Устройство обнаружения трехмерных объектов
Иллюстрации
Показать всеИзобретение относится к области обнаружения трехмерных объектов. Технический результат заключается в оценке обнаруженных трехмерных объектов. Указанный результат обеспечивается устройством, которое содержит: средство преобразования изображений для преобразования точки обзора изображения, полученного посредством средства захвата изображений, чтобы создавать изображение вида "с высоты птичьего полета"; средство обнаружения трехмерных объектов для формирования информации формы сигнала в направлении ширины транспортного средства посредством подсчета, вдоль направления ширины транспортного средства, числа пикселов, которые указывают предварительно определенную разность в разностном изображении, в котором совмещены позиции изображений вида "с высоты птичьего полета", снятых в различные моменты времени, и формирования частотного распределения и для выполнения, на основе информации формы сигнала в направлении ширины транспортного средства, обработки обнаружения в направлении ширины транспортного средства, в которой обнаруживаются трехмерные объекты, которые присутствуют в области обнаружения; средство оценки трехмерных объектов для оценки того, является или нет обнаруженный трехмерный объект другим транспортным средством. 3 н. и 6 з.п. ф-лы, 21 ил.
Реферат
Область техники, к которой относится изобретение
[0001] Настоящее изобретение относится к устройству обнаружения трехмерных объектов.
Данная заявка испрашивает приоритет заявки на патент Японии № 12-037472, поданной 23 февраля 2012 года, и в указанных государствах, которые признают включение документа по ссылке, содержимое, описанное в вышеуказанной заявке, содержится в данном документе по ссылке и считается частью описания настоящей заявки.
Уровень техники
[0002] В известной в уровне техники технологии два захваченных изображения, захваченные в различные моменты времени, преобразуются в изображение вида "с высоты птичьего полета", и помеха обнаруживается на основе разностей в двух изображениях преобразованного вида "с высоты птичьего полета" (см. патентный документ 1).
Документы предшествующего уровня техники
Патентные документы
[0003] Патентный документ 1. Выложенная заявка на патент Японии № 2008-227646
Сущность изобретения
Проблемы, разрешаемые изобретением
[0004] Когда другое транспортное средство, присутствующее в соседней полосе движения позади рассматриваемого транспортного средства, обнаружено на основе захваченного изображения, которое захвачено позади рассматриваемого транспортного средства, возникает проблема в том, что другое транспортное средство, которое рассматриваемое транспортное средство обогнало, обнаруживается в качестве другого транспортного средства, которое должно быть обнаружено.
[0005] Проблема, которая должна разрешаться посредством настоящего изобретения, заключается в том, чтобы предоставлять устройство обнаружения трехмерных объектов, которое эффективно не допускает обнаружение другого транспортного средства, которое рассматриваемое транспортное средство обогнало, в качестве другого транспортного средства, которое должно быть обнаружено, и которое допускает обнаружение с высокой точностью другого транспортного средства, которое должно быть обнаружено.
Средство для разрешения указанных проблем
[0006] Настоящее изобретение разрешает проблему посредством совмещения в виде "с высоты птичьего полета" позиций изображений вида "с высоты птичьего полета", полученных в различные моменты времени, подсчета числа пикселов, которые указывают предварительно определенную разность в разностном изображении совмещенных изображений вида "с высоты птичьего полета", указания позиции обнаружения, для которой получено подсчитанное число, равное или превышающее предварительно определенное значение, и подавления оценки того, что обнаруженный трехмерный объект является другим транспортным средством, которое должно быть обнаружено, когда указанная позиция обнаружения перемещается в области обнаружения спереди назад в направлении продвижения рассматриваемого транспортного средства и достигает предварительно определенной позиции в области обнаружения.
Полезные эффекты изобретения
[0007] В соответствии с настоящим изобретением, подсчет числа пикселов, которые указывают предварительно определенную информацию изображений, вдоль направления ширины транспортного средства позволяет определять позицию переднего бампера другого транспортного средства в области обнаружения и надлежащим образом оценивать то, обогнало рассматриваемое транспортное средство или нет другое транспортное средство, в соответствии с позицией переднего бампера другого транспортного средства. Следовательно, можно эффективно не допускать обнаружения другого транспортного средства, которое рассматриваемое транспортное средство обогнало, в качестве другого транспортного средства, которое должно быть обнаружено, и обнаруживать с высокой точностью другое транспортное средство, которое должно быть обнаружено.
Краткое описание чертежей
[0008] Фиг. 1 является схематичным видом транспортного средства, в котором смонтировано устройство обнаружения трехмерных объектов.
Фиг. 2 является видом сверху, иллюстрирующим состояние движения транспортного средства на фиг. 1.
Фиг. 3 является блок-схемой, иллюстрирующей части компьютера согласно первому варианту осуществления.
Фиг. 4 является видом для описания общего представления обработки модуля совмещения согласно первому варианту осуществления; фиг. 4(a) является видом сверху, иллюстрирующим состояние движения транспортного средства, а фиг. 4(b) является изображением, иллюстрирующим общее представление совмещения.
Фиг. 5 является схематичным видом, иллюстрирующим способ, которым первая форма разностного сигнала формируется посредством модуля обнаружения трехмерных объектов.
Фиг. 6 является видом, иллюстрирующим небольшие области, разделенные посредством модуля обнаружения трехмерных объектов.
Фиг. 7 является видом, иллюстрирующим пример гистограммы, получаемой посредством модуля обнаружения трехмерных объектов.
Фиг. 8 является видом, иллюстрирующим взвешивание, используемое посредством модуля обнаружения трехмерных объектов.
Фиг. 9 является видом, иллюстрирующим другой пример гистограммы, получаемой посредством модуля обнаружения трехмерных объектов.
Фиг. 10 является схематичным видом, иллюстрирующим способ, которым вторая форма разностного сигнала формируется посредством модуля обнаружения трехмерных объектов.
Фиг. 11 является видом для описания способа оценки обгона, осуществляемого посредством модуля обнаружения трехмерных объектов.
Фиг. 12 является блок-схемой последовательности операций (часть 1), иллюстрирующей способ для обнаружения соседнего транспортного средства согласно первому варианту осуществления.
Фиг. 13 является блок-схемой последовательности операций (часть 2), иллюстрирующей способ для обнаружения соседнего транспортного средства согласно первому варианту осуществления.
Фиг. 14 является блок-схемой, иллюстрирующей части компьютера согласно второму варианту осуществления.
Фиг. 15 является видом, иллюстрирующим состояние движения транспортного средства. Фиг. 15(a) является видом сверху, иллюстрирующим позиционную взаимосвязь между областями обнаружения, а фиг. 15(b) является видом в перспективе, иллюстрирующим позиционную взаимосвязь между областями обнаружения в реальном пространстве.
Фиг. 16 является видом для описания работы модуля вычисления различия в яркости; фиг. 16(a) является видом, иллюстрирующим позиционную взаимосвязь между линией концентрации внимания, опорной линией, точкой концентрации внимания и опорной точкой в изображении вида "с высоты птичьего полета", а фиг. 16(b) является видом, иллюстрирующим позиционную взаимосвязь между линией концентрации внимания, опорной линией, точкой концентрации внимания и опорной точкой в реальном пространстве.
Фиг. 17 является видом для описания подробной работы модуля вычисления яркостного различия; фиг. 17(a) является видом, иллюстрирующим область обнаружения в изображении вида "с высоты птичьего полета", а фиг. 17(b) является видом, иллюстрирующим позиционную взаимосвязь между линией концентрации внимания, опорной линией, точкой концентрации внимания и опорной точкой в изображении вида "с высоты птичьего полета".
Фиг. 18 является видом, иллюстрирующим пример изображения для описания операции обнаружения краев.
Фиг. 19 является видом, иллюстрирующим линию края и распределение яркости на линии края; фиг. 19(a) является видом, иллюстрирующим распределение яркости, когда трехмерный объект (соседнее транспортное средство) присутствует в области обнаружения, а фиг. 19(b) является видом, иллюстрирующим распределение яркости, когда трехмерный объект не присутствует в области обнаружения.
Фиг. 20 является блок-схемой последовательности операций (часть 1), иллюстрирующей способ для обнаружения соседнего транспортного средства согласно второму варианту осуществления.
Фиг. 21 является блок-схемой последовательности операций (часть 2), иллюстрирующей способ для обнаружения соседнего транспортного средства согласно второму варианту осуществления.
Предпочтительные варианты осуществления изобретения
[0009] Вариант 1 осуществления
Фиг. 1 является схематичным видом транспортного средства, в котором смонтировано устройство 1 обнаружения трехмерных объектов согласно настоящему варианту осуществления. Цель устройства 1 обнаружения трехмерных объектов согласно настоящему варианту осуществления состоит в том, чтобы обнаруживать другое транспортное средство (ниже может называться "соседним транспортным средством"), присутствующее в соседней полосе движения, в которой контакт является возможным, если рассматриваемое транспортное средство V1 собирается сменить полосу движения. Устройство 1 обнаружения трехмерных объектов согласно настоящему варианту осуществления содержит камеру 10, датчик 20 скорости, компьютер 30 и предупреждающее устройство 40, как проиллюстрировано на фиг. 1.
[0010] Камера 10 крепится к рассматриваемому транспортному средству V1 таким образом, что оптическая ось составляет угол θ вниз от горизонтали в местоположении на высоте h в задней части рассматриваемого транспортного средства V1, как проиллюстрировано на фиг. 1. Из этой позиции, камера 10 захватывает предварительно определенную область окружения рассматриваемого транспортного средства V1. Датчик 20 скорости обнаруживает скорость движения рассматриваемого транспортного средства V1 и вычисляет скорость транспортного средства из скорости вращения колес, обнаруженной, например, посредством датчика скорости вращения колес для обнаружения скорости вращения колеса. Компьютер 30 обнаруживает соседнее транспортное средство, присутствующее в соседней полосе движения позади рассматриваемого транспортного средства. Предупреждающее устройство 40 предупреждает водителя рассматриваемого транспортного средства V1, когда имеется вероятность того, что соседнее транспортное средство, обнаруженное посредством компьютера 30, должно контактировать с рассматриваемым транспортным средством V1.
[0011] Фиг. 2 является видом сверху, иллюстрирующим состояние движения рассматриваемого транспортного средства V1 на фиг. 1. Как проиллюстрировано на чертеже, камера 10 захватывает заднюю сторону относительно транспортного средства под предварительно определенным углом a обзора. В это время, угол a обзора камеры 10 задается равным углу обзора, который дает возможность захвата левой и правой полос движения (соседних полос движения) в дополнение к полосе движения, в которой движется рассматриваемое транспортное средство V1.
[0012] Фиг. 3 является блок-схемой, иллюстрирующей части компьютера 30 согласно первому варианту осуществления. Камера 10, датчик 20 скорости и предупреждающее устройство 40 также иллюстрируются на фиг. 3, чтобы четко указывать взаимосвязи соединений.
[0013] Как проиллюстрировано на фиг. 3, компьютер 30 содержит модуль 31 преобразования точки обзора, модуль 32 совмещения, модуль 33 обнаружения трехмерных объектов, модуль 33 обнаружения трехмерных объектов и модуль 34 оценки трехмерных объектов. Ниже описывается конфигурация этих модулей.
[0014] Захваченные данные изображений предварительно определенной области, полученные посредством захвата, выполняемого посредством камеры 10, вводятся в модуль 31 преобразования точки обзора, и захваченные данные изображений, введенные таким способом, преобразуются в данные изображений вида "с высоты птичьего полета", которые являются состоянием вида "с высоты птичьего полета". Состояние вида "с высоты птичьего полета" является состоянием просмотра с точки зрения воображаемой камеры, которая смотрит вниз сверху, например, вертикально вниз. Преобразование точки обзора может быть выполнено способом, описанным, например, в выложенной заявке на патент Японии № 2008-219063. Причина, по которой захваченные данные изображений преобразуются в данные изображений вида "с высоты птичьего полета", основана на таком принципе, что перпендикулярные края, уникальные для трехмерного объекта, преобразуются в группу прямых линий, которая проходит через конкретную фиксированную точку, посредством преобразования точки обзора в данные изображений вида "с высоты птичьего полета", и использование этого принципа дает возможность различения плоского объекта и трехмерного объекта.
[0015] Данные изображений вида "с высоты птичьего полета", полученные посредством преобразования точки обзора, выполняемого посредством модуля 31 преобразования точки обзора, последовательно вводятся в модуль 32 совмещения, и введенные позиции данных изображений вида "с высоты птичьего полета" в различные моменты времени совмещаются. Фиг. 4 является видом для описания общего представления обработки модуля 32 совмещения, фиг. 4(a) является видом сверху, иллюстрирующим состояние движения рассматриваемого транспортного средства V1, а фиг. 4(b) является изображением, иллюстрирующим общее представление совмещения.
[0016] Как проиллюстрировано на фиг. 4(a), рассматриваемое транспортное средство V1 в данный момент времени размещается в P1, и рассматриваемое транспортное средство V1 за один момент времени до этого размещается в P1'. Предполагается, что соседнее транспортное средство V2 размещается в направлении стороны сзади относительно рассматриваемого транспортного средства V1 и движется параллельно рассматриваемому транспортному средству V1, и что соседнее транспортное средство V2 в данный момент времени размещается в P2, и соседнее транспортное средство V2 за один момент времени до этого размещается в P2'. Кроме того, предполагается, что рассматриваемое транспортное средство V1 проезжает расстояние d в течение одного момента времени. Фраза "за один момент времени до этого" может быть моментом времени в прошлом на время, предварительно заданное (например, один цикл управления) с данного момента времени, либо может быть моментом времени в прошлом на произвольное время.
[0017] В этом состоянии, изображение PBt вида "с высоты птичьего полета" в текущее время является таким, как показано на фиг. 4(b). Белые линии дорожной разметки, нарисованные на поверхности дороги, являются прямоугольными в этом изображении PBt вида "с высоты птичьего полета" и являются относительно точными в виде сверху, но соседнее транспортное средство V2 (позиция P2) сжимается. То же применимо к изображению PBt-1 вида "с высоты птичьего полета" за один момент времени до этого; белые линии дорожной разметки, нарисованные на поверхности дороги, являются прямоугольными и являются относительно точными в виде сверху, но соседнее транспортное средство V2 (позиция P2') сжимается. Как описано выше, перпендикулярные края трехмерного объекта (края, которые расположены вертикально в трехмерном пространстве от поверхности дороги, также включаются в строгий смысл перпендикулярного края) выглядят как группа прямых линий вдоль направления сжатия вследствие процесса для преобразования точки обзора в данные изображений вида "с высоты птичьего полета", но поскольку плоское изображение на поверхности дороги не включает в себя перпендикулярные края, такое сжатие не возникает, даже когда точка обзора преобразована.
[0018] Модуль 32 совмещения совмещает изображения PBt и PBt-1 вида "с высоты птичьего полета", такие как изображения PBt и PBt-1, описанные выше, с точки зрения данных. Когда это выполняется, модуль 32 совмещения смещает изображение PBt-1 вида "с высоты птичьего полета" за один момент времени до этого и сопоставляет позицию с изображением PBt вида "с высоты птичьего полета" в данный момент времени. Левое изображение и центральное изображение на фиг. 4(b) иллюстрируют состояние смещения посредством проезжаемого расстояния d'. Величина d' смещения является величиной перемещения в данных изображений вида "с высоты птичьего полета", которые соответствуют фактическому проезжаемому расстоянию d рассматриваемого транспортного средства V1, проиллюстрированного на фиг. 4(a), и определяется на основе сигнала из датчика 20 скорости и времени от одного момента времени до данного момента времени.
[0019] После совмещения модуль 32 совмещения получает разность между изображениями PBt и PBt-1 вида "с высоты птичьего полета" и формирует данные разностного изображения PDt. В настоящем варианте осуществления, модуль 32 совмещения рассматривает абсолютное значение разности в пиксельных значениях изображений PBt и PBt-1 вида "с высоты птичьего полета" таким образом, что оно соответствует варьированию в среде освещения, и когда абсолютное значение равно или превышает предварительно определенное пороговое значение th, пиксельные значения разностного изображения PDt задаются равными 1, а когда абсолютное значение меньше предварительно определенного порогового значения th, пиксельные значения разностного изображения PDt задаются равными 0, что дает возможность формирования данных разностного изображения PDt, к примеру, данных разностного изображения PDt, проиллюстрированных справа на фиг. 4(b).
[0020] Возвращаясь к фиг. 3, модуль 33 обнаружения трехмерных объектов обнаруживает трехмерный объект на основе данных разностного изображения PDt, показанных на фиг. 4(b). В этом случае, модуль 33 обнаружения трехмерных объектов вычисляет проезжаемое расстояние трехмерного объекта в фактическом пространстве. Модуль 33 обнаружения трехмерных объектов сначала формирует первую форму DW1t разностного сигнала, когда обнаруживается трехмерный объект, и должно быть вычислено проезжаемое расстояние.
[0021] При формировании первой формы DW1t разностного сигнала, модуль 33 обнаружения трехмерных объектов задает область обнаружения в разностном изображении PDt. Цель устройства 1 обнаружения трехмерных объектов настоящего примера состоит в том, чтобы вычислять проезжаемое расстояние для соседнего транспортного средства, с которым имеется вероятность контакта, если рассматриваемое транспортное средство V1 собирается сменять полосу движения. Соответственно, в настоящем примере, прямоугольные области A1, A2 обнаружения задаются позади рассматриваемого транспортного средства V1, как проиллюстрировано на фиг. 2. Такие области A1, A2 обнаружения могут задаваться из относительной позиции до рассматриваемого транспортного средства V1 или могут задаваться на основе позиции белых линий дорожной разметки. Когда задаются на основе позиции белых линий дорожной разметки, устройство 1 обнаружения трехмерных объектов может использовать, например, известные технологии распознавания белых линий дорожной разметки.
[0022] Модуль 33 обнаружения трехмерных объектов распознает в качестве линий L1, L2 пересечения с землей границы областей A1, A2 обнаружения, заданных таким способом, на стороне рассматриваемого транспортного средства V1 (стороне вдоль направления движения), как проиллюстрировано на фиг. 2. В общем, линия пересечения с землей означает линию, в которой трехмерный объект контактирует с землей, но в настоящем варианте осуществления, линия пересечения с землей не является линией контакта с землей, но вместо этого задается способом, описанным выше. Даже в таком случае, разность между линией пересечения с землей согласно настоящему варианту осуществления и нормальной линией пересечения с землей, определенной из позиции соседнего транспортного средства V2, не является чрезвычайно большой, как определено посредством опыта, и фактически не представляет собой проблемы.
[0023] Фиг. 5 является схематичным видом, иллюстрирующим способ, которым формируется первая форма DW1t разностного сигнала посредством модуля 33 обнаружения трехмерных объектов. Как проиллюстрировано на фиг. 5, модуль 33 обнаружения трехмерных объектов формирует первую форму DW1t разностного сигнала из участка, который соответствует областям A1, A2 обнаружения в разностном изображении PDt (чертеж справа на фиг. 4(b)), вычисленном посредством модуля 32 совмещения. В этом случае, модуль 33 обнаружения трехмерных объектов формирует первую форму DW1t разностного сигнала вдоль направления сжатия трехмерного объекта посредством преобразования точки обзора. В примере, проиллюстрированном на фиг. 5, для удобства описана только область A1 обнаружения, но первая форма DW1t разностного сигнала также формируется для области A2 обнаружения с использованием идентичной процедуры.
[0024] Более конкретно, сначала модуль 33 обнаружения трехмерных объектов задает линию La в направлении, в котором трехмерный объект сжимается, в данных разностного изображения PDt. Модуль 33 обнаружения трехмерных объектов затем подсчитывает число разностных пикселов DP, указывающих предварительно определенную разность, на линии La. В настоящем варианте осуществления, разностные пикселы DP, указывающие предварительно определенную разность, имеют пиксельные значения в разностном изображении PDt, которые представляются посредством 0 и 1, и пикселы, указываемые посредством 1, подсчитываются в качестве разностных пикселов DP.
[0025] Модуль 33 обнаружения трехмерных объектов подсчитывает число разностных пикселов DP и после этого определяет точку CP пересечения линии La и линии L1 пересечения с землей. Модуль 33 обнаружения трехмерных объектов затем коррелирует точку CP пересечения и подсчитанное число, определяет позицию на горизонтальной оси, т.е. позицию на оси в вертикальном направлении на чертеже справа на фиг. 5, на основе позиции точки CP пересечения, определяет позицию на вертикальной оси, т.е. позицию на оси в поперечном направлении на чертеже справа на фиг. 5, из подсчитанного числа и определяет координаты в качестве подсчитанного числа в точке CP пересечения.
[0026] Аналогично, модуль 33 обнаружения трехмерных объектов задает линии Lb, Lc,..., в направлении, в котором трехмерный объект сжимается, подсчитывает число разностных пикселов DP, определяет позицию на горизонтальной оси на основе позиции каждой точки CP пересечения, определяет позицию на вертикальной оси из подсчитанного числа (числа разностных пикселов DP) и определяет координаты. Модуль 33 обнаружения трехмерных объектов повторяет вышеуказанное последовательно, чтобы формировать частотное распределение и за счет этого формировать первую форму DW1t разностного сигнала, как проиллюстрировано на чертеже справа на фиг. 5.
[0027] Здесь, разностные пикселы PD в данных разностного изображения PDt представляют собой пикселы, которые изменены в изображении в различные моменты времени, другими словами, местоположения, которые могут истолковываться как места, в которых присутствовал трехмерный объект. Соответственно, в местоположениях, в которых присутствовал трехмерный объект, число пикселов подсчитывается вдоль направления, в котором трехмерный объект сжимается, чтобы формировать частотное распределение и за счет этого формировать первую форму DW1t разностного сигнала. В частности, число пикселов подсчитывается вдоль направления, в котором трехмерный объект сжимается, и, следовательно, первая форма DW1t разностного сигнала формируется из информации относительно направления высоты относительно трехмерного объекта.
[0028] Линии La и Lb в направлении, в котором трехмерный объект сжимается, имеют различные расстояния, которые перекрывают область A1 обнаружения, как проиллюстрировано на чертеже слева на фиг. 5. Соответственно, число разностных пикселов DP больше на линии La, чем на линии Lb, когда предполагается, что область A1 обнаружения заполнена разностными пикселами DP. По этой причине, модуль 33 обнаружения трехмерных объектов выполняет нормализацию на основе расстояния, на котором линии La, Lb в направлении, в котором трехмерный объект сжимается, и область A1 обнаружения перекрываются, когда позиция на вертикальной оси определяется из подсчитанного числа разностных пикселов DP. В конкретном примере, существует шесть разностных пикселов DP на линии La, и существует пять разностных пикселов DP на линии Lb на чертеже слева на фиг. 5. Соответственно, когда позиция на вертикальной оси определяется из подсчитанного числа на фиг. 5, модуль 33 обнаружения трехмерных объектов делит подсчитанное число на перекрывающееся расстояние или выполняет нормализацию другим способом. Значения первой формы DW1t разностного сигнала, которые соответствуют линиям La, Lb в направлении, в котором сжимается трехмерный объект, в силу этого становятся практически идентичными.
[0029] После того, как сформирована первая форма DW1t разностного сигнала, модуль 33 обнаружения трехмерных объектов вычисляет проезжаемое расстояние посредством сравнения первой формы DW1t разностного сигнала в данный момент времени и первой формы DW1t-1 разностного сигнала за один момент времени до этого. Другими словами, модуль 33 обнаружения трехмерных объектов вычисляет проезжаемое расстояние из изменения во времени первой формы DW1t разностного сигнала и первой формы DW1t-1 разностного сигнала.
[0030] Более конкретно, модуль 33 обнаружения трехмерных объектов разделяет первую форму DW1t разностного сигнала на множество небольших областей DW1t1-DW1tn (где n является произвольным целым числом 2 или больше), как проиллюстрировано на фиг. 6. Фиг. 6 является видом, иллюстрирующим небольшие области DW1t1-DW1tn, разделенные посредством модуля 33 обнаружения трехмерных объектов. Небольшие области DW1t1-DW1tn разделяются с возможностью взаимно перекрываться, как проиллюстрировано, например, на фиг. 6. Например, небольшая область DW1t1 и небольшая область DW1t2 перекрывают друг друга, и небольшая область DW1t2 и небольшая область DW1t3 перекрывают друг друга.
[0031] Затем, модуль 33 обнаружения трехмерных объектов определяет величину смещения (величину перемещения в направлении по горизонтальной оси (в вертикальном направлении на фиг. 6) формы разностного сигнала) для каждой из небольших областей DW1t1-DW1tn. Здесь, величина смещения определяется из разности (расстояния в направлении по горизонтальной оси) между первой формой DW1t-1 разностного сигнала за один момент времени до этого и первой формой DW1t разностного сигнала в данный момент времени. В этом случае, модуль 33 обнаружения трехмерных объектов перемещает первую форму DW1t-1 разностного сигнала за один момент времени до этого в направлении по горизонтальной оси для каждой из небольших областей DW1t1-DW1tn и после этого оценивает позицию (позицию в направлении по горизонтальной оси), в которой ошибка относительно первой формы DWt разностного сигнала в данный момент времени является минимальной, и определяет в качестве величины смещения величину перемещения в направлении по горизонтальной оси в позиции, в которой ошибка относительно исходной позиции первой формы DW1t-1 разностного сигнала является минимальной. Модуль 33 обнаружения трехмерных объектов затем подсчитывает величину смещения определенной для каждой из небольших областей DW1t1-DW1tn и формирует гистограмму.
[0032] Фиг. 7 является видом, иллюстрирующим пример гистограммы, полученной посредством модуля 33 обнаружения трехмерных объектов. Как проиллюстрировано на фиг. 7, в величине смещения возникает некоторая величина переменности, которая представляет собой проезжаемое расстояние, в котором ошибка между небольшими областями DW1t1-DW1tn и первой формой DW1t-1 разностного сигнала за один момент времени до этого является минимальной. Соответственно, модуль 33 обнаружения трехмерных объектов формирует величины смещения, включающие в себя переменность, на гистограмме и вычисляет проезжаемое расстояние из гистограммы. В этот момент, модуль 33 обнаружения трехмерных объектов вычисляет проезжаемое расстояние трехмерного объекта из максимального значения на гистограмме. Другими словами, в примере, проиллюстрированном на фиг. 7, модуль 33 обнаружения трехмерных объектов вычисляет величину смещения, указывающую максимальное значение гистограммы, в качестве проезжаемого расстояния τ*. Таким образом, в настоящем варианте осуществления, более высокоточное проезжаемое расстояние может быть вычислено из максимального значения, даже когда существует переменность в величине смещения. Проезжаемое расстояние τ* является относительным проезжаемым расстоянием трехмерного объекта относительно рассматриваемого транспортного средства. Соответственно, модуль 33 обнаружения трехмерных объектов вычисляет абсолютное проезжаемое расстояние на основе проезжаемого расстояния τ*, полученного таким способом, и датчика 20 скорости, когда должно вычисляться абсолютное проезжаемое расстояние.
[0033] Таким образом, в настоящем варианте осуществления, проезжаемое расстояние трехмерного объекта вычисляется из величины смещения первой формы DW1t разностного сигнала, когда ошибка в первой форме DW1t разностного сигнала, сформированной в различные моменты времени, является минимальной, и это дает возможность вычисления проезжаемого расстояния из величины смещения, которая является информацией относительно одной размерности в форме сигнала, и дает возможность поддержания вычислительных затрат на низком уровне, когда вычисляется проезжаемое расстояние. Кроме того, разделение первой формы DW1t разностного сигнала, сформированной в различные моменты времени, на множество небольших областей DW1t1-DW1tn дает возможность получения множества форм сигналов, представляющих местоположения трехмерного объекта, за счет этого давая возможность определения величины смещения в каждом местоположении трехмерного объекта и давая возможность определения проезжаемого расстояния из множества величин смещения. Следовательно, может повышаться точность вычисления проезжаемого расстояния. В настоящем варианте осуществления, проезжаемое расстояние трехмерного объекта вычисляется из изменения во времени первой формы DW1t разностного сигнала, которая включает в себя информацию направления высоты. Следовательно, в отличие от сосредоточения исключительно на движении одной точки, местоположение обнаружения до изменения во времени и местоположение обнаружения после изменения во времени указываются с помощью включенной информации направления высоты и, соответственно, легко в итоге оказываются идентичным местоположением; проезжаемое расстояние вычисляется из изменения во времени в идентичном местоположении; и точность для вычисления проезжаемого расстояния может повышаться.
[0034] Когда должна формироваться гистограмма, модуль 33 обнаружения трехмерных объектов может применять взвешивание ко множеству небольших областей DW1t1-DW1tn и подсчитывать величины смещения, определенные для каждой из небольших областей DW1t1-DW1tn в соответствии со взвешиванием, чтобы формировать гистограмму. Фиг. 8 является видом, иллюстрирующим взвешивание, используемое посредством модуля 33 обнаружения трехмерных объектов.
[0035] Как проиллюстрировано на фиг. 8, небольшая область DW1m (где m является целым числом в 1 или больше и n-1 или меньше) является плоской. Другими словами, в небольшой области DW1m, имеется несущественная разность между максимальными и минимальными значениями счетчика числа пикселов, указывающими предварительно определенную разность. Модуль 33 обнаружения трехмерных объектов увеличивает взвешивание этого типа небольшой области DW1m. Это обусловлено тем, что в плоской небольшой области DW1m отсутствует характерность, и имеется высокая вероятность того, что ошибка должна быть усилена, когда вычисляется величина смещения.
[0036] С другой стороны, небольшая область DW1m+k (где k является целым числом в n-m или меньше) имеет значительную неровность. Другими словами, в небольшой области DW1m, имеется существенная разность между максимальными и минимальными значениями счетчика числа пикселов, указывающими предварительно определенную разность. Модуль 33 обнаружения трехмерных объектов увеличивает взвешивание этого типа небольшой области DW1m. Это обусловлено тем, что небольшая область DW1m+k с существенной неровностью является характерной, и имеется высокая вероятность того, что величина смещения будет вычислена точно. Взвешивание небольших областей таким способом позволяет повышать точность для вычисления проезжаемого расстояния.
[0037] Первая форма DW1t разностного сигнала разделяется на множество небольших областей DW1t1-DW1tn в настоящем варианте осуществления, чтобы повышать точность для вычисления проезжаемого расстояния, но разделение на небольшие области DW1t1-DW1tn не требуется, когда точность для вычисления проезжаемого расстояния не настолько требуется. В этом случае, модуль 33 обнаружения трехмерных объектов вычисляет проезжаемое расстояние из величины смещения первой формы DW1t разностного сигнала, когда ошибка между первой формой DW1t разностного сигнала и первой формой DW1t-1 разностного сигнала является минимальной. Другими словами, способ для определения величины смещения между первой формой DW1t-1 разностного сигнала за один момент времени до этого и первой формой DW1t разностного сигнала в данный момент времени не ограничивается подробностями, описанными выше.
[0038] Модуль 33 обнаружения трехмерных объектов в настоящем варианте осуществления определяет скорость движения рассматриваемого транспортного средства V1 (камера 10) и определяет величину смещения для стационарного объекта из определенной скорости движения. После того как величина смещения стационарного объекта определена, модуль 33 обнаружения трехмерных объектов игнорирует величину смещения, которая соответствует стационарному объекту в максимальном значении гистограммы, и вычисляет проезжаемое расстояние трехмерного объекта.
[0039] Фиг. 9 является видом, иллюстрирующим другой пример гистограммы, полученной посредством модуля 33 обнаружения трехмерных объектов. Когда стационарный объект, отличный от трехмерного объекта, присутствует в пределах угла обзора камеры 10, два максимальных значения τ1, τ2 появляются на результирующей гистограмме. В этом случае, одно из двух максимальных значений τ1, τ2 является величиной смещения стационарного объекта. Следовательно, модуль 33 обнаружения трехмерных объектов определяет величину смещения для стационарного объекта из скорости движения, игнорирует максимальное значение, которое соответствует величине смещения, и вычисляет проезжаемое расстояние трехмерного объекта с использованием оставшегося максимального значения. За счет этого можно не допускать ситуации, в которой точность для вычисления проезжаемого расстояния трехмерного объекта уменьшается посредством стационарного объекта.
[0040] Даже когда величина смещения, соответствующая стационарному объекту, игнорируется, может быть множество трехмерных объектов, присутствующих в пределах угла обзора камеры 10, когда существует множество максимальных значений. Тем не менее, множество трехмерных объектов, присутствующих в областях A1, A2 обнаружения, возникают очень редко. Соответственно, модуль 33 обнаружения трехмерных объектов прекращает вычисление проезжаемого расстояния. В настоящем варианте осуществления, за счет этого можно не допускать ситуации, в которой вычисляется ошибочное проезжаемое расстояние, к примеру, когда существует множество максимальных значений.
[0041] Модуль 33 обнаружения трехмерных объектов формирует вторую форму DW2t разностного сигнала вдоль направления ширины транспортного средства от участка, который соответствует областям A1, A2 обнаружения в разностном изображении PDt (чертеж справа на фиг. 4(b)), вычисленного посредством модуля 32 совмещения. Фиг. 10 является схематичным видом, иллюстрирующим способ, которым вторая форма DW2t разностного сигнала формируется посредством модуля 33 обнаружения трехмерных объектов. Как проиллюстрировано на фиг. 10, модуль 33 обнаружения трехмерных объектов формирует вторую форму DW2t разностного сигнала вдоль направления ширины транспортного средства. В примере, проиллюстрированном на фиг. 10, для удобства описана только область A1 обнаружения, но вторая форма DW2t разностного сигнала также формируется для об