Электролит для анодного окисления полупроводниковых соединений на основе aiiibv
Изобретение относится к области микроэлектроники и может найти применение при формировании оксидных слоев в технологии МДП-приборов. Электролит для анодного окисления полупроводниковых соединений на основе AIIIBV включает ортофосфорную кислоту и глицерин. Дополнительно электролит содержит уксусную кислоту при следующем соотношении компонентов, мас.%:
Электролит позволяет проводить анодное окисление поверхности полупроводников AIIIBV с сохранением целостности защитной маски из фоторезиста.
Реферат
Настоящее изобретение относится к области микроэлектроники и может найти широкое применение при формировании оксидных слоев в технологии МДП-приборов.
Известно, что тонкие пленки оксида можно изготавливать на поверхности полупроводниковой подложки различными методами, например термообработкой подложки в воздушной атмосфере (термоотжиг), методом магнетронного распыления, анодным оксидированием в растворе электролита, анодным микродуговым оксидированием, методом автоволнового окисления. Принимая во внимание тот факт, что полупроводники не являются термостойкими соединениями и повышение температуры при обработке полупроводниковых кристаллов приводит к нежелательным последствиям, предпочтительным является метод анодного окисления в электролите при комнатной температуре.
При изготовлении МДП-структур возникает необходимость применять фотолитографию для ограничения области, на которой формируют слой анодного оксида и слой металла. Поскольку фоторезист присутствует в качестве маски на поверхности полупроводниковой пластины во время проведения анодного оксидирования необходим электролит, в котором фоторезист не разрушается.
Известен электролит для анодного окисления кремния (см. SU 602054, МПК H01L 21/306, опубликован 10.04.2001), содержащий этиленгликоль, ортофосфорную кислоту и ортомышьяковую кислоту при следующем соотношении компонентов, об.%:
Ортофосфорная кислота (уд. вес 1,68 г/см3) | 5-15 |
Ортомышьяковая кислота (уд. вес 2,26 г/см3) | 0,01-0,1 |
Этиленгликоль | Остальное |
Недостатком известного электролита является присутствие в нем этиленгликоля, являющегося растворителем органических веществ, в том числе фоторезиста. Кроме того, этиленгликоль является токсичным веществом, относящимся по степени воздействия на организм к веществам 3-го класса опасности.
Известен электролит для анодного окисления антимонида индия (см. SU 1840205, МПК H01L 21/306, опубликован 20.08.2006), содержащий аммоний надсернокислый, глицерин, углерод четыреххлористый, диметилформамид и воду при следующем соотношении компонентов, мас.%:
Глицерин | 55,0-70,0 |
Углерод четыреххлористый | 5,0-15,0 |
Аммоний надсернокислый | 0,3-3,0 |
Вода | 0,1-1,0 |
Диметилформамид | Остальное |
В качестве электропроводящей составляющей известный электролит содержит аммоний надсернокислый. Являясь сильным окислителем, аммоний надсернокислый в присутствии воды разлагается с выделением кислорода и озона, что приводит к появлению пузырьков газа в электролите, негативно влияющих на качество поверхности анодной оксидной пленки, а именно повышает ее пористость. Растворителем в известном электролите служат четыреххлористый углерод и диметилформамид. Основным недостатком известного электролита является нестойкость защитной маски из фоторезиста к этим растворителям.
Известен электролит для анодного окисления полупроводников типа AIIIBV (см. SU 1840202, МПК H01L 21/306, опубликован 20.08.2006), содержащий пирофосфорную кислоту, четыреххлористый углерод и органический растворитель при следующем соотношении компонентов, мас.%:
Пирофосфорная кислота | 0,3-3,0 |
Четыреххлористый углерод | 5-15 |
Органический растворитель | Остальное |
Известный электролит обеспечивает улучшенные параметры границы раздела полупроводник - анодный окисел, но не может быть использован при фотолитографии из-за растворения четыреххлористым углеродом и органическим растворителем маски из фоторезиста.
Известен электролит для анодного окисления полупроводниковых соединений AIIIBV (см. SU 1840187, МПК H01L 21/00, опубликован 10.08.2006), содержащий диметилформамид, персульфат аммония, глицерин и галогеносодержащую соль аммония при следующем соотношении компонентов, мас.%:
Диметилформамид | 50-80 |
Персульфат аммония | 0,3-0,5 |
Галогеносодержащая соль аммония | 0,0001-0,1 |
Глицерин | Остальное |
Основным недостатком известного электролита является нестойкость защитной маски из фоторезиста к этому растворителю.
Известен электролит для анодного окисления полупроводниковых соединений на основе AIIIBV (см. RU 553699, МПК H01L 21/316, опубликовано 05.04.1977), совпадающий с настоящим решением по наибольшему числу существенных признаков и принятый за прототип. Электролит-прототип включает ортофосфорную кислоту, изопропиловый спирт и глицерин при следующем соотношении компонентов, мас.%:
Ортофосфорная кислота | 1,0-10,0 |
Изопропиловый спирт | 30-70 |
Глицерин | Остальное |
В электролите-прототипе ортофосфорная кислота служит в качестве электропроводящей добавки и обеспечивает увеличение скорости анодирования и улучшение диэлектрических свойств покрытия. Основным недостатком известного электролита-прототипа является нестойкость защитной маски из фоторезиста к изопропиловому спирту.
Задачей изобретения является разработка электролита для анодного окисления полупроводниковых соединений на основе AIIIBV, позволяющего проводить анодное окисление поверхности полупроводников AIIIBV с сохранением целостности защитной маски из фоторезиста.
Поставленная задача достигается тем, что электролит для анодного окисления полупроводниковых соединений на основе AIIIBV, включающий ортофосфорную кислоту и глицерин, дополнительно содержит уксусную кислоту при следующем соотношении компонентов, мас.%:
Ортофосфорная кислота | 1-20 |
Уксусная кислота | 46-57 |
Глицерин | Остальное |
При содержании ортофосфорной кислоты более 20,0 мас.% скорость анодного окисления чрезмерно увеличивается, что приводит к менее ровной поверхности оксидного слоя. При содержании ортофосфорной кислоты менее 1 мас.% скорость анодного окисления значительно замедляется, что приводит к увеличению продолжительности и снижению технологичности процесса анодирования. При содержании уксусной кислоты более 57 мас.% вязкость электролита понижается, что препятствует достижению более ровной поверхности оксидного слоя на аноде. При содержании уксусной кислоты менее 46,0 мас.% морфология поверхности ухудшается из-за возрастающего влияния ортофосфорной кислоты. К тому же понижается электропроводность электролита, процесс растворения анодной пленки доминирует над процессом окисления поверхности полупроводника.
Электролит приготавливают путем смешивания компонентов: ортофосфорной кислоты, уксусной кислоты и глицерина в указанном выше соотношении. Смесь приготавливают при комнатной температуре, используют как свежеприготовленную, так и после выстаивания в течение 6 часов.
Пример 1. Анодное окисление проводили на полупроводниковом соединении InP, на поверхность которого была нанесена маска из позитивного фоторезиста AZ 4533 толщиной 2,0 мкм.
Электролит имел следующий состав, мас.%:
Ортофосфорная кислота | 0,8 |
Уксусная кислота | 57,0 |
Глицерин | Остальное |
Расстояние между образцом площадью S=2 см2 и катодом, изготовленным из платиновой проволоки, составляло 2 см. Анодирование проводилось при комнатной температуре 23°C без перемешивания электролита и дополнительного освещения, в потенциометрическом режиме (при постоянном напряжении) 50 В в течение 3 минут. Величина плотности тока в начале процесса анодирования составляла 20 мА/см2, в конце процесса анодирования плотность тока понижалась до 0,2 мА/см2. Толщину анодной пленки регулировали напряжением, создаваемым между анодом и катодом, которое задавалось на внешнем источнике питания постоянного тока Б5-50. Результат анодирования: оксидный слой на поверхности полупроводниковой пластины сформировался равномерным по толщине в виде беспористой пленки, фоторезист не поврежден.
Пример 2. Проводили анодное окисление, как в примере 1, за исключением того, что полупроводниковым соединением была пластина GaSb, на поверхность которого была нанесена маска толщиной 1,5 мкм из позитивного фоторезиста Shipley 1813-SP15, а электролит имел следующий состав, мас.%:
Ортофосфорная кислота | 20,0 |
Уксусная кислота | 46,0 |
Глицерин | Остальное |
Результат анодирования: оксидный слой на поверхности полупроводниковой пластины сформировался равномерным по толщине в виде беспористой пленки, фоторезист не поврежден.
Пример 3. Проводили анодное окисление, как в примере 1, за исключением того, что полупроводниковым соединением была структура InAsSbP, на поверхность которого была нанесена маска толщиной 3 мкм из позитивного фоторезиста AZ 4533, а электролит имел следующий состав, мас.%:
Ортофосфорная кислота | 7,5 |
Уксусная кислота | 53,0 |
Глицерин | Остальное |
Результат анодирования: оксидный слой на поверхности полупроводниковой пластины сформировался равномерным по толщине в виде беспористой пленки, фоторезист не поврежден.
Настоящий электролит позволяет совмещать в одном процессе два метода - фотолитографию с использованием позитивных фоторезистов, стойких в кислой среде, и анодное окисление поверхности полупроводника через маску из фоторезиста.
Диэлектрические свойства полученных анодных оксидов позволяют использовать их в приборах и устройствах, изготовленных на основе полупроводников AIIIBV и их соединений, работающих в ИК диапазоне (для пассивации поверхности мез свето- и фотодиодов, для создания МДП структур с применением в газочувствительных сенсорах).
Электролит для анодного окисления полупроводниковых соединений на основе AIIIBV, включающий ортофосфорную кислоту и глицерин, отличающийся тем, что дополнительно содержит уксусную кислоту при следующем соотношении компонентов, мас.%:
Ортофосфорная кислота | 1-20 |
Уксусная кислота | 46-57 |
Глицерин | Остальное |