Способ формирования износостойкого слоя на поверхности детали из титана или титанового сплава
Изобретение относится к области машиностроения, а именно к способам нанесения покрытий методами электроискрового легирования. Способ формирования износостойкого слоя на поверхности деталей из титана или сплавов на его основе включает проведение процесса методом электроискрового легирования на различных режимах, при этом на обрабатываемую поверхность упрочняемой детали предварительно наносят слой материала на основе углерода, который для адгезии к поверхности детали наносят в виде краски или пасты толщиной не менее 0,01 мм. Изобретение обеспечивает образование в поверхностном слое детали из титана или сплавов на его основе карбида и нитрида титана, увеличивающих твердость сформированного упрочненного слоя. 3 з.п. ф-лы, 1 пр.
Реферат
Изобретение относится к области машиностроения, а именно к способам формирования покрытий методами электроискрового легирования.
Из уровня техники известны способы проведения процесса электроискрового легирования на различных режимах (SU 1609564 А, 30.11.1990; RU 95102608 А1, 10.12.1996). Недостатком данных способов является получение покрытий незначительной толщины (до 0,12 мм) и недостаточно высокого качества.
Из уровня техники известен способ электроискрового легирования деталей на основе железоуглеродистых сплавов, в котором в качестве электрода-анода применяют графитовые электроды ЭГ-2 (Иванов Г.П. Технология электроискрового упрочнения инструментов и деталей машин. 2-е изд., исправленное и дополненное. М.: МАШГИЗ, 1963. - 304 с.). Недостатком данного способа является формирование в упрочняемой поверхности карбидов железа, обладающих относительно невысокой твердостью, по сравнению с карбидами таких элементов, как титан, ванадий и хром.
Из уровня техники известен способ электроискрового легирования, в котором в качестве упрочняющего электрода (электрода-анода) используют наноструктурный сплав состава карбид вольфрама - кобальт в соотношении 3÷25% мас. кобальта с размером зерен карбида вольфрама 2÷120 нм (Патент РФ №2371520, 27.10.2009). Недостатком данного способа является незначительная толщина упрочненного слоя.
Из уровня техники известен способ формирования износостойкого покрытия на деталях из титана или титанового сплава, включающий формирование покрытия электроискровым методом с использованием в качестве анода графитового электрода, охлаждаемого газообразным азотом (Патент РФ №2349432, 20.03.2009). Недостатком данного способа является применение в качестве углеродсодержащего материала только графитового электрода и использование в качестве охлаждающей среды газообразного азота.
Наиболее близким по технической сущности является способ нанесения износостойких покрытий на поверхность деталей из титана или титанового сплава, включающий нанесение на поверхность обрабатываемой детали слоя порошкообразного графита фрикционным намазыванием и последующее проведение электроискрового легирования на различных режимах обработки (Бойцов А.Г. и др. Упрочнение поверхностей деталей комбинированными способами. М.: Машиностроение, 1991). Недостатком данного способа является применение в качестве углеродсодержащего материала только порошкообразного графита, использование фрикционного намазывания для фиксирования порошкообразного графита к поверхности детали.
Все это снижает универсальность способа.
Предлагаемый способ является более универсальным по отношению к прототипу.
Повышение универсальности выражается в возможности формирования износостойкого слоя на поверхности деталей из титана или сплавов на его основе с использованием материалов на основе углерода, которые предварительно наносят в виде красок или паст на поверхность обрабатываемой детали.
Способ осуществляется следующим образом.
Слой покрытия материалов на основе углерода предварительно наносят в виде краски или пасты слоем не менее 0,01 мм на требуемую для формирования износостойкого покрытия поверхность детали из титана или сплава на его основе. Слой менее 0,01 мм технически сложно нанести равномерно. Электроискровое легирование происходит за счет взаимодействия углерода из покрытия с титаном (материалом детали) по механизму СВС, который инициирует искровой разряд, результатом которого является образование в поверхностном слое детали карбида и нитрида титана, что увеличивает твердость упрочненного слоя. Для предотвращения перегрева детали вследствие значительного тепловыделения, образующегося в ходе протекания процесса, способ предусматривает организацию охлаждения путем подачи в зону контакта электрода-анода и детали негорючего газа (или смеси газов) или невоспламеняющейся (негорючей) жидкости. Способ подачи выбирается из условий доступности - продувка, распыление, смачивание и др. Для формирования упрочненного слоя, содержащего наряду с карбидом и нитридом титана другие фазы, способ предусматривает использование в качестве электрода-анода любого электропроводящего материала. Применение в качестве электрода-анода меди и сплавов на ее основе позволяет дополнительно легировать поверхностный слой медью, что повышает его пластичность. Использование в качестве электрода-анода ферросплавов позволяет формировать поверхностный слой, содержащий наряду с карбидом и нитридом титана, другие фазы: применение феррохрома способствует появлению в упрочненном слое дополнительно карбидов и нитридов хрома, ферробор формирует дополнительно бориды железа в упрочненном поверхностном слое.
Поскольку процесс электроискрового легирования осуществляется по механизму СВС, который инициирует искровой разряд, то проведение процесса допускается проводить на различных режимах и установках электроискрового легирования.
Пример. В качестве упрочняемой детали использовали трубку из титанового сплава марки ВТ5 диаметром 22 мм с толщиной стенки 2 мм. На наружную поверхность нанесли пасту, содержащую сажу (элементарный углерод), слоем 0,5-0,8 мм. В качестве электрода-анода применяли медный электрод. Упрочнение проводили на установке ЭФИ- 46А на различных режимах (напряжение холостого хода 15-190 В, ток короткого замыкания 3,5-4,5 А). Упрочненный поверхностный слой содержал, наряду с карбидом, нитридом и карбонитридом титана, медь. Твердость слоя составила 71-72 HRC, глубина слоя находилась в пределах 1,0-1,5 мм.
1. Способ формирования износостойкого слоя на поверхности деталей из титана или сплавов на его основе, включающий проведение процесса методом электроискрового легирования на различных режимах, отличающийся тем, что на обрабатываемую поверхность упрочняемой детали предварительно наносят слой материала на основе углерода в виде краски или пасты толщиной не менее 0,01 мм.
2. Способ по п. 1, отличающийся тем, что в зону контакта анода и обрабатываемой детали подают негорючий газ или негорючую смесь газов.
3. Способ по п. 1, отличающийся тем, что в зону контакта анода и обрабатываемой детали подают невоспламеняющуюся жидкость.
4. Способ по п. 1, отличающийся тем, что анодом является любой токопроводящий материал.