянии, обеспечивая баланс между нарабатывающимися изотопом 233U и поглотителями нейтронов путем непрерывного разбавления в течение кампании реактора тяжелой воды легкой водой (Н2О) до момента, когда легкая вода займет половину состава. Техническим результатом является возможность продления времени кампании до 11 лет при удельной мощности ячейки 211 Вт/см и до 24 лет при удельной мощности ячейки 105,5 Вт/см, а также возможность обеспечения глубокого выгорания (~90%) стартового изотопа 235U и эффективную наработку (~40 кг/т) изотопа 233U. 1 з.п. ф-лы, 6 ил.

Реферат

Изобретение относится к области атомной энергетики, к способам эксплуатации водо-водяных ядерных реакторов в уран-ториевом топливном цикле, обеспечивающим наработку изотопа 233U путем изменения спектра нейтронов. Возможность наработки изотопов урана в уран-ториевом топливном цикле реактора типа ВВЭР с использованием в качестве теплоносителя тяжелой воды (D2O) при разбавлении ее в течение кампании легкой водой (Н2О) будет способствовать увеличению длительности кампании и более глубокому выжиганию реакцией деления тяжелых ядер, что представляет несомненный интерес.

Все действующие в настоящее время энергетические реакторы работают в открытом уран-плутониевом топливном цикле. Это на два порядка ограничивает топливный ресурс ядерной энергетики и сопровождается наработкой большого количества высокоактивных отходов, в том числе плутония, что осложняет обеспечение нераспространения расщепляющихся материалов. Решение этих проблем ядерной энергетики связано с переходом на замкнутый топливный цикл (в том числе на торий-урановый) при воспроизводстве активных изотопов в процессе работы реактора.

Природный торий является моноизотопом 232Th с периодом полураспада T1/2≈1,4×1010 лет и используется в реакторах в качестве сырьевого материала. При поглощении нейтрона 232Th преобразуется в 233U, делящийся нейтронами любой энергии. При поглощении нейтрона ядром 233U, он делится, выпустив два или три нейтрона. Это позволяет обеспечить наработку 233U при поглощении ядром 232Th нейтрона и поддержать цепную реакцию делением следующего ядра 233U. Таким образом, появляется возможность сжигания всего природного тория с выделением энергии ядерного деления в замкнутом уран-ториевом топливном цикле.

В США в Shippingport с 1977 по 1982 г.г. работал легководный реактор-бридер (LWBR) электрической мощностью 60 МВт на оксидном уран-ториевом (233U+232Th) топливе с обеспечением воспроизводства изотопа 233U (Nuclear Science and Engineering, v/102, p. 341-364, 1989 г.), однако дальнейшего развития данное направление не получило. В настоящее время за этот подход выступает компания под названием Lightbridge, Маклин, штат Вирджиния. Способ эксплуатации реактора LWBR включал первоначальную загрузку активной зоны (AЗ) реактора топливными сборками из смеси изотопов 233U+232Th, при этом материалом, способным к ядерному делению, являлся изотоп 233U. Поскольку этого изотопа в природе нет, для первоначальной загрузки его получали в реакторах, в которых может быть выполнено преобразование 232Th в 233U. Конструкция реактора LWBR была запатентована, (патент US 3957575, G21G 1/02, публик. 18.05.1976 г.) Конструкция AЗ включала 12 исходных одинаковых подвижных топливных сборок (ТВС) гексагональной формы, 12 стационарных топливных сборок в зоне воспроизводства и 15 отражающих модулей. Водотопливное отношение выбиралось в диапазоне 0.3-0.6 за счет плотного размещения в ТВС топливных стержней. Стержни исходных сборок и зоны воспроизводства выполнены неоднородными. Они включали центральную часть переменной длины из (233U-232Th)O2 топлива, а также верхние и нижние части из 232Th. Модули отражателя изначально работали только на 232Th. В качестве замедлителя и теплоносителя AЗ реактора использовали легкую воду (Н2О). Формирование интенсивности нейтронного потока и его энергетического распределения в начале кампании реактора осуществляли в спектре, в котором доля тепловых нейтронов превалирует над долей быстрых нейтронов. Это позволило обеспечить необходимые условия, при которых изотоп 232Th переходил в способный к ядерному делению изотоп 233U. Регулировку работы реактора на мощности осуществляли путем контроля реактивности активной зоны, при понижении которой поддерживали критическое состояние реактора путем обеспечения баланса между нарабатывающимися 233U и поглотителями нейтронов. Обеспечение баланса осуществляли изменением аксиального положения исходных сборок относительно воспроизводящих, в результате чего менялось количество нейтронов, поглощаемых делящейся средой (233U), относительно воспроизводящей среды (232Th). В течение первых трех лет реактор работал с полной тепловой мощностью. В течение последних 2-х лет максимальный уровень мощности составлял в основном 80% от номинальной, перед отключением уровень мощности был постепенно снижен до 57%. Использование в реакторе LWBR (233U-232Th)O2 топлива и легкой воды в качестве замедлителя и теплоносителя обеспечило размножение изотопа 233U.

Недостатком данного аналога является наличие подвижных топливных сборок в AЗ, что требует существенной модификации AЗ и качественно усложняет эксплуатацию реактора, особенно реакторов большой мощности. Следует отметить, что при перемещении подвижных топливных сборок возможно возникновение трудностей в управлении реактором из-за возможных деформаций стержней.

Известен другой способ эксплуатации ядерного реактора в уран-ториевом топливном цикле с расширенным воспроизводством изотопа 233U (патент RU 2541516, публик. 20.02.2015), который частично устраняет недостатки предыдущего способа и выбран в качестве ближайшего аналога.

Для упрощения регулирования реактивности реактора, повышения равномерности распределения энерговыделения и эффективности регулирования мощности реактора, а также повышения безопасности эксплуатации и увеличения ресурса активной зоны способ, выбранный в качестве ближайшего аналога, включает следующие операции:

- осуществление первоначальной загрузки реактора оксидным уран-ториевым топливом с массовым соотношением изотопа 233U к тяжелому металлу в активной зоне, равным 0,072;

- использование изотопа 233U в качестве материала, способного к ядерному делению;

- формирование интенсивности нейтронного потока и его энергетического распределения в начале кампании реактора в промежуточном спектре, в котором доля быстрых нейтронов превалирует над тепловыми;

- использование в качестве замедлителя и теплоносителя тяжелой воды, при этом отношение объемов вода/топливо выбирают в диапазоне значений 0,7-1,0;

- управление работой реактора на мощности путем удержания критического состояния (K=1) и обеспечения баланса между нарабатывающимися изотопами 233U и поглотителями нейтронов, осуществляют при непрерывном разбавлении тяжелой воды (D2O) легкой водой (Н2O) в течение всей кампании реактора при выборе объемного соотношения состава теплоносителя D2O/H2O в соответствии с выражением (α D2O+(1-α) Н2O), где коэффициент α, который зависит от скорости выгорания топлива, скорости наработки поглотителей, времени эксплуатации реактора и т.д. выбирают из диапазона 1≥α≥0,8.

Топливные стержни исходных сборок выполняют однородными из (233U-232Th)O2 таблеток. Начало работы реактора характеризуется выгоранием изотопа 233U и наиболее эффективной наработкой поглотителя нейтронов 233Ра. В способе эксплуатации AЗ, сформированной из тепловыделяющих сборок, изменение спектра нейтронов ведут путем воздействия на состав теплоносителя, с темпом, соответствующим скорости выгорания топлива и наработки поглотителя нейтронов, уменьшают содержание тяжелой воды в течение кампании реактора до значения 0,8 (к концу 6 года). Это разбавление сопровождается смягчением спектра нейтронов и понижением удельного содержания 233U, необходимого для поддержания критического состояния. Наработка поглотителей нейтронов (осколки деления, 234U, 233Ра…) сопровождается дополнительной наработкой 233U, превышающей его выгорание, что и обеспечивает расширенное воспроизводство изотопа 233U.

В ближайшем аналоге обеспечивается расширенное воспроизводство изотопа 233U, что накладывает ограничение на длительность кампании.

Техническим результатом предлагаемого способа является увеличение длительности кампании без перегрузки топлива.

Указанный технический результата достигается за счет того, что в способе эксплуатации ядерного реактора в уран-ториевом топливном цикле с наработкой изотопа 233U, включающем первоначальную загрузку активной зоны реактора оксидным уран-ториевым топливом, используя в качестве замедлителя и теплоносителя тяжелую воду (D2O), формирование интенсивности нейтронного потока и его энергетического распределения в начале кампании реактора в спектре, в котором доля быстрых нейтронов превалирует над тепловыми, и управление работой реактора на мощности путем удержания его в критическом состояний, обеспечивая баланс между нарабатывающимися изотопом 233U и поглотителями нейтронов путем непрерывного разбавления в течение кампании реактора тяжелой воды легкой водой (Н2О), при этом в качестве оксидного уран-ториевого топлива для первоначальной загрузки активной зоны реактора используют (235Uα238Uβ232Th1-α-β)O2 топливо с обогащением по изотопу 235U (235U0.9 238U0.1) и выбором объемов вода/топливо в диапазоне значений 1,5-1,7, причем разбавление тяжелой воды легкой водой осуществляют до момента, когда легкая вода займет половину состава.

Управление работой реактора можно осуществлять при пониженной удельной мощности.

При использовании в качестве топлива для первоначальной загрузки активной зоны реактора (235Uα238Uβ232Th1-α-β)O2 топлива происходит выгорание активного изотопа 235U, которое сопровождается наработкой значимого количества более активного изотопа 233U и активных изотопов 239Pu и 241Pu, что позволяет говорить о сохранении нейтронного потенциала ядерного топлива и возможности его дальнейшего использования, что позволяет увеличить длительность кампании без перегрузки топлива.

Применение в качестве топлива высокообогащенного по изотопу 235U (235U0.9 238U0.1) урана с торием позволяет повысить длительность кампании в ~4 и более раз из-за того, что нейтроны деления в основном поглощаются торием (из-за его высокого содержания) с наработкой изотопа 233U, характеризующегося образованием наибольшего числа вторичных нейтронов на поглощенный нейтрон. При этом нарабатываемый изотоп 234U, поглощая нейтрон, нарабатывает хорошо делящийся изотоп 235U, деление которого и радиационный захват нейтронов которым и замыкает этот эффективно работающий укороченный цикл. Из-за этого цикла вероятность поглощения нейтронов нарабатываемыми изотопами 236U, 237Np, 238Pu, заселяемыми в последовательном захвате нейтронов и ухудшающими нейтронный баланс, понижается на порядок в 233U-232Th топливе относительно стандартного уран-уранового топлива. Вместе с этим нарабатываемые осколки деления и актиниды, поглощающие нейтроны, останавливают цепную реакцию деления.

При той же загрузке реактора повышение длительности кампании возможно понижением его мощности путем соответствующего понижения рабочей плотности потока нейтронов. При этом дополнительно повышается относительная вероятность β-распада 233Ра в 233U и его наработка относительно вероятности радиационного захвата нейтронов 233Ра и его перевода в 234U, минуя активный изотоп 233U, что улучшает нейтронный баланс и способствует увеличению времени кампании. Понижение мощности реактора способствует повышению безопасности его работы.

На фиг. 1 представлена временная зависимость изотопного состава в топливе при его облучении в течение 11 лет (опущены наработка осколков деления и выгорание тория) при удельной мощности ячейки 211 Вт/см.

На фиг. 2 - удельные значения (кг/т) изотопов, испытавших деление, в зависимости от времени облучения при удельной мощности ячейки 211 Вт/см.

На фиг. 3 - удельные значения (кг/т) изотопов топлива, испытавших радиационный захват нейтронов, в зависимости от времени облучения при удельной мощности ячейки 211 Вт/см.

На фиг. 4 представлена временная зависимость изотопного состава в топливе при его облучении в течение 11 лет (опущены наработка осколков деления и выгорание тория) при удельной мощности ячейки 105,5 Вт/см.

На фиг. 5 - удельные значения (кг/т) изотопов, испытавших деление, в зависимости от времени облучения при удельной мощности ячейки 105,5 Вт/см.

На фиг. 6 - удельные значения (кг/т) изотопов топлива, испытавших радиационный захват нейтронов; в зависимости от времени облучения при удельной мощности ячейки 105,5 Вт/см.

Примером конкретного выполнения заявляемого способа может служить способ эксплуатации ядерного реактора типа ВВЭР с U-Th оксидным топливом с наработкой изотопа 233U, в качестве теплоносителя и замедлителя AЗ в котором используют тяжелую воду при ее разбавлении в течение кампании легкой водой.

Топливные стержни исходных сборок выполняют однородными из (235Uα238Uβ232Th1-α-β2 таблеток. Нейтронно-физические расчеты были выполнены для однотвэльной ячейки, предложенной МАГАТЭ (для реактора PWR) с заменой энергетического плутония высокообогащенным ураном (оружейным), легкой воды тяжелой водой, внешнего радиуса ячейки 0,85 см на 0,80 см, для мощности 211 Вт/см и для в 2 раза пониженной (105,5 Вт/см) мощности.

При запуске реактора в качестве теплоносителя используют тяжелую воду, с ее содержанием, близким к 100%, получаемую, например, в промышленной установке по дезинтегрированию ассоциатов молекул тяжелой и легкой воды (патент RU 2163929 С2 С12М 1/33, публик. 10.03.2001), либо способом многоступенчатого изотопного обмена (патент RU 2060801 C1 B01D 59/28, публик. 27.05.96), либо из подземных вод (патент RU 2393987 С2 С01В 5/02, публик. 10.07.2010). В начале кампании топливо состоит из двуокиси высокообогащенного урана (235U0,9 238U0,1), и двуокиси тория с удельным содержанием 139 кг и 861 кг на тонну тяжелого металла соответственно. В течение облучения критическое состояние (K=1) ячейки поддерживается разбавлением тяжелой воды легкой водой Н2О в соответствии с выражением (α D2O+(1-α) Н2О), где коэффициент α выбирают от единицы до 0,5, что обеспечивает возможность 11 лет непрерывной работы реактора. Разбавление можно осуществить, выполнив соединение контура теплоносителя с водяным объемом, в котором находиться легкая вода для его разбавления. Это соединение формируют на участке трубопровода после прохождения теплоносителя через парогенератор. Разбавление осуществляют с обеспечением постоянного впрыскивания легкой воды в контур теплоносителя.

При этом выгорают Th, 235U, 238U, накапливаются изотопы 233U, 234U, 236U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, накапливаются осколки деления и реализуется Th-U-Pu топливный цикл. Ядра сырьевого изотопа Th испытывают деление на стадиях последовательного прохождения изотопов 233U, 235U, 239Pu, 241Pu, делящихся нейтронами любой энергии, что обусловливает их глубокую трансмутацию реакцией деления. Ядра 235U и 238U аналогично испытывают дополнительное деление на стадиях последовательного прохождения изотопов 239Pu, 241Рu. Последовательный радиационный захват нейтронов изотопами 236U, 237Np, 238Pu ухудшает нейтронный баланс в системе, но является неизбежной потерей нейтронов для обеспечения выгорания этих изотопов делением на стадиях прохождения 239Pu и 241Pu. Поглощение нейтронов нарабатываемыми осколками деления и конструкционными элементами оболочки твэла является основной паразитной причиной понижения реактивности топлива и ухудшения нейтронного баланса. Обращает на себя внимание интенсивное (в соответствии с мощностью реактора) накопление осколков деления, практически линейное выгорание тория, быстрое понижение содержания изотопа 235U. При этом нарабатывается и достигает равновесного состояния изотоп 233U, нарастает содержание 234U, 236U, 237Np, 239Pu, 240Pu, 241Pu, 242Pu.

Детальная картина изотопного преобразования, начиная с 233U, при облучении в течение 11 лет представлена на фиг. 1, где опущены наработка осколков деления и выгорание тория. На фиг. 1 видно следующее. Содержание изотопа 233U достигает максимального значения при времени работы реактора Т≈8 лет и начинает уменьшаться с дальнейшим ростом времени облучения. Содержание изотопа 235U замедляет падение с ростом времени облучения, но продолжает падать. До Т≈7 лет происходит рост содержания изотопа 239Pu, нарабатываемого на 238U, и его уменьшение при дальнейшем продолжении облучения. Это говорит о том, что после Т≈8 лет облучения выгорание активных изотопов становится превалирующим процессом относительно их наработки, а наработка поглотителей нейтронов ограничивает воспроизводство активных изотопов. В течение всего времени облучения наблюдается рост чисел поглощающих нейтроны изотопов 234U, 236U, 237Np, 238Pu, 240Pu, 242Pu. При этом следует обратить внимание на рост чисел изотопов 236U, 237Np, 238Pu, нарабатываемых на 235U, поглощающих нейтроны и предшествующих делящемуся нейтронами любой энергии изотопу 239Pu, что качественно ухудшает нейтронный баланс. На фиг. 2 приведены удельные значения (кг/т) изотопов, испытавших деление в зависимости от времени облучения. Видно, что основными делящимися изотопами являются стартовый 235U и нарабатываемый 233U. Причем рост числа делений 235U замедляется в соответствии с его выгоранием с ростом времени облучения, a 233U увеличивается в соответствии с его наработкой с ростом времени облучения. Имеет место рост числа делений изотопов 232Th, 239Pu, 241Pu, а также пороговых изотопов, характеризующихся малыми вероятностями деления. На фиг. 3 представлены удельные значения (кг/т) изотопов урана, нептуния, протактиния и плутония, испытавших радиационный захват нейтронов в зависимости от времени облучения. Видно, что радиационный захват нейтронов стартовыми изотопами 232Th, 235U и интенсивно нарабатываемым 233U является максимальным. Поглощение нейтронов изотопами 232Th, 234U, 238U и 238Pu сопровождается наработкой хорошо делящихся изотопов 233U, 235U и 239Pu. Обращает на себя внимание значимый рост радиационного захвата нейтронов изотопами 236U, 237Np, 23SPu, заселяемыми в последовательном захвате нейтронов и ухудшающими нейтронный баланс. Поглощение нейтронов изотопом 233Ра будет сопровождаться еще и потерей изотопа 233U, в который распадается 233Ра. Поглощение нейтронов изотопом 231Ра будет сопровождаться наработкой изотопа 232U, радиоактивный ряд которого характеризуется большой радиологической опасностью, что является технологическим барьером на пути несанкционированного распространения урана.

На рисунках 4, 5, 6 приведены соответственно временная зависимость изменения удельных значений (кг/т) изотопного состава топлива, удельных значений (кг/т) изотопов, испытавших деление, удельных значений (кг/т) изотопов, испытавших радиационный захват нейтронов, при удельной мощности ячейки 105,5 Вт/см.

Использование тяжелой воды в качестве теплоносителя увеличивает интенсивность радиационного захвата нейтронов в резонансной области их энергии тяжелыми ядрами и усиливает доплеровский коэффициент реактивности, что также повышает безопасность работы реактора. Максимальное значение эффективной доли запаздывающих нейтронов деления 235U улучшает управление реактором. Выгорание активного изотопа 235U сопровождается наработкой значимого количества более активного изотопа 233U и активных изотопов 239Pu и 241Pu, что позволяет говорить о сохранении нейтронного потенциала ядерного топлива и возможности его дальнейшего использования. В таблице приведена зависимость коэффициента α от времени облучения 11 лет при удельной мощности 211 Вт/см и 24 лет при удельной мощности 105,5 Вт/см. Виден разный уровень требуемой скорости разбавления тяжелой воды легкой водой для поддержания критического состояния.

Таким образом, предлагаемый способ позволяет продлить время кампании до 11 лет при удельной мощности ячейки 211 Вт/см и до 24 лет при удельной мощности ячейки 105,5 Вт/см, обеспечить глубокое выгорание (~90%) стартового изотопа 235U и эффективную наработку (~40 кг/т) изотопа 233U. Работа реактора без запаса реактивности качественно повышает его безопасность.

1. Способ эксплуатации ядерного реактора в уран-ториевом топливном цикле с наработкой изотопа 233U, включающий первоначальную загрузку активной зоны реактора оксидным уран-ториевым топливом, используя в качестве замедлителя и теплоносителя тяжелую воду (D2O), формирование интенсивности нейтронного потока и его энергетического распределения в начале кампании реактора в спектре, в котором доля быстрых нейтронов превалирует над тепловыми, и управление работой реактора на мощности путем удержания его в критическом состоянии, обеспечивая баланс между нарабатывающимися изотопом 233U и поглотителями нейтронов путем непрерывного разбавления в течение кампании реактора тяжелой воды легкой водой (H2O), отличающийся тем, что в качестве оксидного уран-ториевого топлива для первоначальной загрузки активной зоны реактора используют (235Uα238Uβ232Th1-α-β)O2 топливо с высоким обогащением по изотопу 235U (235U0..9 238U0.1) и выбором объемов вода/топливо в диапазоне значений 1,5-1,7, а разбавление тяжелой воды легкой водой осуществляют до момента, когда легкая вода займет половину состава.

2. Способ по п. 1, отличающийся тем, что управление работой реактора осуществляют при пониженной удельной мощности.