Материал покрытия с нелинейным сопротивлением, шина и обмотка статора

Иллюстрации

Показать все

Изобретение относится к материалу покрытия с нелинейным удельным сопротивлением, электрической шине и обмотке статора. Изобретение содержит: полимерную матрицу, изготовленную из эпоксидной, акриловой смолы или полиуретана, отверждаемых за счет нагрева; диспергированные в полимерной матрице ZnO-содержащие частицы и полупроводящие поверхностно-обработанные вискеры. Вискеры изготовлены из оксида цинка, подвергнутого обработке титанатным аппретом. Изобретение позволяет получить улучшенные нелинейные характеристики сопротивления. 6 н. и 4 з.п. ф-лы, 16 ил., 54 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Вариант осуществления, описанный в настоящей заявке, в целом относится к материалу покрытия с нелинейным удельным сопротивлением, шине (электрической шине) и обмотке статора.

УРОВЕНЬ ТЕХНИКИ

[0002] Применительно к герметичным изолирующим устройствам, например газонаполненным коммутационным аппаратам, состоящим из заполненного изоляционным газом контейнера, в котором установлен высоковольтный проводник, опирающийся на изолятор, существует проблема минимизации за счет рационализации проекта изоляции или интеграции трех фаз с целью уменьшения стоимости и снижения нагрузки на окружающую среду.

[0003] Размер металлического контейнера герметичного изолирующего устройства определяется, например проектом изоляции, проектом теплового режима. Один из моментов проекта изоляции заключается в определении влияния частиц постороннего вещества, существующих (или налипших) на внутренней поверхности металлического контейнера, на характеристики изоляции.

[0004] В случае, когда посторонние частицы находятся в металлическом контейнере, в котором расположен высоковольтный проводник, опирающийся на изолятор, а контейнер заполнен изоляционным газом, возникает сила, приложенная к посторонним частицам вследствие взаимодействия между электрическим зарядом металлического контейнера и рабочим напряжением. По этой причине, посторонние частицы могут иногда перемещаться по периметру внутри этого контейнера.

[0005] При минимизации герметичного изолирующего устройства электрическое поле на внутренней поверхности металлического контейнера усиливается, в результате чего активизируются и посторонние частицы, находящиеся в контейнере. Эти частицы при чрезмерно активном движении в контейнере могут влиять на характеристики изоляции. Кроме того, интенсивность движения посторонних частиц возрастает по мере удлинения частиц и таким образом усиливается и влияние на характеристики изоляции.

[0006] По этой причине с целью предотвращения попадания в металлический контейнер длинномерных посторонних частиц, вводят, например процесс контроля за посторонними частицами на стадии производства, удаляя эти частицы и усиливая этот контроль. Кроме того, необходимо так рассчитать напряженность электрического поля на внутренней поверхности металлического контейнера при приложении к нему рабочего напряжения, чтобы посторонние частицы малого размера, трудные для удаления, не всплывали выше расчетной высоты и не двигались по периметру контейнера. В настоящей заявке эта высота обозначает расстояние между внутренней поверхностью контейнера и посторонней частицей.

[0007] Напряженность электрического поля на внутренней поверхности металлического контейнера зависит от расстояния между высоковольтным проводником и этой поверхностью контейнера. Следовательно, для того, чтобы уменьшить высоту всплытия посторонних частиц необходимо увеличить размер контейнера. Это становится фактором, препятствующим миниатюризации герметичного изолирующего устройства.

[0008] С целью ослабления влияния посторонних частиц применяют способ подавления перемещения этих частиц. Например, на внутреннюю поверхность металлического контейнера герметичного изолирующего устройства наносят покрытие из смолы, обладающей высокими электроизоляционными свойствами. Покрытие внутренней поверхности металлического контейнера такой смолой предотвращает перенос заряда с этой поверхности на посторонние частицы, затрудняя перемещение частиц. Кроме того, в качестве материала, пригодного для формирования покрытия на внутренней поверхности контейнера, изучают также материал изоляционного покрытия, состоящий из смолы, в которой диспергированы частицы материала с нелинейным удельным сопротивлением.

[0009] Материал изоляционного покрытия применяют не только в упомянутом герметичном изолирующем устройстве, но также и в электрогенераторах. Обмотка электрогенератора находится под высоким напряжением, а стальной сердечник электрогенератора находится под потенциалом земли. В отверстии сердечника для выхода обмотки потенциал на поверхности обмотки быстро возрастает от потенциала земли до высокого напряжения. В результате в этом отверстии сердечника возникает разряд в направлении ширины обмотки. С целью подавления этого разряда применяют материал изоляционного покрытия.

[0010] В традиционных материалах изоляционного покрытия, применяемых в упомянутых герметичных изолирующих устройствах и электрогенераторах, в случае диспергирования в смоле частиц из материала с нелинейным удельным сопротивлением, обсуждают введение, например вискеров (нитеобразных кристаллов) четырехлучевой формы с целью обеспечения токопроводящей дорожки. При этом вискеры обрабатывают кремнийорганическим аппретом с целью повышения смачиваемости эпоксидной смолой.

СООТВЕТСТВУЮЩИЕ ССЫЛКИ

Ссылки на патенты

[0011] Ссылка 1: Патент Японии №3028975

Ссылка 2: JP-A 2012-142377

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0012] Однако, в случае использования традиционного материала изоляционного покрытия в качестве материала покрытия, упомянутые вводимые в материал вискеры, подвергнутые обработке кремнийорганическим аппретом, иногда агрегируют при добавлении разбавляющего растворителя. Вследствие этого вискеры, существующие в агрегированном состоянии на поверхности пленки покрытия или в самой пленке, вызывают неровности на поверхности этой пленки. В результате материал изоляционного покрытия иногда не может проявить нелинейную характеристику сопротивления, которую этот материал должен изначально проявлять.

[0013] Проблема, решаемая посредством настоящего изобретения, заключается в том, чтобы предоставить материал покрытия с нелинейным сопротивлением, обладающий превосходной нелинейной характеристикой сопротивления, полученной за счет равномерного диспергирования наполнителя в полимерной матрице, а также предоставить шину и обмотку статора, в которых применен этот материал покрытия.

[0014] Материал покрытия с нелинейным сопротивлением в варианте осуществления содержит: полимерную матрицу, изготовленную из эпоксидной смолы, отверждаемой за счет введения в нее отвердителя; частицы, диспергированные в полимерной матрице и изготовленные из спеченного материала, содержащего оксид цинка в качестве основного компонента; полупроводящие вискеры, диспергированные в полимерной матрице и изготовленные из оксида цинка, поверхность которого модифицирована за счет обработки титанатным аппретом.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0015] Фиг.1: изображение в перспективе, схематически иллюстрирующее полупроводящий вискер, изготовленный из оксида цинка, поверхность которого модифицирована за счет обработки титанатным аппретом, и содержащийся в материале покрытия с нелинейным сопротивлением в соответствии с вариантом осуществления.

Фиг.2: изображение, схематически иллюстрирующее конфигурацию материала покрытия с нелинейным сопротивлением в соответствии с вариантом осуществления, для описания токопроводящей дорожки, образованной частицами, содержащими оксид цинка, и поверхностно модифицированными вискерами.

Фиг.3: изображение, иллюстрирующее часть поперечного сечения электрического устройства с применением пленки с нелинейным сопротивлением на основе материала покрытия с нелинейным сопротивлением в соответствии с вариантом осуществления.

Фиг.4: изображение, иллюстрирующее часть поперечного сечения герметичного изолирующего устройства другой конструкции с применением пленки с нелинейным сопротивлением на основе материала покрытия с нелинейным сопротивлением в соответствии с вариантом осуществления.

Фиг.5: изображение, иллюстрирующее состояние, при котором в паз стального сердечника электрогенератора вставлена обмотка статора, сформированная с применением пленки с нелинейным сопротивлением на основе материала покрытия с нелинейным сопротивлением в соответствии с вариантом осуществления.

Фиг.6: увеличенное изображение, иллюстрирующее поперечное сечение обмотки статора, показанной на фиг.5.

Фиг.7: изображение, иллюстрирующее поперечное сечение испытательного элемента для оценки нелинейной характеристики сопротивления.

Фиг.8-10: график, иллюстрирующий результаты оценочных испытаний нелинейной характеристики сопротивления при использовании эпоксидной смолы в качестве полимерной матрицы.

Фиг.11,13,15: график, иллюстрирующий результаты оценочных испытаний нелинейной характеристики сопротивления при использовании акриловой смолы в качестве полимерной матрицы.

Фиг.12,14,16: график, иллюстрирующий результаты оценочных испытаний нелинейной характеристики сопротивления при использовании полиуретана в качестве полимерной матрицы.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0016] Ниже будут описаны варианты осуществления настоящего изобретения со ссылкой на прилагаемые чертежи.

[0017] Материал покрытия с нелинейным сопротивлением в варианте осуществления содержит диспергированные в полимерной матрице частицы, изготовленные из спеченного материала, содержащего оксид цинка в качестве основного компонента, а также полупроводящие вискеры, изготовленные из оксида цинка, подвергнутого поверхностной модификации титанатным аппретом. Полимерная матрица изготовлена из эпоксидной смолы, отвержденной за счет введения в нее отвердителя, или из акриловой смолы, эпоксидной или полиуретана, отверждаемых посредством нагрева.

[0018] В первую очередь рассмотрим акриловую смолу, эпоксидную смолу или полиуретан, образующие полимерную матрицу. До отверждения эти смолы находятся в жидком состоянии.

[0019] Эпоксидная смола образует материал покрытия на эпоксидной основе и изготовлена из эпоксисоединения, имеющего две или более эпоксидных групп в молекуле. В качестве эпоксисоединения можно произвольно применять любое соединение, способное к отверждению и содержащее в одной молекуле по меньшей мере два трехчленных кольца, каждое из которых состоит из двух атомов углерода и одного атома кислорода, причем тип такого соединения не имеет особых ограничений.

[0020] Эпоксидную смолу подразделяют на смолу, которую отверждают за счет нагрева без введения в нее отвердителя (здесь и далее – однокомпонентная эпоксидная смола), и на смолу, которую отверждают за счет введения в нее отвердителя (здесь и далее – двухкомпонентная эпоксидная смола).

[0021] Однокомпонентная эпоксидная смола находится в жидком состоянии, например вблизи комнатной температуры (например при 25°C). В качестве эпоксидной смолы можно, например, использовать всем известные эпоксидные смолы различных типов, которые применяют как однокомпонентную смолу.

[0022] Примеры однокомпонентной эпоксидной смолы включают соединения, в которых две или более эпоксидных группы связаны с концевой группой ароматического кольца или гидрированного ароматического кольца, например бензольного кольца, нафталинового кольца, гидрированного бензольного кольца. Конкретные примеры однокомпонентной эпоксидной смолы включают диглицидный эфир бисфенола А, диглицидный эфир бисфенола F, диглицидный эфир двухмолекулярного аддукта бисфенола А и этиленоксида, диглицидный эфир двухмолекулярного аддукта бисфенол А-1,2-пропиленоксида, диглицидный эфир гидрированного бисфенола А, диглицидный эфир гидрированного бисфенола F, диглицидный эфир ортофталевой кислоты, диглицидный эфир тетрагидроизофталевой кислоты, N,N-диглицидиланилин, N,N-диглицидилтолуидин, триглицидный эфир N,N-диглицидиланилина, тетраглицидилметаксилендиамин, 1,3-бис(N,N-диглицидиламинометилен)циклогексан, и диглицидный эфир тетрабромбисфенола А. Эти смолы могут применяться не только по отдельности, но и в комбинации из двух или более типов. Например, с точки зрения наличия высокой термостойкости после отверждения, из этих смол предпочтительно использовать диглицидный эфир бисфенола А, диглицидный эфир гидрированного бисфенола А, диглицидный эфир бисфенола F, или диглицидный эфир гидрированного бисфенола F.

[0023] Описанная выше однокомпонентная эпоксидная смола отверждается при нагревании, например при температуре 80-120°C в течение от около 30 мин до около 2 ч.

[0024] Примеры двухкомпонентной эпоксидной смолы включают: эпоксидные смолы типа глицидилового эфира, например эпоксидную смолу типа бисфенола А, эпоксидную смолу типа бромированного бисфенола А, эпоксидную смолу типа гидрированного бисфенола А, эпоксидную смолу типа бисфенола F, эпоксидную смолу типа бисфенола S, эпоксидную смолу типа бисфенола AF, эпоксидную смолу типа бифенила, эпоксидную смолу типа нафталина, эпоксидную смолу типа флуорена, эпоксидную смолу новолачного типа, эпоксидную смолу фенол-новолачного типа, эпоксидную смолу ортокрезол-новолачного типа, эпоксидную смолу типа трис(гидроксифенил)метана, и эпоксидную смолу типа тетрафенилолэтана; гетероциклические эпоксидные смолы, например эпоксидную смолу типа глицидилового эфира, полученную методом конденсации эпихлоргидрина и карбоновой кислоты, эпоксидную смолу типа гидантоина, полученную в результате реакции триглицидилизоцианата или эпихлоргидрина и гидантоинов, и так далее. Эти смолы могут применяться не только по отдельности, но и в комбинации из двух или более типов.

[0025] Отвердитель, который отверждает двухкомпонентную эпоксидную смолу, химически взаимодействует с этой смолой и таким образом отверждает ее. Любой отвердитель можно произвольно использовать, если он отверждает эпоксидную смолу, а тип отвердителя особых ограничений не имеет. В качестве отвердителя на основе амина можно использовать, например этилендиамин, полиамидоамин, триэтилентетрамин и тому подобные. В качестве отвердителя на основе ангидрида кислоты можно использовать, например фталевый ангидрид, гексагидрофталевый ангидрид, 4-метилгексагидрофталевый ангидрид, тетрабромофталевый ангидрид или аналогичные ангидриды. Количество добавляемого отвердителя составляет предпочтительно 10-15 масс.ч. на 100 масс.ч. полимерной матрицы (двухкомпонентной эпоксидной смолы).

[0026] Акриловая смола широко применяется из-за большого разнообразия типов акриловых мономеров в качестве сырья для производства акриловой смолы, а также благодаря тому, что физические и химические свойства этой смолы, например клейкость, адгезионную способность, твердость, прозрачность, светостойкость, стойкость к воздействию климатических факторов, химическую стойкость и другие свойства можно легко регулировать. Кроме того, композиции на основе акриловой смолы не подвержены ингибированию отверждения под действием воздуха в процессе отверждения и поэтому предпочтительны, например в случае производства материала высокопрочного покрытия.

[0027] В качестве акриловой смолы можно указать, например полифункциональный акриловый мономер (А), имеющий две или более метакрилоиловых групп (CH2=С(СН3)-С(0)0-) в молекуле. Примеры полифункционального акрилового мономера (А), имеющего две или более метакрилоиловых групп в молекуле, включают этиленгликоль диметакрилат, диэтиленгликольдиметакрилат, полиэтиленгликоль диметакрилат, пропиленгликольдиметакрилат, дипропиленгликоль диметакрилат, трипропиленгликольдиметакрилат, полипропиленгликольдиметакрилат, 1,3-бутандиолдиметакрилат, 1,4-бутандиолдиметакрилат, триметилолпропантриметакрилат, пентаэритритолдиметилакрилат, пентаэритритолтриметилакрилат, пентаэритритолтетраметилакрилат, неопентилгликольдиметилакрилат, аддукт метакриловой кислоты с диглицидным эфиром бисфенола А, диметакрилат бисфенола А, модифицированный этиленоксидом и так далее. Эти мономеры могут применяться не только по отдельности, но и в комбинации из двух или более типов.

[0028] В материале покрытия на основе акриловой смолы разбавляющий растворитель обычно улетучивается при нагревании до высокой температуры и акриловый мономер смолы отверждается за счет поликонденсации. Например, в материале покрытия, который в качестве полимерной матрицы содержит упомянутый полифункциональный акриловый мономер, имеющий метакрилоиловые группы, разбавляющий растворитель улетучивается при нагревании до высокой температуры и этот акриловый мономер отверждается за счет поликонденсации. Упомянутая акриловая смола отверждается в процессе нагрева при температуре 80-120°C в течение от около 30 мин до около 2 ч.

[0029] Полиуретан является полимером, который получают за счет полимеризации присоединением полиизоцианата и полиола или моноола. Полиуретан широко применяется в качестве термопластичного или термореактивного материала.

[0030] Примеры полиизоцианата включают ароматический полиизоцианат (толуилендиизоцианат, 4,4’-дифенилметандиизоцианат, ксилилендиизоцианат, толидиндиизоцианат, диоктиладипат и т.д.), алициклический полиизоцианат (дициклогексилметандиизоцианат, изопропилиденбис(4-циклогексилизоцианат), гидрированный ксилилендиизоцианат, циклогексилдиизоцианат, изофорондиизоцианат и т.д.), алифатический полиизоцианат (гексаметилендиизоцианат, лизиндиизоцианат, 2,2,4- и 2,4,4-триметилгексаметилен диизоцианат и т.д.). Из перечисленных соединений, с точки зрения пожелтения доступного полиуретана предпочтительными являются алифатический полиизоцианат и алициклический полиизоцианат. Эти соединения могут применяться не только по отдельности, но и в комбинации из двух или более типов.

[0031] Примеры полиола включают: простые полиэфиры, изготовленные за счет полимеризации присоединением пропиленоксида или пропиленоксида и алкиленоксида, например этиленоксида, к многоатомному спирту, например этиленгликолю, пропиленгликолю, глицерину, триметилолпропану, пентаэритритолу, сорбитолу, и сахарозе; этиленгликоль, пропиленгликоль и их олигогликоли; бутиленгликоль, гексиленгликоль, и гликоли политетраметиленового эфира; поликапролактонполиолы; полиэфирполиолы, например полиэтиленадипат; полибутадиенполиолы; сложные эфиры высших жирных кислот, имеющие гидроксильную группу, например касторовое масло; полиолы, изготовленные за счет прививки винилового мономера на простом полиэфире или сложном полиэфире; и т.д. Эти полиолы могут применяться не только по отдельности, но и в комбинации из двух или более типов.

[0032] Примеры моноола включают полиоксиалкиленмоноол, сложный полиэфирмоноол, моноол простого и сложного полиэфира, высший насыщенный моноол, моноол, имеющий этиленненасыщенную двойную связь и т.д. Эти моноолы могут применяться не только по отдельности, но и в комбинации из двух или более типов.

[0033] В материале покрытия на основе полиуретана в качестве полимерной матрицы применяют вещество, изготовленное за счет предварительного компаундирования полиизоцианата и полиола или моноола, и отверждают этот материал за счет испарения разбавляющего растворителя при нагревании до высокой температуры. Упомянутый полиуретан отверждается в процессе нагрева, например при температуре 80-120°C в течение от около 30 мин до около 2 ч.

[0034] При этом акриловая смола, эпоксидная смола, и полиуретан, которые отверждаются при нагревании, могут быть использованы не только по отдельности, но также и в комбинации из двух или более типов. Например, можно использовать комбинацию из акриловой и эпоксидной смолы, или комбинацию из акриловой смолы, эпоксидной смолы и полиуретана.

[0035] Далее будут описаны частицы, изготовленные из спеченного материала, содержащего оксид цинка в качестве основного компонента.

[0036] Частицы, изготовленные из спеченного материала, содержащего оксид цинка в качестве основного компонента (здесь и далее называются ZnO-содержащие частицы), имеют нелинейное сопротивление. Спеченный материал содержит в качестве вспомогательного компонента по меньшей мере один оксид металла из группы, включающей Bi2O3, Co2O3, MnO, Sb2O3, и NiO, и обладает сферической или практически сферической формой. Кроме того, этот спеченный материал состоит из структурных объектов, имеющих структуру, в которой проводящие частицы оксида цинка, охваченные изолирующим зернограничным слоем, агрегированы в результате спекания. Нелинейная характеристика сопротивления возникает на границе зерна проводящей частицы оксида цинка, охваченной упомянутым слоем так, что сама по себе отдельная частица, состоящая из спеченного материала, проявляет нелинейную характеристику сопротивления.

[0037] Средний размер ZnO-содержащих частиц предпочтительно составляет 10-100 мкм для обеспечения обрабатываемости при нанесении покрытия и проявления каждой ZnO-содержащей частицей нелинейной характеристики сопротивления. Более предпочтительны частицы, средний размер которых находится в диапазоне 30-80 мкм, поскольку в этом случае проявляется наилучшая нелинейная характеристика сопротивления.

[0038] В настоящей заявке средний размер частиц определяли по результатам наблюдения поперечного сечения образца из определенной смолы с диспергированными в ней ZnO-содержащими частицами, с помощью SEM (растровый электронный микроскоп). При этом измеряли размеры отдельных частиц, а затем рассчитывали среднее арифметическое значение.

[0039] Содержание ZnO-содержащих частиц предпочтительно равно 40-90 масс.ч. на 100 масс.ч. полимерной матрицы, что обеспечивает обрабатываемость при нанесении покрытия и формирование токопроводящих дорожек в материале покрытия с нелинейным сопротивлением. Более предпочтительным является содержание ZnO-содержащих частиц в диапазоне 50-70 масс.ч. на 100 масс.ч. полимерной матрицы.

[0040] Далее будут рассмотрены полупроводящие вискеры, изготовленные из оксида цинка, подвергнутого модификации поверхности с помощью титанатного аппрета. На фиг.1 представлено изображение в перспективе, схематически иллюстрирующее полупроводящий вискер, изготовленный из оксида цинка, поверхность которого модифицирована за счет обработки титанатным аппретом, и содержащийся в материале покрытия с нелинейным сопротивлением в соответствии с вариантом осуществления.

[0041] Полупроводящий вискер из оксида цинка, поверхность которого модифицирована за счет обработки титанатным аппретом, (здесь и далее называется поверхностно-обработанный вискер 10) имеет четырехлучевую форму, образованную центральной частью 11 и игольчатыми кристаллическими частями 12, вытянутыми от части 11 в четырех осевых направлениях. Поверхностно-обработанный вискер 10 изготавливают из стабильного полупроводящего оксида цинка, имеющего удельное сопротивление в диапазоне 1-5000 Ом⋅см, с последующей обработкой поверхности титанатным аппретом.

[0042] В полимерной матрице для того, чтобы поверхностно-обработанный вискер 10 соединял ZnO-содержащие частицы, формируя качественную токопроводящую дорожку, длина L игольчатой кристаллической части 12 вискера 10 составляет предпочтительно 2-50 мкм, а средний диаметр D (средний арифметический диаметр) участка части 12 с максимальным диаметром составляет предпочтительно 0,2-3,0 мкм. В качестве полупроводящего вискера из оксида цинка можно использовать, например продукт Pana-Tetra (производство AMTEC Co., Ltd.).

[0043] В полимерной матрице для того, чтобы поверхностно-обработанный вискер 10 соединял ZnO-содержащие частицы, формируя качественную токопроводящую дорожку, обеспечивая обрабатываемость при нанесении покрытия и т.д., предпочтительно, чтобы содержание этих вискеров 10 составляло 5-30 масс.ч. на 100 масс.ч. полимерной матрицы.

[0044] Примеры титанатного аппрета, применяемого для модификации поверхности, включают изопропил триизостеароилтитанат, изопропил тридодецилбензолсульфонил титанат, изопропил трис (диоктилпирофосфат) титанат, тетраизопропил-бис(диоктилфосфит) титанат, тетраоктил-бис(дитридецилфосфит) титанат, тетра(2,2-диалилоксиметил-1-бутил)-бис(дитридецил) фосфит титанат, бис(диоктилпирофосфат)оксиацетат титанат и т.д. Количество титанатного аппрета в смеси составляет предпочтительно 0,1-1 масс.ч. на 100 масс.ч. вискеров из оксида цинка, не подвергнутых поверхностной модификации за счет обработки титанатным аппретом.

[0045] Благодаря проведению модификации поверхности за счет обработки титанатным аппретом, как описано выше, можно повысить смачиваемость полимерной матрицей.

[0046] С целью упомянутой обработки поверхности можно применять способ механического перемешивания вискеров (поверхностно-необработанных) из оксида цинка вместе с титанатным аппретом, используя контейнер, пригодный для перемешивания порошка, или способ (интегрального перемешивания) введения титанатного аппрета в процессе компаундирования вискеров (поверхностно-необработанных) из оксида цинка со смолой и т.п.

[0047] При этом с целью улучшения обрабатываемости в случае нанесения на элемент конструкции материала покрытия с нелинейным сопротивлением с помощью щетки или посредством безвоздушного распыления в упомянутый материал можно добавлять разбавляющий растворитель. В качестве такого растворителя можно использовать быстро сохнущий разбавитель (например смесь из этилацетата и толуола при соотношении по массе 8:2) и т.п. Разбавляющий растворитель предпочтительно добавляют в количестве 1-10 масс.ч. на 100 масс.ч. полимерной матрицы с целью улучшения упомянутой обрабатываемости.

[0048] С целью предотвращения образования пены в полимерной матрице или подавления образовавшейся пены в эту матрицу можно вводить противопенную присадку. Тип такой присадки особенно не ограничен, но можно применять противопенную присадку на основе полидиметилсилоксана (например марки TSA720, изготовленную компанией GE Toshiba Silicone Co., Ltd) или аналогичную.

[0049] Противопенную присадку предпочтительно вводить в количестве 0,1-5 масс.ч. на 100 масс.ч. полимерной матрицы, с учетом минимального количества, при котором присадка, диспергированная в матрице, проявляет противопенный эффект, и максимального количества, при котором эта присадка не влияет на электрические характеристики материала покрытия с нелинейным сопротивлением.

[0050] Кроме того, с целью повышения водостойкости пленки покрытия в материал покрытия с нелинейным сопротивлением можно добавить антикоррозийную присадку. Примеры такой присадки включают: антикоррозийные пигменты на основе свинца, изготовленные из порошков цинка, свинцового сурика, субоксида свинца, цианамида свинца, фосфата цинка, фосфата алюминия, молибдата цинка, метаплумбата кальция, хромата цинка, MIO (гексагональная кристаллическая структура, образующаяся при нанесении оксида титана на оксид железа) и т.п.; антикоррозийные пигменты на основе хромата, изготовленные из порошков хромата цинка, хромата стронция, и т.п.; порошки соединения фосфорной кислоты с оксидом цинка, соединения фосфорной кислоты с оксидом кальция и т.п. Из этих присадок предпочтительно использовать соединение фосфорной кислоты с оксидом цинка, обладающее высоким антикоррозионным эффектом.

[0051] Предпочтительно добавить 1-10 масс.ч. антикоррозийной присадки на 100 масс.ч. полимерной матрицы, учитывая минимальное количество добавки, при котором эта присадка, диспергированная в матрице, проявляет антикоррозионный эффект, и максимальное количество добавки, при котором присадка не влияет на электрические характеристики упомянутого материала покрытия.

[0052] Кроме того, с целью окрашивания пленки покрытия можно добавить пигмент в материал покрытия с нелинейным сопротивлением. Примеры такого пигмента включают титановые белила, цинковые белила, технический углерод, «перманент» красный, желтый крон, цианин синий, железную лазурь, ультрамарин синий, цианин зеленый, железный красный (Fe2O3), EPOMARINE оранжевый и т.д.

[0053] Предпочтительно добавить 1-15 масс.ч. пигмента на 100 масс.ч. полимерной матрицы с учетом минимального количества добавки, при котором пигмент, диспергированный в матрице, проявляет красящий эффект, и максимального количества добавки, при котором пигмент не влияет на электрические характеристики материала покрытия с нелинейным сопротивлением.

[0054] Далее, с целью дополнительного улучшения диспергируемости наполнителя можно ввести диспергатор в упомянутый материал покрытия. В качестве такого диспергатора можно использовать поверхностно-активное вещество (ПАВ), например высокомолекулярное ПАВ, высокомолекулярное ПАВ типа поликарбоновой кислоты, ПАВ на основе алкилимидазолина, неионное ПАВ. Можно назвать, например, Homogenol L-100 (изготовитель Kao Corp.) и т.д. в качестве высокомолекулярного ПАВ; например Homogenol L-18 и Homogenol L-1820 (изготовитель Kao Corp.) и т.д в качестве высокомолекулярного ПАВ типа поликарбоновой кислоты; например Homogenol L-95 (изготовитель Kao Corp.) и т.д. в качестве ПАВ на основе имидазолина; например Pitzcol K-30, Pitzcol K-30L, Pitzcol K-90, Pitzcol K-90L, Discol N-509, Discol N-518, Discol 202, Discol 206 (Dai-ichi Kogyo Seiyaku Co., Ltd.) и т.д. в качестве неионного ПАВ. Из упомянутых диспергаторов предпочтительно использовать Homogenol L-18, L-1820, которые обладают весьма высоким диспергирующим эффектом.

[0055] Предпочтительно добавить 0,5-5 масс.ч. диспергатора на 100 масс.ч. полимерной матрицы с целью обеспечения достаточного диспергирующего эффекта.

[0056] Кроме того, с целью подавления осаждения ZnO-содержащих частиц можно ввести в упомянутый материал покрытия присадку, препятствующую осаждению частиц. Предпочтительно в качестве такой присадки использовать, например тонкоизмельченный материал, содержащий глинозем (оксид алюминия), кремнезем (диоксид кремния), или диоксид титана в качестве основного компонента, и имеющий средний размер частиц 5-40 нм. В качестве конкретных продуктов можно привести глинозем Aerosil (например, AEROXIDE Alu C (NIPPON AEROSIL CO., LTD) или аналогичный), кремнезем Aerosil (например, AERSIL 200 (NIPPON AEROSIL CO., LTD) или аналогичный), диоксид титана Aerosil (например, AEROXIDE ТiO2 P 25 (NIPPON AEROSIL CO., LTD) или аналогичный) и т.д. Причина, по которой в настоящей заявке предпочтительно выбран диапазон среднего размера частиц упомянутой присадки в 5-40 нм, заключается в том, что нижний предел размера частиц Aerosil, при котором наночастицы агрегируют, составляет 5 нм, а верхний предел размера частиц Aerosil, при котором эти частицы внедряются между частицами упомянутого наполнителя, проявляя эффект предотвращения осаждения, составляет 40 нм. Из указанных продуктов предпочтительно использовать кремнезем Aerosil или глинозем Aerosil, которые показывают весьма высокий эффект предотвращения осаждения.

[0057] Кроме того, в качестве присадки, препятствующей осаждению, можно применять, например тальк (например D-1000, поставляемый компанией Nippon Talc Co., Ltd. или аналогичный продукт).

[0058] При этом упомянутый Aerosil изготавливают в виде маточной смеси и диспергируют для применения. Aerosil разбухает под действием материала покрытия и проникает между ZnO-содержащими частицами, предотвращая таким образом осаждение этих частиц и способствуя равномерному распределению этих частиц. С другой стороны, частицы талька имеют форму плоских чешуек, которые проникают между ZnO-содержащими частицами, предотвращая их осаждение, способствуя их равномерному распределению и повышая водонепроницаемость пленки покрытия благодаря плоско-чешуйчатой форме частиц талька.

[0059] Предпочтительно добавлять 0,5-5 масс.ч. присадки, препятствующей осаждению, на 100 масс.ч. полимерной матрицы для того, чтобы обеспечить достаточный эффект противодействия осаждению.

[0060] Кроме того, одновременное введение упомянутого диспергатора и присадки, препятствующей осаждению, может дать дополнительный эффект повышения диспергируемости ZnO-содержащих частиц. Одновременное введение этого диспергатора и этой присадки делает возможным формирование абсорбирующего слоя на поверхности ZnO-содержащих частиц. Другими словами повышение поверхностного заряда ZnO-содержащих частиц, являющихся твердыми телами, или увеличение силы отталкивания между этими частицами вследствие стерических препятствий создает возможность для стабильного распределения ZnO-содержащих частиц в полимерной матрице.

[0061] На фиг.2 представлено изображение, схематически иллюстрирующее конфигурацию материала 20 покрытия с нелинейным сопротивлением в варианте осуществления, в котором ZnO-содержащие частицы 21 и поверхностно-обработанные вискеры 10 формируют токопроводящую дорожку 23.

[0062] Как показано на фиг.2, поверхностно-обработанные вискеры 10 внедрены между ZnO-содержащими частицами 21, распределяя эти частицы в полимерной матрице 22. Это делает возможным улучшение нелинейной характеристики сопротивления, проявляемой частицами 21. Кроме того, вискеры 10 контактируют с ZnO-содержащими частицами 21, создавая электрическое соединение частиц 21 и формируя таким образом токопроводящую дорожку 23.

[0063] При этом с целью электрического соединения ZnO-содержащих частиц 21 и формирования токопроводящей дорожки возможно и введение частиц из материала с низким сопротивлением, например углерода вместо поверхностно-обработанных вискеров 10, однако этот вариант непригоден, поскольку он приводит к пробою диэлектрика. Напротив, применение упомянутых полупроводящих поверхностно-обработанных вискеров 10 дает возможность предотвратить пробой диэлектрика.

[0064] Следует отметить, что и в случае одновременного введения диспергатора и присадки, препятствующей осаждению, токопроводящая дорожка 23, как описано выше, формируется ZnO-содержащими частицами и поверхностно-обработанными вискерами 10.

[0065] Далее будет описан метод изготовления материала 20 покрытия с нелинейным сопротивлением в варианте осуществления.

[0066] В первую очередь будет описан пример применения эпоксидной смолы в качестве полимерной матрицы 22. При этом в основном рассматривается двухкомпонентная эпоксидная смола.

[0067] Предварительно часть эпоксидной смолы (например 10-50 масс.% от общего количества эпоксидной смолы, предназначенной для компаундирования) и заданное количество поверхностно-обработанных вискеров 10 перемешивают во вращающемся барабанном смесителе, изготавливая маточную смесь. При этом в случае добавления противопенной присадки, диспергатора и присадки против осаждения, такое добавление проводят после формирования маточной смеси.

[0068] Затем оставшуюся часть эпоксидной смолы и предварительно заданное количество ZnO-содержащих частиц 21 добавляют к маточной смеси и перемешивают компоненты во вращающемся барабанном смесителе или в аналогичном оборудовании. При этом в случае добавки антикоррозийной присадки и красящего пигмента их добавляют вместе с оставшейся частью эпоксидной смолы и ZnO-содержащими частицами.

[0069] Далее, предварительно заданное количество отвердителя, отверждающего эпоксидную смолу, добавляют к смеси, в которую уже добавили оставшуюся часть эпоксидной смолы и ZnO-содержащих частиц 21, после чего компоненты перемешивают во вращающемся барабанном смесителе или в аналогичном оборудовании. При этом в случае добавки растворителя его вводят вместе с отвердителем.

[0070] Посредством этих стадий изготавливают материал 20 покрытия с нелинейным сопротивлением.

[0071] Как описано выше, в первую очередь изготавливают маточную смесь, содержащую поверхностно-обработанные вискеры 10, а затем к этой смеси подмешивают оставшиеся компоненты, благодаря чему вискеры 10 могут быть равномерно распределены в материале 20 покрытия. Равномерное распределение вискеров 10 дает возможность предотвратить осаждение ZnO-содержащих частиц 21 и за счет этого сформировать качественную токопроводящую дорожку 23.

[0072] Изготовленный таким методом материал 20 покрытия с нелинейным сопротивлением заливают, например в литейную форму, и выдерживают в ней в течение определенного периода времени до отверждения, изготавливая затвердевшую отливку. Кроме того, материал 20 покрытия наносят на элемент конструкции с помощью кисти или аналогичного инструмента и оставляют на определенный период времени до затвердевания, формируя пленку покрытия с нелинейным сопротивлением.

[0073] В случае добавления к материалу 20 покрытия разбавляющего растворителя, вязкость материала снижается. Поэтому, например можно наносить материал 20 на элемент конструкции с помощью безвоздушного распыления или аналогичным методом, а затем выдерживать слой покрытия в течение предварительно заданного периода времени, формируя пленку с нелинейным сопротивлением.

[0074] Следует отметить, что в процессе формирования этой плен