Способы неинвазивного пренатального установления отцовства
Иллюстрации
Показать всеИзобретения относятся к области генетики и медицины и касаются способов неинвазивного пренатального установления отцовства. В способах применяются генетические измерения наличия однонуклеотидных полиморфизмов, делеций, дупликаций и инверсий нуклеотидных последовательностей, выполненные в плазме, взятой от беременной матери, вместе с аналогичными генетическими измерениями предполагаемого отца для определения того, является или не является предполагаемый отец биологическим отцом плода. Изобретения осуществляются с помощью основанного на информатике метода, при котором генетический фингерпринт плодной ДНК, обнаруженной в материнской плазме, может сравниваться с генетическим фингерпринтом предполагаемого отца. 4 н. и 13 з.п. ф-лы, 9 ил., 4 табл., 3 пр.
Реферат
Ссылка на родственные заявки
По настоящей заявке испрашивается приоритет по дате подачи предварительной заявки на выдачу патента США №61/426208, которая была подана 22 декабря 2010 г., и настоящая заявка является частично продолжающейся заявкой на выдачу патента США на изобретение с серийным №13/300235, которая была подана 18 ноября 2011 г., по которой испрашивается приоритет предварительной заявки на выдачу патента США №61/571248, которая была подана 23 июня 2011 г.; предварительной заявки на выдачу патента США №61/542508, которая была подана 3 октября 2011 г.; и является частично продолжающейся заявкой на выдачу патента США на изобретение с серийным №13/110685, которая была подана 18 мая 2011 г., по которой испрашивается приоритет по дате подачи предварительной заявки на выдачу патента США №61/395850, которая была подана 18 мая 2010 г.; предварительной заявки на выдачу патента США №61/398159, которая была подана 21 июня 2010 г.; предварительной заявки на выдачу патента США №61/462972, которая была подана 9 февраля 2011 г.; предварительной заявки на выдачу патента США №61/448547, которая была подана 2 марта 2011 г.; а также предварительной заявки на выдачу патента США №61/516996, которая была подана 12 апреля 2011 г., и все эти заявки во всей их полноте тем самым включены в настоящий документ посредством ссылки на все их идеи.
Область техники, к которой относится настоящее изобретение
Настоящее раскрытие по сути относится к способам неинвазивного пренатального установления отцовства.
Предшествующий уровень техники настоящего изобретения
Неопределенное отцовство является существенной проблемой, и по оценкам у 4%-10% детей их предполагаемый будущий биологический отец не является фактическим биологическим отцом. В случаях, когда женщина беременна, но релевантные лица не уверены, кто является биологическим отцом, используют несколько вариантов определения истинного биологического отца плода. Один способ заключается в ожидании рождения, проведении генетического фингерпринтинга ребенка и сравнении генетического фингерпринта генома ребенка с таковым предполагаемых отцов. Однако мать часто желает знать, кто биологический отец ее ребенка, при беременности. Другой способ заключается в проведении пробы ворсинчатого хориона в первом триместре или амниоцентеза во втором триместре беременности, а также в использовании генетического материала, полученного для проведения генетического фингерпринтинга пренатально. Однако эти способы являются инвазивными и несут существенный риск самопроизвольного аборта.
Недавно было обнаружено, что плодная бесклеточная ДНК (cfDNA) и интактные плодные клетки могут попадать в кровоток матери. Следовательно, анализ этого плодного генетического материала может обеспечить раннюю неинвазивную пренатальную генетическую диагностику (NIPGD или NPD). Одной из основных задач при выполнении NIPGD на плодных клетках является задача идентификации и извлечения плодных клеток или нуклеиновых кислот из крови матери. Концентрация плодных клеток в крови матери зависит от стадии беременности и состояния плода, но по оценкам варьирует от одной до сорока плодных клеток на каждый миллилитр крови матери или менее одной плодной клетки на 100000 материнских ядросодержащих клеток. Современными методиками можно выделить небольшие количества плодных клеток из крови матери, хотя трудно приумножить плодные клетки для очистки в любом количестве. Наиболее эффективная методика в этом отношении предусматривает применение моноклональных антител, но другие методики, используемые для выделения плодных клеток, предусматривают центрифугирование в градиенте плотности, селективный лизис взрослых эритроцитов и FACS. Одна из основных проблем выполнения NIPGD на плодной cfDNA заключается в том, что, как правило, она смешана с материнской cfDNA, и, таким образом, анализ cfDNA затруднен необходимостью учета материнского генотипического сигнала. Анализ плодной ДНК был продемонстрирован с помощью ПЦР-амплификации с использованием праймеров, которые предназначены для гибридизации с последовательностями, которые являются специфичными к унаследованным от отца генам. Эти источники плодного генетического материала открывают двери методикам неинвазивной пренатальной диагностики.
Как только плодная ДНК выделена, либо в чистом виде, либо в смеси, ее можно амплифицировать. Существует ряд способов, доступных для полногеномной амплификации (WGA): опосредованная лигированием ПЦР (LM-PCR), ПЦР с вырожденными олигонуклеотидными праймерами (DOP-PCR) и амплификация с множественным вытеснением цепи (MDA). Существует ряд способов, доступных для целевой амплификации, в том числе ПЦР и зонды циркуляризации, такие как молекулярные инверсионные зонды (MIP) и зонды, замыкающиеся в кольцо при лигировании. Существуют и другие способы, которые могут быть использованы для предпочтительного приумножения плодной ДНК, такие как разделение по размерам и зонды гибридного захвата.
Существует многочисленные трудности в использовании амплификации ДНК в этих контекстах. Амплификация ДНК отдельной клетки, ДНК из небольшого числа клеток или от больших количеств ДНК с помощью ПЦР может полностью потерпеть неудачу. Это часто происходит из-за загрязнения ДНК, потери клетки, ее ДНК или доступности ДНК в ходе реакции амплификации. Другие погрешности, которые могут возникнуть при измерении плодной ДНК путем амплификации и микроматричного анализа, включают транскрипционные ошибки, введенные ДНК-полимеразой, когда конкретный нуклеотид неправильно скопирован в ходе ПЦР, и ошибки считывания микроматрицы из-за нарушенной гибридизации на матрице. Другой проблемой является выпадение одного аллеля (ADO), которое определяется как невозможность амплификации одного из двух аллелей в гетерозиготных клетках.
Существует множество методик, которые обеспечивают данные генотипирования. Некоторые примеры предусматривают следующее. TAQMAN - уникальная технология генотипирования, разработанная и распространяемая LIFE TECHNOLOGY. В TAQMAN применяется полимеразная цепная реакция (ПЦР) для амплификации представляющих интерес последовательностей. Системы 500К ARRAYS от AFFYMETRIX и INFINIUM от ILLUMINA являются матрицами генотипирования, которые выявляют присутствие специфичных последовательностей ДНК при большом числе локализаций одновременно. HISEQ и MISEQ от ILLUMINA, а также платформы ION TORRENT и SOLID от LIFE TECHNOLOGY позволяют непосредственно секвенировать большое число отдельных последовательностей ДНК.
Краткое раскрытие настоящего изобретения
В настоящем документе раскрываются способы определения отцовства вынашиваемого плода неинвазивным путем. Согласно проиллюстрированным в настоящем документе аспектам в одном варианте осуществления способ установления того, является ли предполагаемый отец биологическим отцом плода, который вынашивается беременной матерью, предусматривает получение генетического материала от предполагаемого отца, получение образца крови от беременной матери, осуществление генотипических определений во множестве полиморфных локусов в генетическом материале от предполагаемого отца, получение генотипических определений во множестве полиморфных локусов из генетического материала от беременной матери, осуществление генотипических определений в смешанном образце ДНК, происходящей из образца крови от беременной матери, если смешанный образец ДНК содержит плодную ДНК и материнскую ДНК, определение на компьютере вероятности того, что предполагаемый отец является биологическим отцом плода, вынашиваемого беременной матерью, с использованием генотипических определений, выполненных из ДНК от предполагаемого отца, генотипических определений, полученных от беременной матери, и генотипических определений, выполненных в смешанном образце ДНК, и установление того, что предполагаемый отец является биологическим отцом плода, с использованием установленной вероятности того, что предполагаемый отец является биологическим отцом плода.
В варианте осуществления полиморфные локусы содержат однонуклеотидные полиморфизмы. В варианте осуществления смешанный образец ДНК содержит ДНК, которая происходит от свободно плавающей ДНК в плазменной фракции образца крови от беременной матери. В варианте осуществления смешанный образец ДНК содержит материнскую цельную кровь или фракцию крови матери, содержащей ядросодержащие клетки. В варианте осуществления фракцию крови матери, содержащую ядросодержащие клетки, обогащали клетками плодного происхождения.
В одном варианте осуществления определение того, что предполагаемый отец является биологическим отцом, предусматривает вычисление тестовой статистики для предполагаемого отца и плода, в котором тестовая статистика показывает степень генетического сходства между предполагаемым отцом и плодом, и в котором тестовая статистика основывается на генотипических измерениях, выполненных в ДНК от предполагаемого отца, генотипических измерениях, выполненных на смешанных образцах ДНК, и генотипических измерениях, выполненных в ДНК от беременной матери, вычисление распределения тестовой статистики для множества индивидуумов, которые не являются генетически родственными плоду, если каждая рассчитанная тестовая статистика показывает степень генетического сходства между неродственным индивидуумом из множества индивидуумов, которые не являются родственными плоду, и плодом, причем тестовая статистика основывается на генотипических измерениях, выполненных в ДНК от неродственного индивидуума, генотипических измерениях, выполненных в смешанном образце ДНК, и генотипических измерениях, полученных в ДНК от беременной матери, вычисление вероятности того, что тестовая статистика, рассчитанная для предполагаемого отца и плода находится в пределах распределения тестовой статистики, рассчитанной для множества неродственных индивидуумов и плода, и определение вероятности того, что предполагаемый отец является биологическим отцом плода, с использованием вероятности того, что тестовая статистика, рассчитанная для предполагаемого отца, находится в пределах распределения тестовой статистики, рассчитанной для множества неродственных индивидуумов и плода. В варианте осуществления установление того, является ли предполагаемый отец биологическим отцом плода, также предусматривает установление того, что предполагаемый отец является биологическим отцом плода, путем отклонения гипотезы, что предполагаемый отец не является родственным плоду, если вероятность того, что предполагаемый отец является биологическим отцом плода, является выше верхнего порога, или установление того, что предполагаемый отец не является биологическим отцом плода путем неотклонения гипотезы, что предполагаемый отец не является родственным плоду, если вероятность того, что предполагаемый отец является биологическим отцом плода, ниже нижнего порога, или неустановление того, является ли предполагаемый отец биологическим отцом плода,если правдоподобие находится между нижним порогом и верхним порогом, или если правдоподобие не было установлено с достаточно высокой достоверностью.
В варианте осуществления определение вероятности того, что предполагаемый отец является биологическим отцом плода, предусматривает получение популяционных частот аллелей для каждого локуса во множестве полиморфных локусов, обеспечение разделения возможных фракций плодной ДНК в смешанном образце ДНК, что варьирует от нижнего предела плодной фракции до верхнего предела плодной фракции, вычисление вероятности того, что предполагаемый отец является биологическим отцом плода, с учетом генотипических определений по ДНК от матери, генотипических определений, выполненных в ДНК от предполагаемого отца, генотипических определений, выполненных в смешанном образце ДНК, для каждого из возможных плодных фракций в разделении, определение вероятности того, что предполагаемый отец является биологическим отцом плода, путем объединения рассчитанных вероятностей того, что предполагаемый отец является биологическим отцом плода, для каждого из возможных плодных фракций в разделении, вычисление вероятности того, что предполагаемый отец не является биологическим отцом плода, с учетом генотипических определений, выполненных в ДНК от матери, генотипических определений, выполненных в смешанном образце ДНК, полученных популяционных частот аллелей; для каждой из возможных плодных фракций в разделении, и определение вероятности того, что предполагаемый отец не является биологическим отцом плода, путем объединения рассчитанных вероятностей того, что предполагаемый отец не является биологическим отцом плода, для каждой из возможных плодных фракций в разделении.
В варианте осуществления вычисления вероятности того, что предполагаемый отец является биологическим отцом плода, и вычисление вероятности того, что предполагаемый отец не является биологическим отцом плода, также может предусматривать вычисление для каждого из множества полиморфных локусов правдоподобия наблюдаемых данных последовательности в конкретном локусе с использованием модели зависимости от платформы, одной или нескольких фракций в возможном разделении плодных фракций, множества аллельных отношений для матери, множества аллельных отношений для предполагаемого отца и множества отношений аллелей для плода, вычисление правдоподобия того, что предполагаемыйотец является биологическим отцом, путем объединения правдоподобия наблюдаемых данных последовательностей в каждом полиморфном локусе по всем плодным фракциям в разделении, по аллельным отношениям матери в наборе полиморфных локусов, по аллельным отношениям предполагаемого отца в наборе полиморфных локусов и по плодным аллельным отношениям в наборе полиморфных локусов, вычисление правдоподобия того, что предполагаемый отец не является биологическим отцом, путем объединения правдоподобия наблюдаемых данных последовательности в каждом полиморфном локусе по всем плодным фракциям в разделении, по аллельным отношениям матери в наборе полиморфных локусов, по популяционным частотам для набора полиморфных локусов и по плодным аллельным отношениям в наборе полиморфных локусов, вычисление правдоподобия того, что предполагаемый отец является биологическим отцом, на основе вероятности того, что предполагаемый отец является биологическим отцом, и вычисление правдоподобия того, что предполагаемый отец не является биологическим отцом, на основе вероятности того, что предполагаемый отец не является биологическим отцом.
В одном варианте осуществления вычисление вероятности того, что предполагаемый отец является биологическим отцом, на основе правдоподобия того, что предполагаемый отец является биологическим отцом, выполняется с использованием оценки максимального правдоподобия или метода максимальной апостериорной гипотезы. В варианте осуществления установление того, является ли предполагаемый отец биологическим отцом плода, также может предусматривать установление того, что предполагаемый отец является биологическим отцом, если рассчитанная вероятность того, что предполагаемый отец является биологическим отцом плода, существенно больше рассчитанной вероятности того, что предполагаемый отец не является биологическим отцом, или установление того, что предполагаемый отец не является биологическим отцом плода, если рассчитанная вероятность того, что предполагаемый отец является биологическим отцом, существенно больше рассчитанной вероятности того, что предполагаемый отец не является биологическим отцом. В варианте осуществления полиморфные локусы соответствуют хромосомам с высоким правдоподобием того, что они являются дисомными.
В варианте осуществления разделение возможных фракций плодной ДНК содержит только одну плодную фракцию, и при этом плодная фракция определена с помощью методики из перечня, состоящего из количественной ПЦР, цифровой ПЦР, целевой ПЦР, зондов циркуляризации, других способов амплификации ДНК, захвата гибридизационными зондами, других способов предпочтительного приумножения, микроматриц SNP, микроматриц ДНК, секвенирования, других методик для измерения полиморфных аллелей, других методик для измерения неполиморфных аллелей, измерение полиморфных аллелей, которые присутствуют в геноме отца, но не присутствуют в геноме матери, измерение неполиморфных аллелей, которые присутствуют в геноме отца, но не присутствуют в геноме матери, измерение аллелей, которые являются специфичными по отношению к Y-хромосоме, сравнение измеренного количества унаследованных от отца аллелей с измеренным количеством унаследованных от матери аллелей, максимально правдоподобных оценок, методов максимальной апостериорной гипотезы и их комбинаций. В варианте осуществления способа по п. 1 разделение возможных плодных фракций содержит только одну плодную фракцию, и плодная фракция определена с помощью способ по п. 26.
В варианте осуществления генетический материал предполагаемого отца получается из ткани, выбранной из группы, состоящей из крови, соматической ткани, спермы, волоса, буккального образца, кожи, других экспертных образцов и их комбинаций. В варианте осуществления достоверность вычисляется для установленного определения того, что предполагаемый отец является биологическим отцом плода. В варианте осуществления фракцию плодной ДНК в смешанном образце ДНК приумножают с использованием способа, выбранного из группы, состоящей из отбора по размеру, универсальной опосредованной лигированием ПЦР, ПЦР с коротким временем удлинения, других способов приумножения и их комбинаций.
В варианте осуществления получение генотипических определений из генетического материала беременной матери может предусматривать осуществление генотипических определений в образце генетического материала от беременной матери, который состоит в основном из материнского генетического материала. В варианте осуществления получение генотипических определений из генетического материала от беременной матери может предусматривать заключение о том, что генотипические измерения из генотипических определений, выполненных в смешанном образце ДНК, вероятно относятся к генетическому материалу от беременной матери, и использование таких генотипических определений, которые согласно заключению относятся к генетическому материалу от матери, в виде полученных генотипических определений. В варианте осуществления способ также может предусматривать осуществление клинического решения на основе определения установленного отцовства. В варианте осуществления клиническим решением является прекращение беременности.
В варианте осуществления получение генотипических определений может быть выполнено путем измерения генетического материал с использованием методики или технологии, выбранной из группы, состоящей из зондов, замыкающихся в кольцо при лигировании, молекулярных инверсионных зондов, других зондов циркуляризации, микроматриц генотипирования, анализов генотипирования SNP, микроматриц на основе чипа, микроматриц на основе гранул, других микроматриц SNP, других способов генотипирования, секвенирования ДНК по методу Сэнгера, пиросеквенирования, высокопроизводительного секвенирования, целевого секвенирования с использованием зондов циркуляризации, целевого секвенирования с использованием захвата гибридизационными зондами, секвенирования с обратимой терминацией с использованием красителей, секвенирования с помощью лигирования, секвенирования с помощью гибридизации, других способов секвенирования ДНК, других высокопроизводительных платформ генотипирования, флуоресцентной in situ гибридизации (FISH), сравнительной геномной гибридизации (CGH), матричной CGH, а также их групп или комбинаций.
В варианте осуществления получение генотипических определений может быть выполнено на генетическом материале, который амплифицируют и/или предпочтительно приумножают до измерения с использованием методики или технологии, которая выбрана из группы, состоящей из полимеразной цепной реакции (ПЦР), опосредованной лигандом ПЦР, ПЦР с вырожденными олигонуклеотидными праймерами, целевой амплификации, ПЦР, мини-ПЦР, универсальной ПЦР-амплификации, амплификации с множественным вытеснением цепи (MDA), специфичной по отношению к аллелям ПЦР, методик специфичной по отношению к аллелям амплификации, способов линейной амплификации, лигирования субстратной ДНК с последующим другим способом амплификации, мостиковой амплификации, зондов, замыкающихся в кольцо при лигировании, зондов циркуляризации, захвата гибридизационными зондами и их комбинаций.
В варианте осуществления способ также может предусматривать создание отчета, содержащего установленное отцовство плода. В варианте осуществления настоящее изобретение может предусматривать отчет, раскрывающий установленное отцовство плода, полученное с использованием описанного в настоящем документе способа.
В настоящем документе раскрываются способы определения фракции ДНК, полученной от целевого индивидуума, присутствующей в смеси ДНК, которая содержит ДНК от целевого индивидуума, и также ДНК по меньшей мере от одного другого индивидуума. Согласно проиллюстрированным в настоящем документе аспектам в варианте осуществления способ определения фракции ДНК от целевого индивидуума, присутствующей в смешанном образце ДНК, который содержит ДНК от целевого индивидуума и ДНК от второго индивидуума, может предусматривать осуществление генотипических определений во множестве полиморфных локусов из смешанного образца ДНК, получение генотипических данных во множестве полиморфных локусов от второго индивидуума и определение на компьютере фракции ДНК от целевого индивидуума, присутствующей в смешанном образце, с использованием генотипических определений в смешанном образце ДНК, генотипических данных от второго индивидуума и методик вероятностной оценки.
В варианте осуществления получение генотипических данных от второго индивидуума предусматривает осуществление генетических измерений в ДНК, которая в основном состоит из ДНК от второго индивидуума. В варианте осуществления получение генотипических данных от второго индивидуума может предусматривать заключение о том, что генотипические измерения из генотипических определений, выполненных в смешанном образце ДНК, вероятно, относятся к генетическому материалу от второго индивидуума, и с использованием этих генотипических определений, которые, как было заключено, относятся к генетическому материалу от второго индивидуума как полученные генотипические измерения.
В варианте осуществления заключение о генотипических данных родственного индивидуума также может предусматривать использование частот аллельных популяций в локусах. В варианте осуществления определенная фракция ДНК от целевого индивидуума выражается как вероятность фракций ДНК. В варианте осуществления генотипические измерения, выполненные для смешанного образца, предусматривают генотипические измерения, выполненные путем секвенирования ДНК в смешанном образце. В варианте осуществления ДНК в смешанном образце предпочтительно приумножается во множестве полиморфных локусов для осуществления генотипических определений из смешанного образца ДНК. В варианте осуществления полиморфные локусы содержат однонуклеотидные полиморфизмы.
В варианте осуществления определение фракции также может предусматривать определение вероятности множества фракций ДНК от целевого индивидуума, присутствующих в смешанном образце ДНК, определение фракции путем выбора фракции из множества фракций с наибольшей вероятностью. В варианте осуществления определение фракции также может предусматривать определение вероятности множества фракций ДНК от целевого индивидуума, присутствующих в смешанном образце ДНК, с использованием методики оценки максимального правдоподобия для определения наиболее вероятной фракции и определение фракции путем выбора фракции, которая была определена как наиболее вероятная.
В варианте осуществления целевым индивидуумом является плод, вынашиваемый беременной матерью, а вторым индивидуумом является беременная мать. В варианте осуществления способ также может предусматривать использование модели платформы, которая соотносит генотипические данные, измеренные в полиморфных локусах, и использование таблицы, которая соотносит материнские генотипы с генотипами детей. В варианте осуществления при определении также применяются генотипические измерения во множестве полиморфных локусов, выполненные на ДНК от отца плода. В варианте осуществления в способе не применяются генотипические данные от отца плода. В варианте осуществления в способе не используются локусы в хромосоме Y. В варианте осуществления настоящее изобретение может предусматривать отчет, раскрывающий установленное отцовство плода, определенное с использованием раскрытого в настоящем документе способа определения фракции плодной ДНК, присутствующей в материнской плазме. В варианте осуществления настоящее изобретение может предусматривать отчет, раскрывающий состояние плоидности плода, установленное с использованиемраскрытого в настоящем документе способа определения фракции плодной ДНК, присутствующей в материнской плазме.
Краткое описание графических материалов
Раскрытые в настоящем документе варианты осуществления далее будут поясняться со ссылкой на приложенные графические материалы, в которых одинаковые структуры обозначаются одинаковыми позициями на нескольких видах. Представленные графические материалы необязательно выполнены в масштабе, вместо этого акцент сделан на иллюстрацию принципов раскрытых в настоящем документе вариантов осуществления.
На фиг.1 показано распределение интенсивностей аллелей из двух родительских контекстов, измеренных в материнской плазме.
На фиг.2 показано распределение статистики теста определения отцовства для 200 неродственных мужчин и биологического отца.
На фиг.3 показаны два распределения отношений интенсивности для 200 неродственных мужчин и биологического отца. Каждый график соответствует различным каналам ввода.
На фиг.4 показаны кривые распределения накопленных частот (cdf) для корреляционного отношения между генотипическими измерениями плода и генотипическими измерениями отца для трех случаев.
На фиг.5 показаны гистограммы корреляционного отношения между генотипическими измерениями плода и генотипическими измерениями отца для трех случаев.
На фиг.6 показана гистограмма статистики теста определения отцовства для 35 образцов по сравнению с идеализированным гауссовым распределением тестовых статистик для 800 неродственных мужчин.
На фиг.7 показан пример отчета, раскрывающего исключение отцовства.
На фиг.8 показан пример отчета, раскрывающего принятие отцовства.
На фиг.9 показан пример отчета, раскрывающего неопределенный результат.
В то время как в вышеупомянутых графических материалах изложены раскрытые в настоящем документе варианты осуществления, также рассматриваются другие варианты осуществления, отмеченные в обсуждении. В настоящем раскрытии представлены иллюстративные варианты осуществления для представления, а не для ограничения. Специалистами в данной области могут быть разработаны многие другие модификации и варианты осуществления, которые попадают в объем и идею принципов раскрытых в настоящем документе вариантов осуществления.
Подробное раскрытие настоящего изобретения
Согласно проиллюстрированным в настоящем документе аспектам представлен способ определения того, является или не является предполагаемый отец биологическим отцом плода, который вынашивается беременной матерью. В варианте осуществления способ предусматривает получение генетического материала от предполагаемого отца и получение образца крови от беременной матери. В варианте осуществления способ может предусматривать осуществление генотипических определений предполагаемого отца и беременной матери и осуществление генотипических определений в свободно плавающей ДНК (ffDNA, т.е. cfDNA), обнаруженной в плазме беременной матери. В варианте осуществления способ предусматривает получение генотипических данных для набора SNP матери и предполагаемого отца плода; осуществление генотипических определений для набора SNP в смешанном образце, который содержит ДНК от целевого индивидуума, а также ДНК от матери целевого индивидуума. В варианте осуществления способ может предусматривать использование генотипических определений для определения на компьютере вероятности того, что предполагаемый отец является биологическим отцом плода, вынашиваемого беременной матерью. В варианте осуществления способ может предусматривать использование генотипических данных беременной матери и предполагаемого отца для определения ожидаемого аллельного распределения для генотипических определений смеси плодной ДНК/матери, если предполагаемый отец был биологическим отцом плода. В варианте осуществления способ может предусматривать использование генотипических данных беременной матери и генотипических данных множества индивидуумов, среди которых, как известно, нет отца, для определения ожидаемого аллельного распределения для генотипических определений смеси плодной/материнской ДНК, если предполагаемый отец не является биологическим отцом плода. В варианте осуществления способ может предусматривать вычисление вероятностей того, что предполагаемый отец является биологическим отцом плода, с учетом ожидаемых аллельных распределений и фактических измерений ДНК материнской плазмы. В варианте осуществления ряд этапов, описанных в способе, приводит к преобразованию генетического материала беременной матери и предполагаемого отца с получением и определением корректной идентичности биологического отца вынашиваемого плода пренатально и неинвазивным способом. В варианте осуществления правдоподобие того, что предполагаемый отец является биологическим отцом, предусматривает объявление или установление предполагаемого отца как биологического отца, если вероятность того, что отец исключается из аллельного распределения, созданного с использованием множества неродственных индивидуумов, является выше порога. В варианте осуществления определение правдоподобия того, что предполагаемый отец является биологическим отцом, предусматривает объявление того, что предполагаемый отец не является биологическим отцом, если правдоподобие того, что предполагаемый отец исключается из аллельного распределения, созданного с использованием множества неродственных индивидуумов, ниже порога. В варианте осуществления определение отцовства выполняется с помощью изначальной гипотезы, что предполагаемый отец на самом деле является отцом ребенка; если предполагаемый отец определен не верно, генотипы детей не будут соответствовать этим прогнозам, и изначальная гипотезы считается неправильной; однако если генотипы детей соответствуют прогнозам, то гипотеза считается правильной. Таким образом, в тесте на отцовство предусматривается, насколько хорошо наблюдаемая ffDNA соответствует генотипам детей, предсказанным с помощью генотипов предполагаемых отцов. В варианте осуществления может быть создан электронный или физический отчет с указанием отцовства.
В варианте осуществления определение отцовства осуществляется с использованием генетических измерений свободно плавающей ДНК (ffDNA), выявленной в крови матери, и генотипической информации от матери и предполагаемого отца. Для измерений ffDNA может быть использован общий способ с использованием ряда платформ, таких как микроматрицы SNP, нецелевое высокопроизводительное секвенирование или целевое секвенирование. Обсуждаемые в настоящем документе способы учитывают тот факт, что свободно плавающая плодная ДНК обнаруживается в материнской плазме при низких, еще неизвестных, концентрациях и с трудом. Тест на отцовство может предусматривать оценку измерений ffDNA и вероятности, что они получены от предполагаемого отца, на основе его генотипов. Независимо от платформы измерения тест может быть основан на генотипах, измеренных в полиморфных локализациях. В некоторых вариантах осуществления возможные аллели в каждом полиморфном локусе могут быть обобщены до А и В, и необязательно до С, D и/или Е и т.д.
В варианте осуществления этот способ предусматривает использование данных измерений аллелей от множества локусов. В варианте осуществления локусы являются полиморфными. В варианте осуществления некоторые или большинство локусов являются полиморфными. В варианте осуществления полиморфные локусы представляют собой однонуклеотидные полиморфизмы (SNP). В варианте осуществления некоторые или большинство из полиморфных локусов являются гетерозиготными. В варианте осуществления нет необходимости определения перед тестированием того, какие локусы являются гетерозиготными.
В варианте осуществления в раскрытом в настоящем документе способе используются методики селективного приумножения, которые сохраняют относительные частоты аллелей, которые присутствуют в оригинальном образце ДНК в каждом полиморфном локусе из набора полиморфных локусов. В некоторых вариантах осуществления амплификация и/или методика селективного приумножения может предусматривать методики ПНР, такие как мини-ПЦР или опосредованная лигированием ПЦР, захват фрагмента с помощью гибридизации или зонды циркуляризации, такие как молекулярные инверсионные зонды. В некоторых вариантах осуществления способы амплификации или селективного приумножения могут предусматривать использование праймеров ПЦР или других зондов, если, при корректной гибридизации с целевой последовательностью, 3'-конец или 5-конец нуклеотидного зонда отделяется от полиморфного сайта аллеля небольшим числом нуклеотидов. В варианте осуществления исключаются зонды, в которых область гибридизации сконструирована для гибридизации с полиморфным сайтом. Такие варианты осуществления являются улучшенными по сравнению с другими способами, которые предусматривают целевую амплификацию и/или селективное приумножение, в том отношении, что они лучше сохраняют оригинальные частоты аллелей образца в каждом полиморфном локусе, является ли образец чистым геномным образцом от одного индивидуума или от группы индивидуумов.
В варианте осуществления в раскрытом в настоящем документе способе используется высокоэффективная высокомультиплексная целевая ПЦР для амплификации ДНК с последующим высокопроизводительным секвенированием с определением частот аллелей в каждом целевом локусе. Одна методика, обеспечивающая выполнение высокомультиплексной целевой ПЦР высокоэффективным способом, предусматривает конструирование праймеров, которые вряд ли гибридизируются друг с другом. Зонды ПЦР могут быть выбраны путем создания термодинамической модели потенциально неблагоприятных взаимодействий или непредусмотренных взаимодействий между по меньшей мере 500, по меньшей мере 1000, по меньшей мере 5000, по меньшей мере 10000, по меньшей мере 20000, по меньшей мере 50000 или по меньшей мере 100000 потенциальными парами праймеров, или между праймерами и образцом ДНК, а затем использования модели с устранением конструкций, которые несовместимы с другими конструкциями в пуле или с образцом ДНК. Другая методика, обеспечивающая выполнение высокомультиплексной целевой ПЦР высокоэффективным способом, заключается в использовании частичного или полного вложенного подхода к целевой ПЦР. Использование одного или комбинации таких подходов обеспечивает мультиплексирование по меньшей мере 300, по меньшей мере 800, по меньшей мере 1200, по меньшей мере 4000 или по меньшей мере 10000 праймеров в одном пуле с полученной в результате амплифицированной ДНК, содержащей большую часть молекул ДНК, которые при секвенировании будут картироваться с целевыми локусми. Использование одного или комбинации таких подходов обеспечивает мультиплексирование большого числа праймеров в одном пуле с полученн