Жидкая композиция для чистки и/или глубокой очистки

Иллюстрации

Показать все

Изобретение относится к жидким композициям для чистки и/или глубокой очистки различных поверхностей. Описана жидкая композиция для чистки и/или глубокой очистки, содержащая несферические и/или неперекатывающиеся (острые) абразивные чистящие частицы на основе пены, полученные путем измельчения пеноструктуры, при этом указанные абразивные чистящие частицы на основе пены получают способом, включающим стадии, на которых: (i) получают гомогенный раствор, содержащий, по меньшей мере, один термопластичный материал, имеющий плотность сырья более чем 1,15; (ii) вспенивают указанный гомогенный раствор путем экструзионного вспенивания через экструзионную головку с отверстием такого размера, что коэффициент расширения пены составляет от 8 до 14; (iii) фрагментируют указанную пену с получением абразивных чистящих частиц на основе пены. Технический результат – обеспечение эффективной очистки и профиля безопасности поверхности. 3 н. и 15 з.п. ф-лы, 4 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к жидким композициям для чистки и/или глубокой очистки различных неодушевленных и одушевленных поверхностей, в том числе твердых поверхностей внутри и вокруг дома, поверхностей посуды, твердых зубных и мягких поверхностей тканей полости рта, таких как поверхности зубов, десен, языка и щек, кожи человека и животных, поверхностей автомобиля и транспортных средств и т.д. Более конкретно, настоящее изобретение относится к жидким чистящим композициям, содержащим частицы, приемлемые для чистки и/или глубокой очистки.

Уровень техники

Чистящие композиции, такие как композиции в виде частиц или жидкие композиции (включая гель, пасту), содержащие абразивные компоненты, хорошо известны в данной области техники. Такие композиции используют для чистки и/или глубокой очистки различных поверхностей, в особенности тех поверхностей, которые, как правило, загрязняются сложными для удаления пятнами и загрязнениями.

Среди известных на данный момент чистящих композиций, самые популярные из них основаны на абразивных частицах с различными формами - от сферической до неправильной формы. Наиболее распространенные абразивные частицы являются либо неорганическими, такими, как карбонатная соль, глина, кремнезем, силикат, сланцевая зола, перлит и кварцевый песок, либо органическими полимерными бусинами, такими как полипропилен, ПВХ, меламин, мочевина, полиакрилат и производные, полиуретан, и поступают в виде жидкой композиции с кремообразной консистенцией с абразивными частицами, суспендироваными в ней.

Тем не менее, все еще остается необходимость в дальнейшем усовершенствовании композиций, содержащих абразивы.

Таким образом, целью настоящего изобретения является создание жидкой композиции для чистки и/или глубокой очистки, приемлемой для чистки/глубокой очистки различных поверхностей, в том числе неодушевленных и одушевленных поверхностей, таких как твердые поверхности внутри и вокруг дома, поверхности посуды, твердые и мягкие поверхности тканей полости рта, такие как поверхности зубов, десен, языка и щек, кожа человека и животных и т.д., при этом композиция обеспечивает превосходную производительность чистки/глубокой очистки и профиль безопасности поверхности.

Было установлено, что вышеуказанная цель может быть удовлетворена с помощью композиции в соответствии с настоящим изобретением.

Преимуществом композиций в соответствии с настоящим изобретением является то, что они могут быть использованы для чистки/глубокой очистки неодушевленных и одушевленных поверхностей, изготовленных из различных материалов, таких как глазурованная и неглазурованная керамическая плитка, эмаль, нержавеющая сталь, Inox®, Formica®, винил, не восковой винил, линолеум, меламин, стекло, пластики, окрашенные поверхности, кожа человека и животных, волосы, поверхности твердых и мягких тканей полости рта, такие как поверхности зубной эмали, десен, языка и щек, и т.п.

Дополнительным преимуществом настоящего изобретения является то, что в композициях в данной заявке, частицы могут быть составлены в композицию на очень низких уровнях, предоставляя в тоже время вышеуказанные преимущества.

Сущность изобретения

Настоящее изобретение направлено на жидкую композицию для чистки и/или глубокой очистки, содержащую абразивные чистящие частицы на основе пены, полученные путем измельчения пеноструктуры, при этом указанные абразивные чистящие частицы на основе пены содержат термопластичный материал, имеющий плотность сырья более чем 1, 15, и пену, имеющую коэффициент расширения от 8 до 12.

Настоящее изобретение дополнительно охватывает способ чистки и/или глубокой очистки поверхности жидкой композицией для чистки и/или глубокой очистки, содержащей абразивные чистящие частицы, при этом указанную поверхность вводят в контакт с указанной композицией, предпочтительно, при этом указанную композицию наносят на указанную поверхность.

Настоящее изобретение дополнительно охватывает способ получения абразивных чистящих частиц для жидких композиций, содержащих абразивы.

Краткое описание чертежей

Фиг. 1 представляет собой чертеж, демонстрирующий иллюстрацию того, как рассчитывать радиус закругления.

Фиг. 2 представляет собой чертеж, демонстрирующий иллюстрацию того, как рассчитывать аспектовое соотношение каркаса пены.

Фиг. 3 представляет собой схематическое изображение, демонстрирующее экструзионное вспенивание с помощью отверстия экструзионной головки, имеющего круглое поперечное сечение.

Фиг. 4 представляет собой схематическое изображение, демонстрирующее экструзионное вспенивание с помощью отверстия экструзионной головки, имеющего прямоугольное поперечное сечение.

Подробное описание изобретения

Жидкая композиция для чистки и/или глубокой очистки

Композиции в соответствии с настоящим изобретением разработаны как средства для чистки/глубокой очистки для различных неодушевленных и одушевленных поверхностей. Предпочтительно, композиции в данной заявке приемлемы для чистки/глубокой очистки поверхностей, выбранных из группы, состоящей из неодушевленных поверхностей и одушевленных поверхностей.

В предпочтительном варианте осуществления, композиции в данной заявке приемлемы для чистки/глубокой очистки неодушевленных поверхностей, выбранных из группы, состоящей из бытовых твердых поверхностей; поверхностей посуды; таких поверхностей, как кожа или синтетическая кожа, а также поверхностей автотранспортных средств.

В высоко предпочтительном варианте осуществления, композиции в данной заявке приемлемы для очистки бытовых твердых поверхностей.

Под «бытовой твердой поверхностью» в данной заявке подразумевают любой тип поверхности, который, как правило, можно найти внутри и вокруг дома, например, кухни, ванные комнаты, например, полы, стены, плитка, окна, шкафы, раковины, душевые кабины, душевые пластиковые шторы, умывальники, туалеты, оборудование и приспособления и т.п. изготовленные из различных материалов, таких, как керамика, винил, не восковой винил, линолеум, меламин, стекло, Inox®, Formica®, любые пластики, пластифицированная древесина, металл или любая окрашенная или лакированная или герметизированная поверхность и т.д. Бытовые твердые поверхности также включают бытовую технику, включая, но не ограничиваясь приведенным, холодильники, морозильники, стиральные машины, автоматические сушилки, печи, микроволновые печи, посудомоечные машины и т.д. Такие твердые поверхности можно найти как в частных домах, так и в коммерческих, организационных и промышленных условиях.

Под «поверхностями посуды» подразумевают в данной заявке любые типы поверхностей, которые найдены при очистке посуды, такой как блюда, столовые приборы, разделочные доски, кастрюли, и т.п. Такие поверхности посуды можно найти как в частных домах, так и в коммерческих, организационных и промышленных условиях.

Под «абразивными частицами на основе пены» подразумевают в данной заявке, что абразивные частицы получают путем фрагментации пеноструктуры в несферические и/или неперекатывающиеся частицы.

В другом предпочтительном варианте осуществления, композиции в данной заявке приемлемы для чистки/глубокой очистки одушевленных поверхностей, выбранных из группы, состоящей из кожи человека; кожи животных; волос человека, шерсти животных, а также зубов.

Композиции в соответствии с настоящим изобретением представляют собой жидкие композиции, в отличие от твердых или газообразных. Жидкие композиции включают композиции с вязкостью как у воды, а также загущенные композиции, такие, как гели и пасты.

В предпочтительном варианте осуществления в данной заявке, жидкие композиции в данной заявке являются водными композициями. Таким образом, они могут содержать от 65% до 99,5% по массе всей композиции воды, предпочтительно от 75% до 98% и более предпочтительно от 80% до 95%.

В другом предпочтительном варианте осуществления в данной заявке, жидкие композиции в данной заявке в основном представляют собой неводные композиции, хотя они могут содержать от 0% до 10% по массе всей композиции воды, предпочтительно от 0% до 5%, более предпочтительно от 0% до 1% и наиболее предпочтительно 0% по массе всей композиции воды.

В предпочтительном варианте осуществления в данной заявке, композиции в данной заявке представляют собой нейтральные композиции, и, таким образом, рН, как измеряется при температуре 25°С, составляет 6-8, более предпочтительно 6,5-7,5, еще более предпочтительно 7.

В другом предпочтительном варианте осуществления, композиции имеют рН предпочтительно выше рН 4 и альтернативно имеют рН предпочтительно ниже рН 9.

Соответственно, композиции в данной заявке могут содержать приемлемые основания и кислоты для регулирования рН.

Приемлемое основание для использования в данной заявке представляет собой органическое и/или неорганическое основание. Приемлемые основания для использования в данной заявке представляют собой едкие щелочи, такие как гидроксид натрия, гидроксид калия и/или гидроксид лития и/или оксиды щелочных металлов, такие, как оксид натрия и/или калия или их смеси. Предпочтительное основание представляет собой едкую щелочь, более предпочтительно гидроксид натрия и/или гидроксид калия.

Другие приемлемые основания включают аммиак, карбонат аммония, все доступные карбонатные соли, такие как К2СО3, Nа2СО3, СаСО3, MgCO3, и т.д., алканоламины (как, например моноэтаноламин), мочевину и производные мочевины, полиамин и т.д.

Типичные количества таких оснований, если они присутствуют, составляют от 0,01% до 5,0% по массе всей композиции, предпочтительно от 0,05% до 3,0% и более предпочтительно от 0,1% до 0,6%.

Композиции в данной заявке могут содержать кислоту, чтобы регулировать их рН до необходимого уровня, несмотря на наличие кислоты, если таковая имеется, композиции в данной заявке будут поддерживать их предпочтительно нейтральные рН, как описано в данной заявке выше. Приемлемая кислота для использования в данной заявке является органической и/или неорганической кислотой. Предпочтительная органическая кислота для использования в данной заявке имеет рКа менее чем 6. Приемлемую органическую кислоту выбирают из группы, состоящей из лимонной кислоты, молочной кислоты, гликолевой кислоты, янтарной кислоты, глутаровой кислоты и адипиновой кислоты и их смеси. Смесь указанных кислот может быть коммерчески доступна от BASF под торговой маркой Sokalan® DCS. Приемлемую неорганическую кислоту выбирают из группы, состоящей из соляной кислоты, серной кислоты, фосфорной кислоты и их смеси.

Типичное количество такой кислоты, если она присутствует, составляет от 0,01% до 5,0% по массе всей композиции, предпочтительно от 0,04% до 3,0% и более предпочтительно от 0,05% до 1,5%.

В предпочтительном варианте осуществления в соответствии с настоящим изобретением, композиции в данной заявке представляют собой загущенные композиции. Предпочтительно, жидкие композиции в данной заявке имеют вязкость до 7500 сантипуаз при 20 с-1, более предпочтительно от 5000 сантипуаз до 50 сантипуаз, еще более предпочтительно от 2000 сантипуаз до 50 сантипуаз и наиболее предпочтительно от 1500 сантипуаз до 300 сантипуаз при 20 с-1 и 20°С при измерении реометром, модель AR 1000 (поставляется ТА Instruments) с 4 см коническим шпинделем из нержавеющей стали, 2° угол (линейное увеличение от 0,1 до 100 с-1 за макс. 8 минут).

В другом предпочтительном варианте осуществления в соответствии с настоящим изобретением, композиции в данной заявке имеют вязкость, как у воды. Под «вязкость, как у воды» подразумевают в данной заявке вязкость, которая близка к вязкости воды. Предпочтительно жидкие композиции в данной заявке имеют вязкость до 50 сантипуаз при 60 оборотах в минуту, более предпочтительно от 0 сантипуаз до 30 сантипуаз, еще более предпочтительно от 0 сантипуаз до 20 сантипуаз и наиболее предпочтительно от 0 сантипуаз до 10 сантипуаз при 60 оборотах в минуту и 20°С при измерении Brookfield цифровым вискозиметром модели DV II, со шпинделем 2.

Абразивные чистящие частицы

Жидкая композиция для чистки и/или глубокой очистки в данной заявке содержит абразивные чистящие частицы, которые выбраны или синтезированы, чтобы показать очень эффективные формы, например, определенные дескрипторами макроформы и мезоформы, в то время как эффективную форму частиц получают путем превращения вспененного материала в частицы.

Заявитель обнаружил, что несферические и/или неперекатывающиеся (острые) абразивные чистящие частицы обеспечивают хорошее удаление загрязнений и малое повреждение поверхности. Заявитель обнаружил, что очень специфические формы частиц могут быть получены из пеноструктур и, в связи с этим, форма полученных в результате частиц способствует эффективному скольжению абразивных частиц по сравнению с более типичными абразивными частицами, например, полученными из невспененного материала, что скорее способствует движению перекатывания и менее эффективно при перемещении загрязнений с поверхности. Поэтому целью настоящего изобретения является синтез и тщательный выбор абразива в соответствии с его формой и, в особенности, целью настоящего изобретения является описание пеноструктуры и способа превращения пены в эффективные частицы.

Заявитель обнаружил, что неперекатывающиеся и острые абразивные чистящие частицы обеспечивают хорошее удаление загрязнений и малое повреждение поверхности. Действительно, заявитель обнаружил, что очень специфические формы частиц, например, определяемые кругообразностью, способствуют эффективному скольжению абразивных частиц по сравнению с типичными абразивными частицами, что скорее способствует движению перекатывания и менее эффективно при перемещении загрязнений с поверхности.

Дополнительно, абразивные частицы имеют предпочтительно множество острых краев, которые являются типичными признаками частиц, полученных из пеноструктур, определенных в настоящем изобретении. Острые края несферических частиц определяются краями, имеющими радиус закругления менее 20 мкм, предпочтительно менее 8 мкм, наиболее предпочтительно от 5 мкм до 0,5 мкм. Радиус закругления определяется диаметром воображаемой окружности, соответствующей кривизне конечного края. Заявитель обнаружил, что частицы, полученные из измельченной пены, имеют частицы, как правило, с острыми краями, которые являются результатом процесса вспенивания. Вспенивающие вещества, газ или летучий растворитель, необязательно с/без добавления агентов поверхностного натяжения или полимерных агентов, помогают в процессе вспенивания заострить края (или каркасы) вспененного материала вследствие кривизны расширяющегося пузыря.

На фиг. 1 приведена иллюстрация радиуса закругления.

Абразивные частицы состоят из того же вспененного материала, из которого они получены. Кстати, абразивный материал может быть получен из термопластичного материала, имеющего плотность сырья более чем 1,15, предпочтительно более чем 1,20, более предпочтительно более чем 1,22, еще более предпочтительно более чем 1,24, и коэффициент расширения пены от 8 до 14, предпочтительно от 9 до 12, более предпочтительно от 9,5 до 11, как измерено в соответствии со способом, описанным в данной заявке. Было неожиданно обнаружено, что частицы, полученные из такой пены, особенно когда термопластичный материал является биоразлагаемым термопластичным материалом, как описано ниже, соответствуют требуемым свойствам механической прочности для обеспечения превосходной очистки. Меньший диапазон расширения пены, например: как правило, ниже 8, как правило, после измельчения пены приведет к неэффективным перекатывающимся частицам, по своей сути с низким структурированием ячеек, малым характером открытых ячеек полученной пены. Напротив, чрезмерное расширение пены, например: как правило, выше 14, приводит к созданию высокой пеноструктуры, возможно, с некоторой степенью открытых ячеек, но с чрезмерным растяжением и истончением вершины и мембраны пены. Частицы, которые получены из чрезмерно расширенной пены, механически слишком хрупкие, чтобы функционировать столь же эффективно абразивно и на практике, сгибаются или разрушаются при контакте с загрязнением во время процесса очистки. Это также имеет место при использовании термопластичного материала с чрезмерно низкой плотностью материала, например 1,15, что значительно воздействует на механические характеристики.

Предпочтительно термопластичный материал содержит, предпочтительно состоит из, биоразлагаемого термопластичного материала, выбранного из группы, состоящей из биоразлагаемых сложных полиэфиров, предпочтительно выбранных из группы, состоящей из полигидроксиалканоатов, предпочтительно выбранных из полигидроксибутирата, полигидроксибутират-со-валерата, полигидроксибутират-со-гексаноата, полигидроксибутират-со-октаноата, а также их смесей, поли(молочной кислоты), поли(гликолевой кислоты), поликапролактона, полиамидоэфира, алифатических сложных сополиэфиров, ароматических сложных сополиэфиров, и их смесей; термопластичного крахмала; сложных эфиров целлюлозы, особенно ацетата целлюлозы и/или нитроцеллюлозы и их производных; и их смесей; предпочтительно смеси биоразлагаемого сложного полиэфира и термопластичного крахмала.

В высоко предпочтительном варианте осуществления, термопластичный материал состоит из биоразлагаемого термопластичного материала, выбранного из биоразлагаемых сложных полиэфиров на основе нефти, предпочтительно выбранных из группы, состоящей из поликапролактона, полиамидоэфира, алифатических сложных сополиэфиров, ароматических сложных сополиэфиров и их смесей; термопластичного крахмала; сложных эфиров целлюлозы, особенно ацетата целлюлозы и/или нитроцеллюлозы и их производных; и их смесей; предпочтительно смеси биоразлагаемого сложного полиэфира на основе нефти и термопластичного крахмала, предпочтительно смеси поликапролактона и термопластичного крахмала. Частицы, полученные из таких материалов, как было найдено, обеспечивают необходимую очистку и характеристики безопасности поверхности, а также превосходную биоразлагаемость в окружающей среде.

В варианте осуществления, вспененный материал используют с или без наполнителя. Тем не менее, предпочтительно, чтобы вспененный материал содержал множество частиц наполнителя.

Процессы вспенивания и пеноструктуры обычно получают с помощью процесса расширения газа, например, путем введения газа или растворителя в абразивный предшественник, и позволяя расширение путем падения давления и/или повышения температуры, например: процесс экструзионного вспенивания. В этом случае, как правило, используют термопластичный материал в виде чистого полимера или полимерной смеси или пластифицированных полимеров и т.д. Типичные примеры альтернативных термопластичных полимеров могут быть найдены в литературе по экструзионному вспениванию или газовому вспениванию (примеры см. книги "Thermoplastic Foam Extrusion" by James L. Throne или "Foam Extrusion: Principles and Practice" by Shau-Tarng Lee). Типичными газами, используемыми в таких процессах, являются воздух, азот, диоксид углерода или органические растворители, такие как пентан, циклопентан и т.д., с или без включения зародышеобразователей и стабилизаторов пены. В большинстве случаев, контролируемому количеству газа позволяют растворяться в полимере/полимерной смеси в расплавленной фазе, тогда как опытный оператор может точно контролировать параметры вспенивания, например: составление в композицию, параметры цикла времени/температуры/давления для достижения конкретных пеноструктур.

Особенно предпочтительные процессы вспенивания и пеноструктуры также обычно получают путем одновременной полимеризации, с или без поперечной сшивки мономеров, в сочетании с in-situ получением расширяющегося газа.

Заявитель обнаружил, что эффективные и безопасные чистящие частицы могут быть получены из пен с очень специфическими структурными параметрами, как описано ниже. Действительно, заявитель обнаружил, что пеноструктура обеспечивает параметры формы чистящих частиц, которые подлежит контролировать, и заявитель показал, что параметры формы частиц существенно влияют на производительность очистки частиц. Понятно, что структурные параметры пены, описанные ниже, имеют непосредственное влияние на желаемую форму частиц после измельчения пены в абразивные частицы; следовательно, точный контроль пеноструктуры является предпочтительным и удобным средством для синтезированных эффективных абразивных частиц.

Размер ячеек пены:

Аналогично, заявитель обнаружил, что хороший эффект очистки может быть достигнут с абразивными частицами, которые были получены из пен, обладающих ячейками размером в диапазоне от 20 до 2000 мкм. Однако заявитель неожиданно обнаружил, что значительно лучший эффект очистки может быть достигнут с пенами, обладающими размерами ячеек 100-1000 мкм, более предпочтительно от 200 до 500 мкм и наиболее предпочтительно от 300 до 450 мкм. Размер ячеек пены может быть измерен, например, по протоколу, описанному в ASTM D3576.

Содержание пены с закрытыми ячейками:

Аналогично, заявитель обнаружил, что хороший эффект очистки может быть достигнут с абразивными частицами, которые были получены из пен, обладающих структурами закрытых ячеек. Тем не менее, заявитель неожиданно обнаружил, что значительно лучший эффект очистки может быть достигнут с абразивными чистящими частицами, которые были превращены в частицы из пен со структурой открытых ячеек. Пеноструктуры с открытыми ячейками представляет возможность сформировать четко определенные острые каркасы, которые, в свою очередь, производят эффективные абразивные частицы. Напротив, присутствие закрытых ячеек, где каждая ячейка закрыта вспененным материалом, проходящим от каждого каркаса в мембранноподобном материале, приводит после измельчения в абразивные частицы к абразивной группе, которая содержит фракцию остатка плоской формы. Этот остаток плоской формы не обеспечивает эффективную производительность очистки, и поэтому является нежелательным признаком. Форма этого остатка плоской формы является неоптимальной для проведения очистки. Дополнительно, эти мембраны по своей природе очень хрупкие и легко разрушаются в значительно мелкие частицы, в том числе нежелательную пыль, с размерами в диапазоне от нескольких сотен микрометров до субмикронных размеров при измельчении пены, а также во время использования в процессе очистки. Заявитель обнаружил, что пеноструктуры с менее чем 50%, предпочтительно менее чем 30%, и наиболее предпочтительно менее чем 15% закрытых ячеек желательны при получении эффективных абразивных чистящих частиц.

Аспектовое соотношение каркаса пены:

Аналогично, заявитель обнаружил, что хороший эффект очистки может быть достигнут с абразивными частицами, которые были получены из пен, обладающих каркасами с высокими аспектовыми соотношениями. Под каркасами, заявитель определяет удлиненный материал, который взаимосвязан для формирования ячеистой пеноструктуры, которая лучше всего описана как пятиугольная структура додекаэдра для пен с плотностью, как правило, от 5 до 50 кг/м3, описанных в данной заявке. Длина каркаса (L), как правило, считается расстоянием между геометрическими центрами 2 взаимосвязанных узлов. Толщина каркаса (Т), как правило, представляет собой проектируемую толщину каркаса в середине длины каркаса. Заявитель понял, что частицы, которые получают из пены, представляющей каркасы с чрезмерно малым соотношением L/T, представляют неоптимальные формы для очистки, так как вероятнее всего, производят более круглые частицы, которые легко перекатываются. Напротив, частицы, которые получают из пены, представляющей каркасы с чрезмерно высоким соотношением L/T, также представляют неоптимальные формы для очистки, так как они, вероятнее всего, производят избыточное количество стержневидных частиц, обладающих слабым удалением загрязнений. В связи с этим, заявитель неожиданно обнаружил, что значительно лучший эффект очистки может быть достигнут с каркасами, имеющими соотношение L/T в диапазоне от 1,5 до 10, предпочтительно от 2,0 до 8,0 и более предпочтительно от 3,0 до 6,0 и наиболее предпочтительно от 3,5 до 4,5, как определено с помощью программного обеспечения Visiocell.

Фиг. 2. Пятиугольная структура додекаэдра с длиной (L) и толщиной (Т) каркасов.

В предпочтительном варианте осуществления для того, чтобы способствовать превращению пены в частицы, пена является достаточно хрупкой, например, на натяжение, пена имеет небольшую тенденцию к деформации, но скорее разрушается в частицы.

Эффективные чистящие частицы затем получаются путем измельчения пеноструктуры с особой осторожностью до целевого размера и формы. Таким образом, например, при больших желаемых размерах частиц, желательна пена с большим размером ячейки и наоборот. Дополнительно, в целях сохранения оптимальной формы частиц при измельчении пеноструктуры, рекомендуется целевой размер частицы не чрезмерно меньше размера ячейки пены. Как правило, заявитель рекомендует целевой размер частицы не менее приблизительно половины размера ячейки пены. Заявитель обнаружил, что чрезмерное превращение частиц, например, в отношении исходной пеноструктуры и, особенно, в отношении размера ячейки, приводит к получению более круглых частиц с неоптимальной эффективностью очистки.

На практике процесс превращения пены в группу частиц устанавливают таким образом, что обнаруживают количество частиц с размером менее половины среднего размера ячейки пены менее 30% по массе, предпочтительно менее 20%, более предпочтительно менее 10% и наиболее предпочтительно отсутствие частиц, в то время как массовую долю размера частиц определяют методом физического просеивания. Примечание: Для того, чтобы приступить к разделению частиц на основе размера, исходя из половины среднего размера ячейки пены, допуск 10% принимают для выбора ячейки просеивания в отношении теоретической целевой сетки просеивания. Выбранный допуск ячейки просеивания действителен для меньшей доступной ячейки просеивания в отношении теоретического целевого размера.

Одним из приемлемых способов превращения пены в абразивные чистящие частицы в данной заявке является измельчение или размол пены. Другие приемлемые средства включают использование эродирующих инструментов, таких, как высокоскоростное эродирующее колесо с пылесборником, где на поверхности колеса выгравирован узор или оно покрыто абразивной шлифовальной бумагой и т.п. для содействия тому, чтобы пена формировала абразивные чистящие частицы в данной заявке.

Альтернативно, и в высоко предпочтительном варианте осуществления в данной заявке, пена может быть превращена в частицы в несколько этапов. Сначала объем пены может быть разбит на фрагменты по несколько сантиметров путем измельчения или резки вручную, или с помощью механических средств, таких как разбиватель комков, например модель 2036 от S Howes, Inc. of Silver Creek, NY.

В высоко предпочтительном варианте осуществления в данной заявке, в целях достижения дескрипторов геометрической формы абразивных чистящих частиц (например, кругообразности, прочности и/или шероховатости) абразивные чистящие частицы получают из вспененного полимерного материала, который превращают в абразивные частицы предпочтительно путем измельчения или размола, как описано в данной заявке далее.

Твердость абразивных частиц:

Предпочтительные абразивные чистящие частицы, приемлемые для использования в данной заявке, являются достаточно твердыми, чтобы обеспечить хорошую производительность чистки/глубокой очистки, в то же время обеспечивая хороший профиль безопасности поверхности.

Твердость абразивных частиц, превращенных из пены, может быть изменена путем изменения сырья, используемого для получения пены.

Предпочтительные абразивные чистящие частицы в настоящем изобретении имеют твердость от 3 до 50 кг/мм2, предпочтительно от 4 до 25 кг/мм2 и наиболее предпочтительно от 5 до 15 кг/мм2 твердости по Виккерсу HV.

Способ испытания твердости по Виккерсу:

Твердость по Виккерсу HV измеряется при 23°С в соответствии со стандартными способами ISO 14577-1, ISO 14577-2, ISO 14577-3. Твердость по Виккерсу измеряется в твердом блоке сырья, по меньшей мере, 2 мм в толщину. Измерение микроизрезанности твердости по Виккерсу осуществляется с помощью микро-твердомера (МНТ), производства CSM Instruments SA, Peseux, Switzerland.

В соответствии с инструкциями ISO 14577, тестовая поверхность должна быть ровной и гладкой, со значением шероховатости (Ra) менее чем 5% от максимальной глубины проникновения индентора. Для максимальной глубины 200 мкм это соответствует значению Ra менее чем 10 мкм. В соответствии с ISO 14577, такая поверхность может быть получена любым подходящим способом, который может включать разрезание блока тестового материала новым острым микротомом или лезвием скальпеля, измельчение, полировку или литье расплавленного материала на ровной, гладкой форме литья, что позволяет тщательное отверждение перед тестированием.

Приемлемые общие параметры установки для микро-твердомера (МНТ) являются следующими:

Режим управления: перемещение, непрерывное

Максимальное смещение: 200 мкм

Скорость приближения: 20 нм/с

Определением нулевой точки: при контакте

Период удерживания для измерения температурного дрейфа при контакте: 60 с

Время приложения сил: 30 с

Частота записи данных: по меньшей мере, каждую секунду

Время удерживания при максимальном усилии: 30 с

Время принудительного удаления: 30 с

Форма/Материал наконечника индентора: форма пирамиды по Виккерсу/Алмазный наконечник

Альтернативно, твердость абразивных чистящих частиц в настоящем изобретении может также быть выражена по соответствующей шкале твердости Мооса. Предпочтительно, твердость по Моосу составляет от 0,5 до 3,5 и наиболее предпочтительно от 1 до 3. Шкала твердости Мооса является международно признанной шкалой для измерения твердости соединения по сравнению с соединением с известной твердостью, см. Encyclopedia of Chemical Technology, Kirk-Othmer, 4 th Edition Vol 1, page 18 или Lide, D.R (ed) CRC Handbook of Chemistry and Physics, 73 rd edition, Boca Raton, Fla.: The Rubber Company, 1992-1993. Много наборов для испытаний по Моосу коммерчески доступны, содержащие материал с известной твердостью по Моосу. Для измерения и выбора абразивного материала с выбранной твердостью по Моосу, рекомендуется выполнить измерения твердости по Моосу с несформированными частицами, например, частицами со сферической или гранулированной формой абразивного материала, поскольку измерение сформированных частиц по Моосу предоставит ошибочные результаты.

Для того чтобы контролировать, что полученные из пены частицы обладают эффективной формой, в настоящем изобретении полезно определить целевые параметры способа формования и критических форм.

Форма абразивной чистящей частицы может быть определена различными способами. Настоящее изобретение определяет форму чистящей частицы в виде частицы, которая отражает геометрические пропорции частицы и более прагматично группы частиц. Самые недавние аналитические методы позволяют точное одновременное измерение формы частицы из большого числа частиц, как правило, более чем 1000 частиц (предпочтительно более 10000). Это позволяет точной настройки и/или выбора средней формы группы частиц с дискриминационной характеристикой. Эти измерительные анализы формы частицы выполняют на Occhio Nano 500 Particle Characterisation Instrument с сопутствующим программным обеспечением Callistro версии 25 (Occhio s.a. Liege, Belgium). Этот инструмент используют для подготовки, диспергирования, получения изображения и анализа образцов частиц, в соответствии с инструкциями производителя, со следующим выбором настроек прибора: Белый предписанный = 180, время вакуумирования = 5000 мс, время осаждения = 5000 мс, автоматический порог, количество подсчитанных частиц/анализов = от 8000 до 500000, минимальное количество повторов/образец = 3, настройка объектива 1х/1,5х.

Заявитель рассматривает, что, хотя, форма частицы значительного размера играет критическую роль на практике, параметры формы измеряют в виде средней формы группы частиц после исключения частиц с размером менее чем 10 мкм. Исключение может быть выполнено физически с помощью сита или предпочтительно в электронном виде путем статистической фильтрации частиц с размером диаметра, например: «Площадью диаметра» (значение диаметра диска, который имеет такую же площадь А, что и частица), ниже 10 мкм (ср. ISO 9276-6:2008(Е) раздел 7).

В настоящем изобретении дескрипторы формы являются расчетами геометрических дескрипторов/факторов формы. Геометрические факторы формы являются соотношениями между двумя различными геометрическими свойствами, такие свойства, как правило, являются мерой пропорций изображения всей частицы или мерой пропорций идеального геометрического тела, охватывающего частицу или формирующего оболочку вокруг частицы. Это приводит к образованию дескрипторов макроформ, аналогично аспектовому соотношению, однако заявитель обнаружил, что дескрипторы мезоформ - конкретный подкласс дескрипторов макроформ - особенно критичны для эффективности очистки и параметров безопасности поверхности абразивных чистящих частиц, в то время как более типичных параметров форм, таких, как аспектовое соотношение, оказалось недостаточно. Эти дескрипторы мезоформ являются большим подспорьем в определении того, как отличается частица по сравнению с идеальной геометрической формой, особенно того, как она отличается от сферы, и, попутно, помогут определить ее способность к неперекатыванию, например, скольжению, эффективной модели движения очистки. Абразивные чистящие частицы в соответствии с настоящим изобретением отличаются от типичных сферических или похожих на сферические, например: гранулированных, абразивных форм. Хорошим показателем несферической, например: неперекатывающейся частицы может быть дескриптор кругообразности, как определено в ISO 9276-6:2008, при этом группа частиц со средней кругообразностью менее 0,75, предпочтительно менее 0,6, как правило, является неперекатывающимися частицами.

Предпочтительно, несферические частицы в данной заявке имеют множество острых краев. Острые края несферических частиц определяют как края, имеющие радиус закругления менее 20 мкм, предпочтительно менее 8 мкм, наиболее предпочтительно менее 5 мкм. Радиус закругления определяется диаметром воображаемой окружности, соответствующей кривизне конечного края.

В предпочтительном варианте осуществления, абразивные чистящие частицы имеют средний ECD от 10 мкм до 1000 мкм, предпочтительно от 50 мкм до 500 мкм, более предпочтительно от 100 мкм до 350 мкм и наиболее предпочтительно от 150 мкм до 250 мкм.

Более того, заявитель обнаружил, что размер абразивной частицы может иметь решающее значение для достижения эффективной производительности очистки в то время как чрезмерно абразивная группа с малыми размерами частиц, например, типично, менее 10 мкм имеет полирующее действие по сравнению с очисткой, несмотря на характеристику большого количества частиц на загрузку частиц в средстве для чистки, присущем малому размеру частицы. С другой стороны, абразивная группа с чрезмерно высоким размером частиц, например, как правило, более 1000 мкм, не обеспечивает оптимальную эффективность очистки, так как число частиц на загрузку частиц в средстве для чистки, значительно уменьшается, как присуще большому размеру частицы. Дополнительно, чрезмерно малый размер частицы не желателен в средстве для чистки для задачи чистки, поскольку на практике, малые и многочисленные частицы часто трудно удалить с поверхностей различных топологий, что требует чрезмерных усилий, чтобы удалить их с пользователя, если только оставить поверхность с видимыми остатками частиц. С другой стороны, слишком большую частицу слишком легко обнаружить визуально или она предоставляет плохой тактильный опыт при эксплуатации или используя средство для чистки. Поэтому заявитель определяет в данной заявке оптимальный диапазон размеров частиц, который обеспечивает как оптимальную производите