Строительный изоляционный материал

Иллюстрации

Показать все

Изобретение относится к строительному изоляционному материалу для применения в строительной конструкции. Строительный изоляционный материал включает пористый полимерный материал, который образован из термопластичной композиции, содержащей непрерывную фазу, которая включает матричный полимер, и, кроме того, где добавка микровключения и добавка нановключения диспергированы в непрерывной фазе в форме дискретных доменов, где в материале определяется поровая сеть, которая включает множество нанопор со средним размером поперечного сечения 800 нм или меньше, причем добавка микровключения является полимерной и добавка нановключения является полимерной. Также описана строительная конструкция, содержащая обшивку здания, которая определяет внутреннюю сторону, при этом строительная конструкция содержит указанный строительный изоляционный материал, который расположен вплотную к поверхности обшивки здания, внутренней стороне или их комбинации. Изоляционный материал обладает повышенными эксплуатационными свойствами. 2 н. и 38 з.п. ф-лы, 15 ил., 13 табл., 16 пр.

Реферат

Родственные заявки

НАСТОЯЩАЯ ЗАЯВКА ИСПРАШИВАЕТ ПРИОРИТЕТ СОГЛАСНО ПРЕДВАРИТЕЛЬНОЙ ЗАЯВКИ НА ПАТЕНТ США С РЕГИСТРАЦИОННЫМ НОМЕРОМ 61/834038, ПОДАННОЙ 12 ИЮНЯ 2013 Г., КОТОРАЯ ПОЛНОСТЬЮ ВКЛЮЧЕНА В ДАННЫЙ ДОКУМЕНТ ПОСРЕДСТВОМ ССЫЛКИ НА НЕЕ.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Изоляционный материал используют в строительных конструкциях для широкого спектра предназначений, таких как для защиты от теплоотдачи, влаги, шума, вибрации и т.д. Одним из типов строительного изоляционного материала, например, является водонепроницаемый гидроветроизоляционный материал, применяемый в конструкции стен и крыши. Кроме того, для предупреждения поступления воды в здание такие гидроветроизоляционные материалы также, как правило, являются воздухопроницаемыми при условии, что они являются проницаемыми для газов и могут обеспечить удаление водяных паров с изоляционного материала вместо улавливания на поверхности здания. К сожалению, одной из распространенных проблем, связанных со многими традиционными типами строительного изоляционного материала, такого как гидроветроизоляционные материалы, является то, что он, как правило, не является многофункциональным. Например, традиционный воздухопроницаемый гидроветроизоляционный материал представляет собой полиолефиновый материал, полученный прядением с быстрым испарением, доступный от DuPont под обозначением Tyvek®. При обеспечении хороших барьерных по отношению к воде свойств гидроветроизоляционные материалы Tyvek® в целом не обеспечивают хороший тепловой барьер. Поэтому полимерные пеноматериалы часто используют для тепловой изоляции. Однако такие материалы не всегда наряду с этим выполняют функцию воздухопроницаемого водного барьера. Более того, газообразные порообразующие средства, применяемые для образования пеноматериалов, могут вымывать изоляционные материалы с течением времени, вызывая проблему, связанную с окружающей средой.

В связи с этим на данный момент существует потребность в улучшенном изоляционном материале для применения в строительных конструкциях.

Краткое описание изобретения

В соответствии с одним вариантом осуществления настоящего изобретения раскрывается строительный изоляционный материал для применения в жилой строительной конструкции или строительной конструкции делового значения. Изоляционный материал включает в себя пористый полимерный материал, который образован из термопластичной композиции, содержащей непрерывную фазу, включающую матричный полимер. Изоляционный материал проявляет скорость проникновения водяных паров приблизительно 300 г/м2 - 24 часа или больше, теплопроводность приблизительно 0,40 ватт на метр-кельвин и/или значение гидростатического давления приблизительно 50 сантиметров или больше.

В соответствии с одним вариантом осуществления настоящего изобретения раскрывается строительный изоляционный материал для применения в жилой строительной конструкции или строительной конструкции делового значения. Изоляционный материал включает в себя пористый полимерный материал, который образован из термопластичной композиции, содержащей непрерывную фазу, включающую матричный полимер. Добавка микровключения и добавка нановключения диспергированы в непрерывной фазе в форме дискретных доменов, и в материале определяется поровая сеть, которая включает множество нанопор со средним размером поперечного сечения приблизительно 800 нанометров или меньше.

В соответствии с другим вариантом осуществления настоящего изобретения раскрывается строительная конструкция, которая содержит обшивку здания, которая определяет внутреннюю сторону. Строительная конструкция дополнительно содержит строительный изоляционный материал, такой как описанный в данном документе, который расположен вплотную к поверхности обшивки здания, внутренней стороне или их комбинации. Например, в одном варианте осуществления строительный изоляционный материал может быть расположен вплотную к поверхности обшивки здания, например, вплотную к наружной стене, кровле или их комбинации. При необходимости строительный изоляционный материал также может быть расположен вплотную к внешнему покрытию (например, облицовке). Строительный изоляционный материал также может быть расположен вплотную к поверхности внутренней стороны, например, вплотную к внутренней стороне стены, пола, потолка, двери или их комбинации.

Другие признаки и аспекты настоящего изобретения более подробно рассматриваются ниже.

Краткое описание графических материалов

Полное и достаточное описание настоящего изобретения, включая наилучший способ его осуществления, предназначенное для специалиста в данной области техники, изложено ниже, в частности, в остальной части описания, в которой предусмотрены ссылки на соответствующие фигуры, на которых:

на фиг. 1 показан неполный характерный вид фундаментной стены здания, изготовленной с помощью стеновой панели, которая может быть образована в соответствии с настоящим изобретением;

фиг. 2 представляет собой средний поперечный размер стеновой панели, изображенной на фиг. 1, вдоль линии 2-2;

фиг. 3 представляет собой вид в перспективе одного варианта осуществления строительной конструкции, в которой строительный изоляционный материал по настоящему изобретению расположен вплотную к наружной стене;

фиг. 4 представляет собой вид в перспективе одного варианта осуществления строительной конструкции, в которой строительный изоляционный материал по настоящему изобретению расположен вплотную к внутренней стене;

фигуры 5-6 представляют собой SEM-микрофотографии невытянутой пленки из примера 7 (пленка была отрезана параллельно ориентации машинного направления);

фигуры 7-8 представляют собой SEM-микрофотографии вытянутой пленки из примера 7 (пленка была отрезана параллельно ориентации машинного направления);

фигуры 9-10 представляют собой SEM-микрофотографии невытянутой пленки из примера 8, где пленка была отрезана перпендикулярно машинному направлению на фиг. 9 и параллельно машинному направлению на фиг. 10;

фигуры 11-12 представляют собой SEM-микрофотографии вытянутой пленки из примера 8 (пленка была отрезана параллельно ориентации машинного направления);

фиг. 13 представляет собой SEM-микрофотографию (1000X) волокна из примера 9 (полипропилен, полимолочная кислота и полиэпоксид) после замораживания в жидком азоте-разламывания;

фиг. 14 представляет собой SEM-микрофотографию (5000X) волокна из примера 9 (полипропилен, полимолочная кислота и полиэпоксид) после замораживания в жидком азоте-разламывания; и

фиг. 15 представляет собой SEM-микрофотографию (10000X) поверхности волокна из примера 9 (полипропилен, полимолочная кислота и полиэпоксид).

Повторяющееся использование ссылочных позиций в настоящем описании и графических материалах предназначено для представления одинаковых или аналогичных признаков или элементов настоящего изобретения.

Подробное описание иллюстративных вариантов осуществления

Далее будет представлено подробное описание со ссылками на различные варианты осуществления настоящего изобретения, один или несколько примеров которых приведены ниже. Каждый пример приведен для пояснения настоящего изобретения и не ограничивает его. В сущности, специалистам в данной области техники должно быть очевидно, что по отношению к настоящему изобретению могут быть выполнены различные модификации и изменения без отклонения от объема или сущности настоящего изобретения. Например, признаки, показанные или описанные как часть одного варианта осуществления, могут быть использованы в другом варианте осуществления для получения еще одного варианта осуществления. Таким образом, имеется в виду, что настоящее изобретение охватывает такие модификации и изменения, которые подпадают под объем прилагаемой формулы изобретения и ее эквивалентов.

Говоря в общем, настоящее изобретение направлено на строительный изоляционный материал, который содержит пористый полимерный материал (например, пленку, волокнистый материал и т.д.). Используемое в данном документе выражение “строительный изоляционный материал” в широком смысле относится к объекту здания, применяемому в качестве изоляционного материала для любых целей, например, для тепловой изоляции, звуковой изоляции, изоляции в отношении динамических нагрузок (например, в отношении вибраций), изоляции от огня, влагоизоляции и т.д., а также их комбинаций. Строительный изоляционный материал может быть расположен в жилой строительной конструкции или строительной конструкции делового значения так, чтобы он находился вплотную к поверхности обшивки здания, при этом он представляет собой физический разделитель между внутренней стороной и внешними окружающими средами здания и может включать, например, фундамент, кровлю, наружные стены, наружные двери, окна, потолочные окна и т.д. Строительный изоляционный материал также может быть расположен вплотную к внутренней стороне поверхности здания, такой как внутренняя стена, внутренняя дверь, перекрытие, потолочины и т.д.

Независимо от конкретного размещения, при котором используют строительный изоляционный материал, пористый полимерный материал по настоящему изобретению может выполнять множество изоляционных функций в здании, и в некоторых случаях даже устраняется необходимость в определенных типах традиционной изоляции. Например, полимерный материал является пористым и определяет поровую сеть, которая, например, может составлять от приблизительно 15% до приблизительно 80% на см3, в некоторых вариантах осуществления от приблизительно 20% до приблизительно 70% и в некоторых вариантах осуществления от приблизительно 30% до приблизительно 60% на кубический сантиметр материала. Наличие такого высокого объема пор полимерного материала может обеспечить в целом его проницаемость для водяных паров с обеспечением, таким образом, удаления таких паров с поверхности здания во время применения и ограничением вероятности ущерб, причиненного водой, с течением времени. Проницаемость материала для водяного пара можно охарактеризовать его относительно высокой скоростью проникновения водяных паров (“WVTR”), которая представляет собой скорость, с которой водяной пар проникает сквозь материал, измеренной в единицах граммы на квадратный метр за 24 часа (г/м2/24 ч). Например, полимерный материал может проявлять WVTR приблизительно 300 г/м2-24 часа или больше, в некоторых вариантах осуществления приблизительно 500 г/м2-24 часа или больше, в некоторых вариантах осуществления приблизительно 1000 г/м2-24 часа или больше и в некоторых вариантах осуществления от приблизительно 3000 до приблизительно 15000 г/м2-24 часа, определенные в соответствии с ASTM E96/96M-12, Procedure B или INDA Test Procedure IST-70.4 (01). В дополнение к обеспечению прохождения паров относительно высокий объем пор материала может позволить значительно снизить плотность материала, что может обеспечить использование более легких, более гибких материалов, которые при этом обеспечивают хорошие изоляционные свойства. Например, композиция может иметь относительно низкую плотность, как например, приблизительно 1,2 грамма на кубический сантиметр (“г/см3”) или меньше, в некоторых вариантах осуществления приблизительно 1,0 г/см3 или меньше, в некоторых вариантах осуществления от приблизительно 0,2 г/см3 до приблизительно 0,8 г/см3 и в некоторых вариантах осуществления от приблизительно 0,1 г/см3 до приблизительно 0,5 г/см3. Вследствие его низкой плотности могут быть образованы более легкие материалы, которые обеспечивают хорошее тепловое сопротивление.

Несмотря на высокую пористость и в целом проницаемость для водяного пара, авторы настоящего изобретения при этом обнаружили, что поровая сеть может считаться сетью с “закрытыми порами”, вследствие чего извилистый путь не определен между значительной частью пор. Такая структура может способствовать ограничению потока текучих сред сквозь материал и быть в целом непроницаемой для текучих сред (например, жидкой воды), тем самым позволяя материалу изолировать поверхность от проникновения воды. В этом отношении полимерный материал может иметь относительно высокое значение гидростатического давления приблизительно 50 сантиметров (“см”) или больше, в некоторых вариантах осуществления приблизительно 100 см или больше, в некоторых вариантах осуществления приблизительно 150 см или больше и в некоторых вариантах осуществления от приблизительно 200 см до приблизительно 1000 см, определенные в соответствии с ATTCC 127-2008.

Значительная часть пор в полимерном материале может также характеризоваться “наноразмерным” размером (“нанопоры”), как например, поры со средним размером поперечного сечения приблизительно 800 нанометров или меньше, в некоторых вариантах осуществления от приблизительно 1 до приблизительно 500 нанометров, в некоторых вариантах осуществления от приблизительно 5 до приблизительно 450 нанометров, в некоторых вариантах осуществления от приблизительно 5 до приблизительно 400 нанометров и в некоторых вариантах осуществления от приблизительно 10 до приблизительно 100 нанометров. Выражение “размер поперечного сечения” обычно относится к характеристическому размеру (например, ширине или диаметру) поры, который практически перпендикулярен ее главной оси (например, длине) и также обычно практически перпендикулярен направлению усилия, прилагаемого во время вытягивания. Такие нанопоры могут, например, составлять приблизительно 15 об. % или больше, в некоторых вариантах осуществления приблизительно 20 об. % или больше, в некоторых вариантах осуществления от приблизительно 30 об. % до 100 об. % и в некоторых вариантах осуществления от приблизительно 40 об. % до приблизительно 90 об. % от общего объема пор в полимерном материале. Наличие такой высокой степени содержания нанопор может значительно снижать теплопроводность, так как меньшее количество ячеечных молекул внутри каждой поры может подвергаться столкновению и переносить тепло. Таким образом, полимерный материал может также служить в качестве теплоизоляции, способствуя ограничению степени переноса тепла через строительную конструкцию.

В связи с этим, полимерный материал может проявлять относительно низкую теплопроводность, такую как приблизительно 0,40 ватт на метр-кельвин (“Вт/м-К”) или меньше, в некоторых вариантах осуществления приблизительно 0,20 Вт/м-К или меньше, в некоторых вариантах осуществления приблизительно 0,15 Вт/м-К или меньше, в некоторых вариантах осуществления от приблизительно 0,01 до приблизительно 0,12 Вт/м-К и в некоторых вариантах осуществления от приблизительно 0,02 до приблизительно 0,10 Вт/м-К. Необходимо отметить, что материал может достигать таких низких значений теплопроводности при относительно малых значениях толщины, что может позволить материалу иметь большую степень гибкости и способность принимать нужную форму, а также уменьшить объем, который он занимает в здании. По этой причине полимерный материал может также проявлять относительно низкий “коэффициент теплопередачи”, который равен теплопроводности материала, деленной на его толщину, и выражается в единицах ватт на квадратный метр-кельвин (“Вт/м2К”). Например, материал может проявлять коэффициент теплопередачи приблизительно 1000 Вт/м2К или меньше, в некоторых вариантах осуществления от приблизительно 10 до приблизительно 800 Вт/м2К, в некоторых вариантах осуществления от приблизительно 20 до приблизительно 500 Вт/м2К, а в некоторых вариантах осуществления от приблизительно 40 до приблизительно 200 Вт/м2К. Реальная толщина полимерного материала может зависеть от его конкретной формы, но типично находится в диапазоне от приблизительно 5 микрометров до приблизительно 100 миллиметров, в некоторых вариантах осуществления от приблизительно 10 микрометров до приблизительно 50 миллиметров, в некоторых вариантах осуществления от приблизительно 200 микрометров до приблизительно 25 миллиметров и в некоторых вариантах осуществления от приблизительно 50 микрометров до приблизительно 5 миллиметров.

В отличие от традиционных методик образования строительных изоляционных материалов авторы настоящего изобретения обнаружили, что пористые материалы по настоящему изобретению могут быть образованы без применения газообразных порообразующих средств. Это отчасти обусловлено уникальными свойствами компонентов материала, а также способом, посредством которого образован материал. Более конкретно, пористый материал может быть образован из термопластичной композиции, содержащей непрерывную фазу, включающую матричный полимер, добавку микровключения и добавку нановключения. Добавки могут быть выбраны таким образом, чтобы они характеризовались отличным модулем упругости по сравнению с матричным полимером. Подобным образом, добавки микровключения и нановключения могут стать диспергированными в непрерывной фазе в виде дискретных микроразмерных и наноразмерных фазовых доменов, соответственно. Авторы настоящего изобретения обнаружили, что микроразмерные и наноразмерные фазовые домены способны взаимодействовать уникальным образом при подвергании деформации и удлиняющему натяжению (например, вытягиванию) с созданием сети пор, значительная часть которых имеет наноразмерный размер. А именно, полагают, что удлиняющее натяжение может инициировать интенсивные локализованные зоны сдвига и/или зоны интенсивности напряжения (например, нормальные напряжения) вблизи микроразмерных дискретных фазовых доменов в результате концентраций напряжения, которые возникают в результате несовместимости материалов. Эти зоны интенсивности сдвига и/или напряжения вызывают некоторое начальное нарушение адгезии в полимерной матрице, прилегающей к микроразмерным доменам. Однако примечательно, что локализованные зоны интенсивности сдвига и/или напряжения также можно создать вблизи наноразмерных дискретных фазовых доменов, которые перекрываются с микроразмерными зонами. Такое перекрытие зон интенсивности сдвига и/или напряжения вызывает возникновение дальнейшего нарушения адгезии в полимерной матрице, таким образом создавая значительное число нанопор, прилегающих к наноразмерным доменам и/или микроразмерным доменам.

Далее будут более подробно описаны различные варианты осуществления настоящего изобретения.

I. Термопластичная композиция

A. Матричный полимер

Как показано выше, термопластичная композиция может содержать непрерывную фазу, которая содержит один или несколько матричных полимеров, которые обычно составляют от приблизительно 60 вес.% до приблизительно 99 вес.%, в некоторых вариантах осуществления от приблизительно 75 вес.% до приблизительно 98 вес.% и в некоторых вариантах осуществления от приблизительно 80 вес.% до приблизительно 95 вес.% термопластичной композиции. Природа матричного полимера (полимеров), используемого для образования непрерывной фазы, не критична и обычно можно применять любой подходящий полимер, такой как сложные полиэфиры, полиолефины, стирольные полимеры, полиамиды и т.д. В определенных вариантах осуществления в композиции для образования полимерной матрицы можно применять, например, сложные полиэфиры. Как правило, можно применять любой из ряда сложных полиэфиров, таких как сложные алифатические полиэфиры, такие как поликапролактон, сложные полиамидоэфиры, полимолочная кислота (PLA) и ее сополимеры, полигликолевая кислота, полиалкиленкарбонаты (например, полиэтиленкарбонат), поли-3-гидроксибутират (PHB), поли-3-гидроксивалерат (PHV), сополимеры поли-3-гидроксибутирата и 4-гидроксибутирата, поли-3-гидроксибутирата и 3-гидроксивалерата (PHBV), сополимер поли-3-гидроксибутирата и 3-гидроксигексаноата, сополимер поли-3-гидроксибутирата и 3-гидроксиоктаноата, сополимер поли-3-гидроксибутирата и 3-гидроксидеканоата, сополимер поли-3-гидроксибутирата и 3-гидроксиоктадеканоата и алифатические полимеры на основе сукцината (например, полибутиленсукцинат, полибутиленсукцинат адипат, полиэтиленсукцинат, и т.д.); сложные алифатическо-ароматические coполиэфиры (например, полибутиленадипаттерефталат, полиэтиленадипаттерефталат, полиэтиленадипатизофталат, полибутиленадипатизофталат, и т.д.); сложные ароматические полиэфиры (например, полиэтилентерефталат, полибутилентерефталат и т.д.) и так далее.

В определенных случаях термопластичная композиция может содержать по меньшей мере один сложный полиэфир, который является жестким по природе и, следовательно, имеет относительно высокую температуру стеклования. Например, температура стеклования (“Tg”) может составлять приблизительно 0°C или больше, в некоторых вариантах осуществления от приблизительно 5°C до приблизительно 100°C, в некоторых вариантах осуществления от приблизительно 30°C до приблизительно 80°C, а в некоторых вариантах осуществления от приблизительно 50°C до приблизительно 75°C. Сложный полиэфир может также иметь температуру плавления от приблизительно 140°C до приблизительно 300°C, в некоторых вариантах осуществления от приблизительно 150°C до приблизительно 250°C, а в некоторых вариантах осуществления от приблизительно 160°C до приблизительно 220°C. Температуру плавления можно определять с помощью дифференциальной сканирующей калориметрии (“DSC”) в соответствии с ASTM D-3417. Температуру стеклования можно определять динамическим механическим анализом в соответствии с ASTM E1640-09.

Одним особенно подходящим жестким сложным полиэфиром является полимолочная кислота, которая обычно может быть получена из мономерных блоков любого изомера молочной кислоты, такого как левовращающая молочная кислота (“L-молочная кислота”), правовращающая молочная кислота (“D-молочная кислота”), мезо-молочная кислота или их смеси. Мономерные блоки могут также быть образованы из ангидридов любого изомера молочной кислоты, включая L-лактид, D-лактид, мезо-лактид или их смеси. Можно также использовать циклические димеры таких молочных кислот и/или лактидов. Для полимеризации молочной кислоты можно применять любой известный способ полимеризации, такой как поликонденсация или полимеризация с раскрытием цикла. Можно также применять небольшое количество средства для удлинения цепи (например, диизоцианатного соединения, эпоксидного соединения или ангидрида кислоты). Полимолочная кислота может быть гомополимером или сополимером, например, содержащим мономерные блоки, полученные из L-молочной кислоты, и мономерные блоки, полученные из D-молочной кислоты. Хотя этого и не требуется, степень содержания одного из мономерных блоков, полученных из L-молочной кислоты, и мономерных блоков, полученных из D-молочной кислоты, составляет предпочтительно приблизительно 85 мол. % или больше, в некоторых вариантах осуществления приблизительно 90 мол. % или больше, а в некоторых вариантах осуществления приблизительно 95 мол. % или больше. Можно смешивать несколько полимолочных кислот, каждая из которых имеет различное соотношение между мономерным блоком, полученным из L-молочной кислоты, и мономерным блоком, полученным из D-молочной кислоты, при произвольном процентном содержании. Естественно, полимолочную кислоту можно также смешивать с другими типами полимеров (например, полиолефинами, сложными полиэфирами и т.д.).

В одном конкретном варианте осуществления полимолочная кислота имеет следующую общую структуру:

.

Одним конкретным примером подходящего полимера полимолочной кислоты, который можно применять в настоящем изобретении, является коммерчески доступный от Biomer, Inc., Краилинг, Германия) под названием BIOMER™ L9000. Другие подходящие полимеры полимолочной кислоты коммерчески доступны от Natureworks LLC, Миннетонка, Миннесота (NATUREWORKS®) или Mitsui Chemical (LACEA™). Еще одни подходящие полимолочные кислоты описаны в патентах США №№ 4797468; 5470944; 5770682; 5821327; 5880254 и 6326458.

Полимолочная кислота обычно имеет среднечисловую молекулярную массу (“Mn”) в диапазоне от приблизительно 40000 до приблизительно 180000 грамм на моль, в некоторых вариантах осуществления от приблизительно 50000 до приблизительно 160000 грамм на моль, а в некоторых вариантах осуществления от приблизительно 80000 до приблизительно 120000 грамм на моль. Аналогично, полимер также обычно имеет среднемассовую молекулярную массу (“Mw”) в диапазоне от приблизительно 80000 до приблизительно 250000 грамм на моль, в некоторых вариантах осуществления от приблизительно 100000 до приблизительно 200000 грамм на моль, а в некоторых вариантах осуществления от приблизительно 110000 до приблизительно 160000 грамм на моль. Отношение среднемассовой молекулярной массы к среднечисловой молекулярной массе (“Mw/Mn”), т.е. “коэффициент полидисперсности”, также является достаточно низким. Например, коэффициент полидисперсности обычно варьирует в диапазоне от приблизительно 1,0 до приблизительно 3,0, в некоторых вариантах осуществления от приблизительно 1,1 до приблизительно 2,0 и в некоторых вариантах осуществления от приблизительно 1,2 до приблизительно 1,8. Среднемассовую и среднечисловую молекулярные массы можно определять способами, известными специалистам в данной области.

Полимолочная кислота может также иметь кажущуюся вязкость от приблизительно 50 до приблизительно 600 паскаль-секунда (Па·с), в некоторых вариантах осуществления от приблизительно 100 до приблизительно 500 Па·с и в некоторых вариантах осуществления от приблизительно 200 до приблизительно 400 Па·с, определенную при температуре 190°C и скорости сдвига 1000 сек-1. Показатель текучести расплава полимолочной кислоты (на сухое вещество) может также варьировать в диапазоне от приблизительно 0,1 до приблизительно 40 грамм за 10 минут, в некоторых вариантах осуществления от приблизительно 0,5 до приблизительно 20 грамм за 10 минут и в некоторых вариантах осуществления от приблизительно 5 до приблизительно 15 грамм за 10 минут, определенные при нагрузке 2160 грамм и при 190°C.

Некоторые типы чистых сложных полиэфиров (например, полимолочная кислота) могут поглощать воду из окружающей среды так, что содержание влаги в них составляет от приблизительно 500 до 600 частей на миллион (“ppm”) или даже выше, исходя из сухого веса исходной полимолочной кислоты. Содержание влаги можно определять с помощью ряда способов, известных из уровня техники, например, в соответствии с ASTM D 7191-05, как описано ниже. Поскольку присутствие воды во время переработки расплава может гидролитически разрушать сложный полиэфир и снижать его молекулярную массу, иногда желательно высушивать сложный полиэфир перед смешиванием. В большинстве вариантов осуществления, например, желательно, чтобы содержание влаги в сложном полиэфире составляло приблизительно 300 частей на миллион ("ppm") или меньше, в некоторых вариантах осуществления приблизительно 200 ppm или меньше, в некоторых вариантах осуществления от приблизительно 1 до приблизительно 100 ppm перед смешиванием с добавками микровключения и нановключения. Высушивание сложного полиэфира может проходить, например, при температуре от приблизительно 50°C до приблизительно 100°C и в некоторых вариантах осуществления от приблизительно 70°C до приблизительно 80°C.

B. Добавка микровключения

Как показано выше, в определенных вариантах осуществления настоящего изобретения добавки микровключения и/или нановключения могут быть диспергированы в непрерывной фазе термопластичной композиции. Используемое в данном документе выражение “добавка микровключения”, как правило, относится к любому аморфному, кристаллическому или полукристаллическому материалу, который способен диспергироваться в полимерной матрице в форме дискретных доменов микроразмерного размера. Например, перед вытягиванием домены могут иметь средний размер поперечного сечения от приблизительно 0,05 мкм до приблизительно 30 мкм, в некоторых вариантах осуществления от приблизительно 0,1 мкм до приблизительно 25 мкм, в некоторых вариантах осуществления от приблизительно 0,5 мкм до приблизительно 20 мкм и в некоторых вариантах осуществления от приблизительно 1 мкм до приблизительно 10 мкм. Выражение “размер поперечного сечения”, как правило, относится к характеристическому размеру (например, ширине или диаметру) домена, который практически перпендикулярен его главной оси (например, длине) и также обычно практически перпендикулярен направлению усилия, прилагаемого во время вытягивания. Хотя они, как правило, образуются из добавки микровключения, следует также понимать, что микроразмерные домены также могут образовываться из комбинации добавок микровключения и нановключения и/или других компонентов композиции.

Добавка микровключения, как правило, является полимерной по природе и характеризуется относительно высокой молекулярной массой для содействия улучшению прочности расплава и устойчивости термопластичной композиции. Как правило, полимер микровключения в целом может быть несмешиваемым с матричным полимером. Таким образом, добавка может стать более диспергированной в виде дискретных фазовых доменов в непрерывной фазе матричного полимера. Дискретные домены способны поглощать энергию, являющуюся результатом воздействия внешней силы, что увеличивает общее сопротивление разрыву и прочность получаемого в результате материала. Домены могут иметь ряд различных форм, таких как эллиптическая, сферическая, цилиндрическая, пластинчатая, трубчатая и т.д. В одном варианте осуществления, например, домены имеют, главным образом, эллиптическую форму. Физический размер отдельного домена обычно достаточно мал, чтобы минимизировать распространение трещин по полимерному материалу при приложении внешнего усилия, но достаточно велик, чтобы инициировать микроскопическую пластическую деформацию и допустить образование зон интенсивности сдвига и/или усилия на включениях частиц и вокруг них.

Хотя полимеры могут быть несмешиваемыми, тем не менее, можно выбрать добавку микровключения, характеризующуюся параметром растворимости, который является относительно подобным таковому у матричного полимера. Это может улучшить совместимость между поверхностями и физическое взаимодействие границ дискретной и непрерывной фаз, и тем самым снижает вероятность разрушения композиции. В связи с этим, отношение параметра растворимости для матричного полимера к таковому у добавки составляет, как правило, от приблизительно 0,5 до приблизительно 1,5 и в некоторых вариантах осуществления от приблизительно 0,8 до приблизительно 1,2. Например, добавка микровключения может характеризоваться параметром растворимости от приблизительно 15 до приблизительно 30 МДж1/23/2 и в некоторых вариантах осуществления от приблизительно 18 до приблизительно 22 МДж1/23/2, тогда как полимолочная кислота может характеризоваться параметром растворимости приблизительно 20,5 МДж1/23/2. Выражение “параметр растворимости” при использовании в данном документе относится к “параметру растворимости Гильдебранда”, который представляет собой квадратный корень из плотности энергии когезии и вычисляется согласно следующему уравнению:

,

где

∆ Hv = Теплота испарения

R = Постоянная идеального газа

T = Температура

Vm = Молекулярный объем

Параметры растворимости Гильдебранда для многих полимеров также доступны из Solubility Handbook of Plastics, Wyeych (2004), которая включена в данный документ посредством ссылки.

Добавка микровключения может также иметь определенный показатель текучести расплава (или вязкость) для того, чтобы обеспечить достаточную поддержку дискретных доменов и полученных пор. Например, если показатель текучести расплава добавки слишком высок, она проявляет склонность к нерегулируемому растеканию и диспергированию по непрерывной фазе. Это приводит к слоистым, пластинчатым доменам или совместным с непрерывной фазой структурам, которые сложно поддерживать и которые также склонны к преждевременному разрушению. Наоборот, если показатель текучести расплава добавки слишком низок, она склонна к комкованию и образованию очень больших эллиптических доменов, которые трудно диспергировать при перемешивании. Это может вызвать неравномерное распределение добавки по всей непрерывной фазе. В связи с этим, авторы настоящего изобретения обнаружили, что отношение показателя текучести расплава добавки микровключения к показателю текучести расплава матричного полимера составляет, как правило, от приблизительно 0,2 до приблизительно 8, в некоторых вариантах осуществления от приблизительно 0,5 до приблизительно 6 и в некоторых вариантах осуществления от приблизительно 1 до приблизительно 5. Добавка микровключения может, например, иметь показатель текучести расплава от приблизительно 0,1 до приблизительно 250 грамм на 10 минут, в некоторых вариантах осуществления от приблизительно 0,5 до приблизительно 200 грамм на 10 минут и в некоторых вариантах осуществления от приблизительно 5 до приблизительно 150 грамм на 10 минут, определенный при нагрузке 2160 грамм и при 190°C.

Помимо упомянутых выше свойств, для достижения желаемого повышения сопротивления разрыву можно также выбирать механические свойства добавки микровключения. Например, если смесь матричного полимера и добавки микровключения наносить с внешним усилием, можно инициировать концентрации напряжений (например, включая нормальные или сдвиговые напряжения) и зоны выделения сдвига и/или пластической деформации на дискретных фазовых доменах и вокруг них в результате концентрации напряжений, которые возникают из разницы в модулях упругости добавки и матричного полимера. Большие концентрации напряжений вызывают более интенсивную локализованную пластическую деформацию на доменах, что позволяет им становиться значительно удлиненными при приложении усилий. Эти удлиненные домены могут позволить композиции проявлять более гибкое и мягкое поведение, чем матричный полимер, например, когда он является жесткой полиэфирной смолой. Для усиления концентраций напряжения добавку микровключения можно выбрать так, чтобы она имела относительно низкий модуль упругости Юнга по сравнению с матричным полимером. Например, отношение модуля упругости матричного полимера к таковому у добавки составляет, как правило, от приблизительно 1 до приблизительно 250, в некоторых вариантах осуществления от приблизительно 2 до приблизительно 100 и в некоторых вариантах осуществления от приблизительно 2 до приблизительно 50. Модуль упругости добавки микровключения может, например, варьировать в диапазоне от приблизительно 2 до приблизительно 1000 мегапаскаль (МПа), в некоторых вариантах осуществления от приблизительно 5 до приблизительно 500 МПа и в некоторых вариантах осуществления от приблизительно 10 до приблизительно 200 МПа. Напротив, модуль упругости полимолочной кислоты, например, составляет, как правило, от приблизительно 800 МПа до приблизительно 3000 МПа.

Хотя можно применять широкий ряд первых добавок микровключения, имеющих определенные выше свойства, особенно подходящие примеры таких добавок могут включать синтетические полимеры, такие как полиолефины (например, полиэтилен, полипропилен, полибутилен и т.д.); стирольные сополимеры (например, стирол-бутадиен-стирол, стирол-изопрен-стирол, стирол-этилен-пропилен-стирол, стирол-этилен-бутадиен-стирол и т.д.); политетрафторэтилены; полиэфиры (например, рециклизованный сложный полиэфир, полиэтилентерефталат и т.д.); поливинилацетаты (например, полиэтиленвинилацетат, поливинилхлорид ацетат и т.д.); поливиниловые спирты (например, поливиниловый спирт, полиэтиленвиниловый спирт и т.д.); поливинилбутирали; акриловые смолы (например, полиакрилат, полиметилакрилат, полиметилметакрилат и т.д.); полиамиды (например, нейлон); поливинилхлориды; поливинилиденхлориды; полистиролы; полиуретаны и т.д. Подходящие полиолефины могут, например, включать этиленовые полимеры (например, полиэтилен низкой плотности (“LDPE”), полиэтилен высокой плотности (“HDPE”), линейный полиэтилен низкой плотности (“LLDPE”) и т.д.), гомополимеры