Способ и система контроля датчика выхлопных газов
Иллюстрации
Показать всеИзобретение относится к датчику выхлопных газов (ДВГ), установленному в автомобильном транспортном средстве. Предложен способ контроля датчика выхлопных газов, установленного в выхлопной системе двигателя. Способ заключается в том, что работу двигателя регулируют в ответ на ухудшение характеристик датчика выхлопных газов, причем ухудшение идентифицируют во время режима прекращения подачи топлива при замедлении (DFSO) и компенсируют на основании того, происходит ли продувка паров топлива во время режима прекращения подачи топлива при замедлении. Техническим результатом является увеличение эффективности процесса сгорания. 3 н. и 17 з.п. ф-лы, 11 ил.
Реферат
Область техники, к которой относится изобретение
Изобретение относится к датчику выхлопных газов (ДВГ), установленному в автомобильном транспортном средстве, и способу мониторинга работы датчика выхлопных газов.
Уровень техники
Датчик выхлопных газов может быть расположен в выхлопной системе транспортного средства для определения соотношения «воздух/топливо» в выхлопных газах, выпускаемых двигателем внутреннего сгорания транспортного средства. Данные, полученные от датчика выхлопных газов, могут быть использованы для управления работой двигателя внутреннего сгорания, приводящего в движение транспортное средство.
Ухудшение характеристик датчика выхлопных газов (уменьшение эффективности его работы) может привести к ухудшению управления двигателем, что может стать причиной увеличенного количества выбросов и/или ухудшить дорожные качества транспортного средства. В частности, возможно шесть отдельных типов ухудшении характеристик датчика выхлопных газов. Типы ухудшения характеристик могут быть разделены на следующие категории: асимметричный тип (например, асимметричная задержка при переходе от богатой смеси к бедной смеси, асимметричная задержка при переходе от бедной смеси к богатой смеси и т.д.), который влияет на скорость отклика датчика выхлопных газов при переходе состояния смеси либо от бедной к богатой либо от богатой к бедной; симметричный тип (например, симметричная задержка), который влияет на скорость отклика датчика выхлопных газов при переходе состояния смеси как от бедной к богатой, так и от богатой к бедной. Ухудшение характеристик по типу задержки может быть связано с первоначальной реакцией датчика выхлопных газов на изменение состава выхлопных газов.
Предыдущие подходы к мониторингу ухудшения характеристик датчика выхлопных газов, в частности определение одного или нескольких из шести типов ухудшения характеристик, опирались на интрузивный сбор данных. Более конкретно, двигатель мог быть целенаправленно включен во время одного или нескольких переходов состояния смеси от богатой к бедной или от бедной к богатой, чтобы проследить за откликом датчика выхлопных газов. Были также предприняты попытки проследить за уменьшением эффективности работы датчика выхлопных газов во время прекращения подачи топлива при замедлении транспортного средства (DFSO) с целью проведения бесконтактной диагностики. Однако продувка паров топлива может отрицательно повлиять на процесс мониторинга деградации датчика выхлопных газов во время DFSO. Например, если продувка паров выполняется в двигателе во время мониторинга датчика, то работа датчика выхлопных газов может быть оценена неверно. Например, может быть диагностирована деградация датчика при его исправной работе, и наоборот. Предпринимались другие попытки для предотвращения такой неверной диагностики, в том числе просто путем приостановки диагностики датчика во время продувки. Однако при таком подходе период для диагностики датчика может быть ограничен, что в результате уменьшит количество проводимых диагностических операций. Следовательно, если диагностика неисправного датчика не была проведена в необходимый период времени, может быть уменьшена эффективность процесса сгорания.
Раскрытие изобретения
Для преодоления вышеуказанных недостатков был разработан неинтрузивный подход для диагностики работы датчика выхлопных газов, который может быть применен во время продувки паров топлива. В одном варианте осуществления изобретения предлагается способ мониторинга датчика выхлопных газов, установленного в выхлопной системе двигателя. Способ предполагает регулирование работы двигателя при ухудшении характеристик датчика выхлопных газов; где ухудшение характеристик идентифицировано во время прекращения подачи топлива при замедлении транспортного средства (DFSO) и компенсируется, если во время DFSO в двигателе происходит продувка паров топлива.
Регулирование работы двигателя на основании ухудшения характеристик датчика выхлопных газов и компенсация этого ухудшения на основании продувки паров топлива уменьшают вероятность неверной диагностики работы датчика, тем самым увеличивая достоверность способа диагностики датчика. Кроме того, корректировка диагностики работы датчика для продувки позволяет осуществлять диагностику датчика в более широком диапазоне рабочих условий двигателя. В результате этого сокращается количество периодов неисправной работы датчика, для которых ухудшение характеристик не было диагностировано. Более того, в случае определения ухудшения характеристик датчика выхлопных газов с помощью неинтрузивного подхода со сбором данных во время DFSO, мониторинг ухудшения характеристик датчика выхлопных газов может быть выполнен более простым способом.
В одном примере осуществления изобретения ухудшение характеристик датчика выхлопных газов может быть основано на длине линии и временной задержке по сравнению с набором образцов откликов датчика выхлопных газов, полученных во время DFSO. Временная задержка и длина линии датчика выхлопных газов может обеспечить помехоустойчивый сигнал, являющийся более точным, чем сигнал, используемый в известных подходах. При этом ухудшение характеристик датчика может быть определено более точно.
В другом примере осуществления изобретения регулировка работы двигателя при ухудшении характеристик датчика выхлопных газов может включать в себя регулировку количества впрыскиваемого топлива и/или регулировку моментов впрыска топлива в ответ на ухудшение характеристик датчика выхлопных газов. Таким образом, процесс сгорания может быть отрегулирован с учетом неисправной работы датчика для того, чтобы оптимизировать процесс сгорания и сократить количество выбросов.
Вышеуказанные и другие преимущества и характеристики изобретения станут очевидны из нижеприведенного подробного описания при рассмотрении по отдельности или в сочетании с прилагаемыми чертежами.
Следует понимать, что вышеприведенное краткое изложение сущности изобретения представлено для описания в упрощенной форме ряда выбранных концепций, дальнейшее изложение которых приводится ниже в подробном описании. Краткое раскрытие сущности изобретения не направлено на определение основных или существенных характеристик заявленного предмета изобретения, объем которого однозначно определяется формулой изобретения. Кроме того, заявленный предмет изобретения не ограничивается вариантами реализации изобретения, устраняющими какой-либо из недостатков, указанных выше или в любой части данного описания.
Краткое описание чертежей
Фиг.1 представляет собой схему примерной движительной системы транспортного средства, включающей в себя датчик выхлопных газов.
Фиг.2 представляет собой график, показывающий ухудшение характеристик датчика выхлопных газов по типу симметричного фильтра.
Фиг.3 представляет собой график, показывающий ухудшение характеристик датчика выхлопных газов по типу асимметричного фильтра при переходе от богатой смеси к бедной смеси.
Фиг.4 представляет собой график, показывающий ухудшение характеристик датчика выхлопных газов по типу асимметричного фильтра при переходе от бедной смеси к богатой смеси.
Фиг.5 представляет собой график, показывающий ухудшение характеристик датчика выхлопных газов по типу симметричной задержки.
Фиг.6 представляет собой график, показывающий ухудшение характеристик датчика выхлопных газов по типу асимметричной задержки при переходе от богатой смеси к бедной смеси.
Фиг.7 представляет собой график, показывающий ухудшение характеристик датчика выхлопных газов по типу асимметричной задержки перехода от бедной смеси к богатой смеси.
Фиг.8А представляет собой график, показывающий вход в режим DFSO, когда продувка фильтра для улавливания паров топлива не выполняется.
Фиг.8В представляет собой график, показывающий вход в режим DFSO, когда продувка фильтра для улавливания паров топлива выполняется.
Фиг.9 представляет собой блок-схему, поясняющую способ индикации работы датчика выхлопных газов.
Фиг.10 представляет собой блок-схему, поясняющую способ индикации ухудшении характеристик датчика выхлопных газов.
Осуществление изобретения
Нижеследующее описание относится к стратегии определения ухудшения характеристик датчика выхлопных газов. Более конкретно, системы и способы, описанные ниже, могут быть использованы для определения ухудшения характеристик датчика выхлопных газов во время прекращения подачи топлива при замедлении транспортного средства (DFSO), основанного на продувке паров топлива в двигателе. В частности, если было обнаружено, что при мониторинге работы датчика выхлопных газов происходит продувка паров топлива, в алгоритме диагностики может быть применен компенсирующий коэффициент для учета изменения соотношения воздух/топливо в смеси, вызванного продувкой. Таким образом, во время режима DFSO надежный алгоритм диагностики может быть применен необтрузивно (незаметно), а вероятность неверной диагностики работы датчика выхлопных газов, вызванная продувкой паров топлива, в значительной степени уменьшается.
На Фиг.1 изображен двигатель, содержащий датчик выхлопных газов. На Фиг.2-7 показана ожидаемая и деградировавшая лямбда для каждого из шести типов ухудшения характеристик датчика выхлопных газов, включая отклик на нарушение соотношения воздух/топливо. На Фиг.8А, 8В представлены примерные отклики датчика выхлопных газов во время режима DFSO. На Фиг.9, 10 представлены примерные процедуры, которые могут быть выполнены в двигателе для определения ухудшении характеристик датчика.
На Фиг.1 представлено схематическое изображение двигателя 10, который может быть частью ходовой системы транспортного средства 100, в котором может быть использован датчик 126 выхлопных газов (например, датчик соотношения воздух/топливо) для определения воздушно-топливного соотношения в выхлопных газах, производимых двигателем 10. Соотношение воздух/топливо (наряду с другими рабочими параметрами) может быть использовано для управления двигателем 10 с обратной связью в различных режимах работы. Двигателем 10 можно управлять, по меньшей мере частично, с помощью системы управления, содержащей контроллер 12, а также с помощью входных сигналов, направляемых водителем 132 транспортного средства с помощью устройства 130 ввода данных. В данном примере устройство 130 ввода данных представляет собой педаль газа и датчик 134 положения педали, которые генерируют пропорциональный сигнал положения педали PP. Камера 30 сгорания (например, цилиндре) двигателя 10 может иметь стенки 32 с расположенным в них поршнем 36. Поршень может быть соединен с коленчатым валом 40 для преобразования возвратно-поступательных движений поршня во вращательное движение коленчатого вала. Коленчатый вал 40 может быть соединен с по меньшей мере одним ведущим колесом транспортного средства с помощью системы. Кроме того, для запуска двигателя 10 к коленчатому валу 40 может быть с помощью маховика подключен пусковой мотор.
В камеру 30 сгорания воздух поступает из впускного коллектора 44 через впускной канал 42, а газообразные продукты сгорания выводятся через выхлопной канал 48. Впускной коллектор 44 и выхлопной канал 48 выборочно сообщаются с камерой 30 сгорания через соответствующие впускной клапан 52 и выпускной клапан 54. В некоторых вариантах камеры 30 сгорания могут иметь по два или более впускных клапана и/или два или более выпускных клапана. Дроссель 62, содержащий дроссельную заслонку 64, расположен во впускном канале 42. Дроссель выполнен таким образом, чтобы регулировать воздушный поток, поступающий в камеру 30 сгорания.
В данном примере впускной клапан 52 и выпускные клапаны 54 могут приводиться в действие системами 51 и 53 кулачкового привода. Системы 51 и 53 кулачкового привода, каждая, могут содержать один или более кулачков и могут использовать одну или несколько систем, выбранных из системы переключения профиля кулачка (CPS), изменяемой синхронизации кулачка (VCT), изменяемой фазы газораспределения (VVT) и/или изменяемого подъема клапана (VVL), которые могут управляться контроллером 12 для изменения работы клапана. Положение впускного клапана 52 и выпускного клапана 54 может быть определено позиционными датчиками 55 и 57 соответственно. В других вариантах осуществления изобретения управление впускным клапаном 52 и/или выпускным клапаном 54 может осуществляться электрическим клапанным приводом. Например, цилиндр 30 может иметь впускной клапан, управление которым осуществляется с помощью электрического клапанного привода, и выпускной клапан, управление которым осуществляется кулачковым приводом системы CPS и/или VCT.
Топливная форсунка 66 показана расположенной во впускном коллекторе 44 таким образом, чтобы обеспечивать так называемый впрыск топлива во впускной канал выше по потоку относительно камеры 30 сгорания. Топливная форсунка 66 может впрыскивать топливо пропорционально ширине импульса сигнала FPW, полученного от контроллера 12 через электронный привод 68. Топливная форсунка 66 получает топливо из топливной системы (не показана), которая включает в себя топливный бак, топливный насос и топливную рампу. В некоторых вариантах осуществления изобретения камера 30 сгорания может в качестве варианта либо дополнительно содержать топливную форсунку, соединенную непосредственно с камерой 30 сгорания для впрыска топлива непосредственно в камеру способом, известным как прямой впрыск.
Система 88 зажигания может подавать искру зажигания в камеру сгорания 30 через свечу 92 зажигания в соответствии с сигналом опережения зажигания SA от контроллера 12 в выбранных рабочих режимах. Несмотря на то, что показаны компоненты искрового зажигания, в некоторых вариантах осуществления изобретения камера сгорания 30 или одна или более камер сгорания двигателя 10 могут работать в режиме воспламенения от сжатия с искрой зажигания или без искры.
Датчик 126 выхлопных газов показан подключенным к выпускному каналу 48 выше по потоку устройства 70 снижения токсичности выхлопных газов. Датчиком 126 может быть любой подходящий датчик, пригодный для получения информации о топливно-воздушном коэффициенте выхлопных газов, например линейный датчик кислорода или UEGO (универсальный или широкодиапазонный датчик кислорода выхлопных газов), бистабильный датчик кислорода или EGO, датчик HEGO (подогреваемый EGO), датчик NOx, датчик углеводородов или датчик CO. В некоторых примерах осуществления изобретения датчик выхлопных газов 126 может быть первым из множества датчиков выхлопных газов, установленных в выхлопной системе. Например, дополнительные датчики выхлопных газов могут быть установлены ниже по потоку относительно устройства 70 уменьшения токсичности выхлопа.
Устройство 70 снижения токсичности выхлопных газов показано установленным вдоль выпускного канала 48 ниже по потоку датчика 126 выхлопных газов. Устройство 70 может представлять собой трехкомпонентный нейтрализатор (TWC), ловушку NOx, другое устройство снижения токсичности выхлопных газов или их комбинации. В некоторых примерах осуществления изобретения устройство 70 снижения токсичности выхлопных газов может быть первым из множества устройств снижения токсичности выхлопных газов, установленных в выхлопной системе. В некоторых вариантах осуществления изобретения во время работы двигателя 10 устройство 70 снижения токсичности выхлопных газов может периодически перезапускаться за счет работы по меньшей мере одного цилиндра двигателя при определенном воздушно-топливном коэффициенте.
Контроллер 12 показан на Фиг.1 как микрокомпьютер, содержащий микропроцессорный блок 102 (CPU), порты ввода/вывода 104 (I/O), электронный носитель данных для исполняемых программ и калибровочных значений, показанный как постоянное запоминающее устройство 106 (ROM), оперативное запоминающее устройство 108 (RAM), энергонезависимое запоминающее устройство 110 (KAM) и обычную шину данных. В дополнение к сигналам, рассмотренным ранее, контроллер 12 может получать различные сигналы от датчиков, подключенных к двигателю 10, включая: измерение массового расхода воздуха, поступающего в двигатель (MAF) от датчика 120, температуры охлаждающей жидкости двигателя (ECT) от датчика температуры 112, подключенного к рукаву охлаждения 114; профильный выходной сигнал зажигания (PIP) от датчика 118 на эффекте Холла (или другого типа), подключенного к коленчатому валу 40; измерение положения дроссельной заслонки (TP) от датчика положения дросселя; и сигнал об абсолютном давлении во впускном коллекторе двигателя (MAP) от датчика давления 122. Сигнал частоты вращения двигателя RPM может генерироваться контроллером 12 из сигнала PIP. Сигнал давления во впускном коллекторе (MAP) от датчика давления во впускном коллекторе может использоваться для получения показаний о разрежении или давлении во впускном коллекторе. Необходимо принять во внимание, что могут использоваться различные комбинации вышеуказанных датчиков, например MAF без MAP или наоборот. Во время стехиометрической работы датчик MAP может подавать сигналы о крутящем моменте двигателя. Кроме того, этот датчик вместе с фиксированной частотой вращения двигателя может предоставить информацию о величине заряда (включая воздушный заряд), всасываемого в цилиндр. В одном примере датчик 118, который также может быть использован как датчик частоты вращения двигателя, может выдавать заданное количество равноотстоящих импульсов на каждый оборот коленчатого вала.
Кроме того, по крайней мере некоторые из вышеописанных сигналов могут быть использованы для определения ухудшения характеристик датчика выхлопных газов, описанном более подробно далее. Например, величина, обратная частоте вращения двигателя, может быть применена для определения задержек, связанных с циклом впрыск - всасывание - сжатие - расширение - выпуск. В качестве еще одного примера величина, обратная скорости (или величина, обратная сигналу MAF) может быть применена для определения задержки, связанной с прохождением выхлопных газов от выпускного клапана 54 к датчику 126 выхлопных газов. Вышеописанные примеры, наряду с другими функциями сигналов от датчиков двигателя, могут быть использованы для определения временной задержки между изменением заданного воздушно-топливного коэффициента, происходящим во время режима DFSO, и скорости отклика датчика выхлопных газов.
В некоторых примерах осуществления изобретения определение ухудшения характеристик датчика выхлопных газов может быть выполнено в специализированном контроллере 140. Специализированный контроллер 140 может иметь процессинговые средства 142, представляющие собой ресурсы для обработки сигналов, связанных с выполнением, калибровкой и подтверждением определения ухудшения характеристик датчика 126 выхлопных газов. В частности, буфер для образцов (например, генерирующий приблизительно 100 образцов в секунду для каждого ряда, цилиндров), который применяют для регистрации скорости отклика датчика выхлопных газов, может быть слишком большим для обрабатывающих ресурсов блока управления трансмиссией (БУТ) автомобильного транспортного средства. Соответственно, специализированный контроллер 140 может быть функционально соединен с контроллером 12 для определения ухудшения характеристик датчика выхлопных газов. Следует отметить, что специализированный контроллер 140 может принимать сигналы о параметрах двигателя от контроллера 12 и посылать на контроллер 12 сигналы управления двигателем и данные об определении ухудшения характеристик через другие линии связи.
Необходимо отметить, что постоянное запоминающее устройство 106 и/или обрабатывающие ресурсы 142 могут быть запрограммированы под машиночитаемые данные, которые представляют собой команды для выполнения процессорным блоком 102 и/или специализированным контроллером 140 для реализации способов, описанных далее, а также других вариантов.
На Фиг.1 также представлена система 160 продувки паров топлива. Система продувки паров топлива содержит фильтр 162 для накопления паров топлива. Фильтр 162 (например, угольный фильтр) может сообщаться с топливным баком 164, наливной линией топливного бака и т.д. В некоторых примерах осуществления изобретения топливный бак 164 может быть частью системы 160 продувки паров топлива. Паропровод, обозначенный стрелкой 166, соединяет фильтр 162 с топливным баком 164. Таким образом, пары топлива могут проходить по паропроводу 166. Топливный бак 164 может быть наполнен соответствующим топливом, таким как бензин, дизельное топливо, биодизельное топливо, спирт (например, этанол, метанол) и т.д. Клапан 168 может быть соединен с паропроводом 166. Клапан 168 выполнен с возможностью регулировать количество пара, поступающего из топливного бака 164 в фильтр 162 для хранения паров топлива. Фильтр 162 для паров топлива может представлять собой угольный фильтр, содержащий активированный уголь для накапливания паров топлива.
Система продувки паров топлива также включает в себя трубопровод 170 для продувки паров топлива. Стрелка 170 обозначает общий поток паров топлива, проходящий по трубопроводу 170. Как показано, трубопровод 170 для продувки паров топлива имеет впускное отверстие 172, сообщающееся с фильтром 162, и выпускное отверстие 174, сообщающееся с впускным коллектором 44. Следует понимать, что могут быть предусмотрены и другие места расположения выпускного отверстия трубопровода, например, во впускном трубопроводе выше по потоку относительно впускного коллектора 44 и/или дросселя 62. Клапан 176 продувки паров топлива соединен с трубопроводом 170. Для регулировки количества паров топлива, проходящего по трубопроводу во впускную систему, предусмотрен продувочный клапан 176. Например, продувочный клапан 176 может быть в открытом положении, когда допускается выпуск паров из фильтра 162 во впускной коллектор 44, и в закрытом положении, когда выпуск паров топлива из фильтра 162 во впускной коллектор практически исключен. Контроллер 12 имеет электронный канал связи с продувочным клапаном 176, обозначенный сигнальной линией 178 и клапаном 168. Следовательно, контроллер 12 может быть выполнен с возможностью выполнения алгоритма действий по продувке паров топлива. Например, контроллер 12 может быть выполнен с возможностью открывать продувочный клапан 176 во время DFSO и, в частности, во время переходного периода DFSO, в котором двигатель входит в режим DFSO или выходит из него. Как описано в данном документе, DFSO может представлять собой режим работы двигателя автомобильного транспортного средства, в котором подача топлива в камеру 30 сгорания приостановлена и затем может быть возобновлена. Например, когда дроссель по существу закрыт, а скорость вращения двигателя превышает пороговое значение, может быть начат вход в режим DFSO. Аналогичным образом, когда в контроллер 12 поступает запрос на ускорение (например, дроссель открыт) и/или скорость вращения двигателя опускается ниже порогового значения, может быть начат выход из режима DFSO. Таким образом, расход топлива, потребляемого автомобильным транспортным средством, может быть уменьшен. Дополнительно или в качестве альтернативы режим DFSO может быть запущен на основании данных о температуре двигателя. Следует понимать, что могут быть предусмотрены и другие пусковые сигналы и способы для запуска режима DFSO.
Кроме того, топливный бак 164 сообщается с топливным насосом 180. Выходное отверстие топливного насоса 180 сообщается с топливной форсункой 66. Таким образом, топливо может быть подано на топливную форсунку. Топливный бак 164, топливный насос 180 и/или топливная форсунка 66 могут быть частью системы 182 впрыска топлива. Система 182 впрыска топлива может быть частью двигателя 10. Система впрыска топлива может быть выполнена с возможностью подавать топливо во впускной коллектор и/или непосредственно в камеру сгорания через заранее заданные промежутки времени.
Как было изложено выше, ухудшение характеристик датчика выхлопных газов может быть обнаружено на основании одного или, в некоторых примерах, всех шести отдельных типов изменений, определяемых задержками в скорости отклика датчика выхлопных газов при формировании им данных о воздушно-топливном соотношении во время переходов смеси от богатой к бедной и/или от бедной к богатой. На Фиг.2-7 представлены графики, каждый из которых изображает один из шести отдельных типов ухудшения характеристик датчика выхлопных газов. Графики представляют собой зависимость воздушно-топливного соотношения (лямбда) от времени (в секундах). На каждом графике пунктирная линия обозначает сигнал о заданной лямбде, который может быть направлен на элементы двигателя (например, топливные форсунки, клапаны цилиндров, дроссель, свечу зажигания и т.д.) для формирования воздушно-топливного соотношения, которое проходит цикл, включающий в себя один или несколько переходов смеси от бедной к богатой и один или несколько переходов смеси от богатой к бедной. На представленных иллюстрациях двигатель входит в режим DFSO и выходит из него. На каждом графике пунктирная линия обозначает ожидаемое время отклика лямбды для датчика выхлопных газов. На каждом графике сплошная линия обозначает сигнал деградировавшей лямбды, который будет подан неисправным датчиком выхлопных газов в ответ на сигнал заданной лямбды. На каждом графике линии с двойными стрелками обозначают область, где данный тип ухудшении характеристик датчика отличается от сигнала ожидаемой лямбды.
Фиг.2 представляет собой график, обозначающий первый тип ухудшения характеристик, который может выявить неисправный датчик выхлопных газов. Данный первый тип ухудшения характеристик является симметричным фильтром, который включает в себя медленный отклик датчика выхлопных газов на сигнал заданной лямбды для регулирования переходов смеси от богатой к бедной и от бедной к богатой. Другими словами, сигнал деградировавшей лямбды может начать переход от богатого к бедному и от бедного к богатому в ожидаемые моменты времени, но скорость отклика может быть ниже ожидаемой, что приведет к уменьшенной длительности пиков бедных и богатых состояний.
Фиг.3 представляет собой график, обозначающий второй тип ухудшения характеристик, который может выявить неисправный датчик выхлопных газов. Данный второй тип ухудшения характеристик является асимметричным фильтром перехода от богатой смеси к бедной смеси, который включает в себя медленный отклик датчика выхлопных газов на сигнал заданной лямбды для перехода от богатой топливовоздушной смеси к бедной. Такой тип ухудшения характеристик датчика может начать переход от богатого к бедному в ожидаемый момент времени, но скорость отклика может быть ниже ожидаемой, что может привести к уменьшенной длительности пика бедного состояния. Данный тип ухудшения характеристик датчика можно считать асимметричным, поскольку отклик датчика выхлопных газов медленный (или ниже ожидаемого) во время перехода от богатой смеси к бедной смеси.
Фиг.4 представляет собой график, обозначающий третий тип ухудшения характеристик, который может выявить неисправный датчик выхлопных газов. Данный третий тип ухудшении характеристик является асимметричным фильтром перехода от бедной смеси к богатой, который включает в себя медленный отклик датчика выхлопных газов на сигнал заданной лямбды для перехода от бедной смеси к богатой. Такой тип ухудшения характеристик датчика может начать переход от бедной смеси к богатой в ожидаемый момент времени, но скорость отклика может быть ниже ожидаемой, что может привести к уменьшенной длительности пика богатого состояния. Данный тип ухудшения характеристик датчика можно считать асимметричным, поскольку отклик датчика выхлопных газов медленный (или ниже ожидаемого) только во время перехода от бедной смеси к богатой.
Фиг.5 представляет собой график, обозначающий четвертый тип ухудшения характеристик, который может выявить неисправный датчик выхлопных газов. Данный четвертый тип ухудшения характеристик является симметричной задержкой, которая включает в себя задержку отклика на сигнал заданной лямбды для регулирования переходов смеси от богатой к бедной и от бедной к богатой. Другими словами, сигнал деградировавшей лямбды может начать переход от богатого к бедному и от бедного к богатому в моменты времени, которые наступают позднее ожидаемых моментов времени, но соответствующий переход может происходить с ожидаемой скоростью отклика, что приводит к смещению длительностей пиков бедных и богатых состояний.
Фиг.6 представляет собой график, обозначающий пятый тип ухудшения характеристик, который может выявить неисправный датчик выхлопных газов. Данный пятый тип ухудшения характеристик является асимметричной задержкой перехода от богатой смеси к бедной смеси, которая включает в себя задержку отклика на сигнал заданной лямбды для перехода от богатой топливовоздушной смеси к бедной. Другими словами, сигнал деградировавшей лямбды может начать переход от богатой смеси к бедной смеси в момент времени, который происходит позднее ожидаемого момента времени, но переход может происходить с ожидаемой скоростью отклика, что приводит к смещению и/или уменьшению длительностей пиков бедной смеси. Данный тип ухудшения характеристик датчика можно считать асимметричным, поскольку отклик датчика выхлопных газов происходит с задержкой только относительно ожидаемого времени начала отклика во время перехода от богатой смеси к бедной.
Фиг.7 представляет собой график, обозначающий шестой тип ухудшения характеристик, который может выявить неисправный датчик выхлопных газов. Данный шестой тип ухудшения характеристик является асимметричной задержкой перехода от бедной смеси к богатой, которая включает в себя задержку отклика на сигнал заданной лямбды для перехода от бедной смеси к богатой. Другими словами, сигнал деградировавшей лямбды может начать переход от бедной смеси к богатой в момент времени, который наступает позднее ожидаемого момента времени, но переход может происходить с ожидаемой скоростью отклика, что приводит к смещению и/или уменьшению длительностей пиков богатого состояния. Данный тип ухудшения характеристик датчика можно считать асимметричным, поскольку отклик датчика выхлопных газов происходит с задержкой только относительно ожидаемого времени начала отклика во время перехода от бедной смеси к богатой.
Следует понимать, что неисправный датчик выхлопных газов может быть выявлен по сочетанию двух или нескольких описанных выше типов ухудшения характеристик. Например, датчик выхлопных газов может обнаружить ухудшение характеристик по асимметричному типу при переходе от богатой смеси к бедной (т.е. Фиг.3), а также ухудшение характеристик по асимметричному типу с задержкой при переходе от богатой смеси к бедной (т.е. Фиг.6).
На Фиг.8А и 8В представлены графики, изображающие примерные отклики датчика выхлопных газов на команду на вход в режим DFSO. Следует понимать, что каждый график может представлять собой набор образцов отклика датчика выхлопных газов, полученных во время перехода в режим DFSO. Отклики датчика выхлопных газов, показанные на Фиг.8А и 8В, могут быть откликами от датчика выхлопных газов 126, показанного на Фиг.1 либо другого соответствующего датчика выхлопных газов. Отклик датчика выхлопных газов может включать в себя значения лямбды, как показано, а также воздушно-топливного соотношения. В частности, образцы могут включать в себя значения лямбды, полученные во время отклика датчика выхлопных газов на команду на вход в режим DFSO или команду на выход из режима DFSO. Например, набор образцов может включать в себя все значения лямбды, полученные во время отклика на команду на вход в режим DFSO, к примеру набор образцов может включать в себя значение лямбды, получаемое каждые 10 мс, 100 мс и т.д.
На Фиг.8А приведен график 210, обозначающий вход в режим DFSO без продувки паров топлива, а на Фиг.8В приведен график 220, обозначающий вход в режим DFSO во время продувки паров топлива.
На Фиг.8А заданная лямбда обозначена позицией 220, а измеренная лямбда обозначена позицией 222. Измеренная лямбда может представлять собой значение лямбды, определенное контроллером, который получает выходной сигнал с датчика выхлопных газов либо может представлять собой необработанный выходной сигнал от датчика выхлопных газов.
Стрелка 202 обозначает временную задержку, которая представляет собой период времени от поступления команды на изменение лямбды до момента времени (τ0), когда наблюдается пороговое изменение измеренной лямбды. Пороговое изменение лямбды может представлять собой небольшой изменение, которое обозначает, что отклик на заданное изменение начался, например, 5%, 10%, 20% и т.д. Стрелка 204 обозначает константу времени для отклика. Константа времени для отклика в системе первого порядка может представлять собой период времени от τ0 до момента достижения 63% от стабильного состояния отклика, однако могут быть предусмотрены и другие значения константы времени. Стрелка 206 обозначает длину линии. Длиной линии может быть период времени от τ0 до момента достижения 95% от требуемого отклика, другими словами, до порогового времени отклика (τ95). В системе первого порядка пороговое время отклика (τ95) приблизительно равно трем константам (3* τ63) времени, но могут быть предусмотрены и другие определения для длины линии. Как правило, длина линии может быть измерена на основании изменения лямбды в динамике по длительности отклика, начиная от τ0. Длина линии может представлять собой длительность сигнала датчика и может быть применена для того, чтобы определить, присутствует ли ухудшение характеристик отклика датчика выхлопных газов (например, неисправен ли датчик выхлопных газов). Длина линии может быть найдена с помощью уравнения
Следовательно, благодаря вышеуказанным параметрам, можно получить различные данные, относящиеся к отклику датчика выхлопных газов. Во-первых, временную задержку, обозначенную стрелкой 202, можно сравнить с ожидаемой временной задержкой для того, чтобы определить, имеет ли место ухудшение характеристик датчика по типу задержки. Ожидаемая временная задержка может быть заранее заданной величиной. Во-вторых, константа времени, обозначенная стрелкой 204, может быть использована для прогнозирования длины линии (например, τ95). Спрогнозированную длину линии (например, τ95) можно сравнить с измеренной длиной линии для того, чтобы обнаружить неисправность датчика. Временная задержка может представлять собой период времени от команды на вход в режим DFSO или команды на выход из режима DFSO до порогового изменения лямбды. Кроме того, длина линии может быть определена на основании изменения лямбды в динамике в зависимости от времени, в наборе образцов отклика датчика выхлопных газов.
На Фиг.8В приведен график, изображающий примерный отклик датчика выхлопных газов на команду на вход в режим DFSO при продувке паров топлива в двигателе. Заданная лямбда обозначена позицией 220’, а измеренная лямбда обозначена позицией 222’. Линия 224 представляет собой значение лямбды продувки паров топлива.
Как показано, измеренная лямбда 222’ достигает двух плато после первоначального подъема в ответ на поданный сигнал. Таким образом, измеренная лямбда 222’ остается равной первому значению лямбды, либо в пределах первого диапазона значений лямбды в течение первого периода времени и остается равной второму значению лямбды либо в пределах второго диапазона значений лямбды в течение второго периода времени. Второе значение лямбды или диапазон значений лямбды превышают первое значения лямбды или диапазон значений лямбды. И наоборот, измеренное значение 222 лямбды, показанное на Фиг.8А, может иметь только одно плато. Иными словами, после первоначального подъема в ответ на поданный сигнал измеренное значение 222 лямбды, показанное на Фиг.8А, останется в переделах единственного диапазона лямбды или равным единственному значению лямбды. Следует понимать, что продувка может помешать определению длины линии, обозначающей длительност