Устройство для съемки изображений и способ управления устройством для съемки изображений
Иллюстрации
Показать всеУстройство для съемки изображения обеспечивает автоматическое обнаружение фокуса, используя первую информацию о позициях формирования изображения, которую получают путем выполнения, с использованием первых весов, суммирования со взвешиванием для информации, касающейся позиций формирования изображения, где указанная информация соответствует разным пространственным частотам. Получают вторую информацию о позициях формирования изображения путем выполнения, с использованием вторых весов, суммирования со взвешиванием для указанной информации. Найденный фокус корректируется на основе результата сравнения первой и второй информации о позициях формирования изображения. Первые веса соответствуют оцененной полосе во время оценки изображения, а вторые веса соответствуют оцененной полосе упомянутого сигнала, используемого при автоматическом обнаружении фокуса. Технический результат заключается в обеспечении возможности корректировки ошибки определения фокуса и учёте более одной пространственной частоты при фокусировки. 2 н. и 11 з.п. ф-лы, 13 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к устройству для съемки изображений и способу управления устройством для съемки изображений, и, в частности, относится к техническим приемам автоматического обнаружения фокуса.
Предшествующий уровень техники
В качестве систем для автоматического обнаружения фокуса (автоматической фокусировки (AF)) устройства для съемки изображений известны система контрастной AF и система фазоразностной AF. Обе эти системы часто используются в видеокамерах и цифровых фотокамерах, а в некоторых из этих систем AF в качестве датчика для обнаружения фокуса используется датчик изображения.
В этих системах AF обнаружение фокуса выполняется с использованием оптического изображения, и соответственно имеют место случаи, когда аберрация оптической системы, формирующей оптическое изображение, приводит к появлению ошибки в результате обнаружения фокуса. Был предложен способ уменьшения ошибки подобного типа.
В патентном документе 1 (патент Японии №5087077) раскрыт способ, в котором предварительно готовятся эталонные корректирующие данные, определяющие комбинацию из множества репрезентативных значений для AF кадра, фокусного расстояния, оценочной частоты AF и расстояния до объекта, и выполняется коррекция результата обнаружения фокуса с использованием корректирующих данных, полученных посредством выполнения интерполяции согласно реальному состоянию.
Однако в случае со способом, предложенным в патентном документе 1, где используется корректирующее значение, подходящее для оценочной частоты AF, уникальной для корпуса камеры, с целью коррекции результата обнаружения фокуса, возникает проблема, состоящая в том, что ошибка в определении фокуса не может быть в достаточной степени скорректирована. Изначально ошибка обнаружения фокуса представляет собой разность между состоянием фокуса, при котором наблюдатель чувствует максимальный комфорт в отношении снятого изображения, и состоянием фокуса, указанным по упомянутому результату обнаружения фокуса. Однако, в способе, описанном в патентном документе 1, состояние фокуса для снятого изображения не учитывается.
Также оценочная частота AF в патентном документе 1 представляет пространственные частотных характеристики одной частоты. Однако полоса, которая в действительности оценивается при определении фокуса, имеет некоторую ширину и не представляет характеристики только одной частоты.
Сущность изобретения
Целью настоящего изобретения является решение одной или нескольких из вышеупомянутых проблем, присущих известным техническим приемам. В частности, целью настоящего изобретения является обеспечение устройства для съемки изображений и способа управления устройством для съемки изображений, при использовании которых можно точно скорректировать ошибку обнаружения фокуса, вызванную аберрацией оптической системы, посредством коррекции результата обнаружения фокуса с учетом по меньшей мере состояния фокуса для снятого изображения.
Согласно одному аспекту настоящего изобретения обеспечено устройство для съемки изображений, способное выполнять автоматическое обнаружение фокуса оптической системы формирования изображения с использованием сигнала, полученного от датчика изображения, причем устройство содержит: средство сбора для получения (1) первой информации о позициях формирования изображения, полученной путем выполнения, с использованием множества первых весов, суммирования со взвешиванием информации, касающейся множества позиций формирования изображения оптической системы формирования изображения, где указанная информация соответствует разным пространственным частотам, и (2) второй информации о позициях формирования изображения, полученной путем выполнения, с использованием множества вторых весов, суммирования со взвешиванием для указанной информации; корректирующее средство для коррекции результата автоматического обнаружения фокуса на основе результата сравнения первой информации о позициях формирования изображения и второй информации о позициях формирования изображения; и средство управления для управления позицией фокусирующей линзы, которая имеется в оптической системе формирования изображения, на основе скорректированного результата автоматического обнаружения фокуса, где множество первых весов соответствует первой оцененной полосе во время оценки изображения, на основе сигнала, полученного от датчика изображения, а множество вторых весов соответствует второй оцененной полосе сигнала, полученного от датчика изображения, причем при автоматическом определении фокуса используется вторая оцененная полоса.
Согласно еще одному аспекту настоящего изобретения обеспечен способ управления устройством для съемки изображений, способным выполнять автоматическое обнаружение фокуса оптической системы формирования изображения с использованием сигнала, полученного от датчика изображения, причем способ содержит: шаг получения (1) первой информации о позициях формирования изображения, полученной путем выполнения, с использованием множества первых весов, суммирования со взвешиванием информации, касающейся множества позиций формирования изображения оптической системы формирования изображения, где указанная информация соответствует разным пространственным частотам и (2) информации о второй позиции формирования изображения, полученной путем выполнения, с использованием множества вторых весов, суммирования со взвешиванием для указанной информации; шаг коррекции результата автоматического обнаружения фокуса на основе результата сравнения первой информации о позициях формирования изображения и второй информации о позициях формирования изображения; и шаг управления для управления позицией фокусирующей линзы, которая имеется в оптической системе формирования изображения, на основе скорректированного результата автоматического обнаружения фокуса, где множество первых весов соответствует первой оцененной полосе во время оценки изображения, на основе сигнала, полученного от датчика изображения, а множество вторых весов соответствует второй оцененной полосе сигнала, полученного от датчика изображения, причем при автоматическом определении фокуса используется вторая оцененная полоса.
Дополнительные признаки настоящего изобретения станут очевидными из последующего описания примерных вариантов его осуществления со ссылками на прилагаемые чертежи.
Краткое описание чертежей
фиг. 1А - блок-схема, показывающая операцию AF в одном варианте осуществления изобретения;
фиг. 1В - блок-схема, показывающая операцию AF в одном варианте осуществления изобретения;
фиг. 2 - блок-схема цифровой камеры, служащей в качестве примера устройства для съемки изображений согласно одному варианту осуществления;
фигуры 3А и 3В - схемы, показывающие примерную конфигурацию датчика изображения в одном варианте осуществления;
фигуры 4А и 4В - схемы, иллюстрирующие взаимосвязь между областью фотоэлектрического преобразования и выходным зрачком в одном варианте осуществления;
фиг. 5 - блок-схема блока 130 TVAF по фиг. 2;
фиг. 6 - схема, показывающая примерные области обнаружения фокуса в одном варианте осуществления;
фиг. 7 - блок-схема процесса вычисления BP корректирующего значения (BP1) по вертикали/горизонтали в одном варианте осуществления;
фигуры 8А и 8В - схемы, иллюстрирующие процесс вычисления BP корректирующего значения по вертикали/горизонтали в одном варианте осуществления;
фигуры 9А-9С - схемы, иллюстрирующие процесс вычисления BP корректирующего значения (BP2) по вертикали/горизонтали в одном варианте осуществления;
фигуры 10А-10С - схемы, иллюстрирующие процесс вычисления ВР корректирующего значения (ВР3) пространственной частоты в первом варианте осуществления;
фигуры 11А-11F - графики, иллюстрирующие различные пространственные частотные характеристики в одном варианте осуществления;
фиг. 12 - график, иллюстрирующий процесс вычисления ВР корректирующего значения (ВР3) пространственных частот во втором варианте осуществления;
фиг. 13 - блок-схема, иллюстрирующая процесс вычисления ВР корректирующего значения (ВР3) пространственной частоты в третьем варианте осуществления.
Описание вариантов осуществления изобретения
Далее со ссылками на сопроводительные чертежи описываются примерные варианты осуществления настоящего изобретения. Заметим, что, хотя эти варианты осуществления имеют конкретные конфигурации с целью облегчения понимания и описания настоящего изобретения, изобретение не ограничено этими конкретными конфигурациями. Например, хотя ниже приведено описание вариантов осуществления, в которых настоящее изобретение применено к зеркальной цифровой камере с одним сменным объективом, изобретение также применимо к цифровой камере, чей объектив не является сменным, а также к видеокамере. Настоящее изобретение также можно реализовать в любом электронном устройстве, имеющем камеру, например, в мобильном телефоне, персональном компьютере типа лэптоп, планшетном компьютере, настольном персональном компьютере и т.д., игровом автомате и т.п.
Первый вариант осуществления изобретения
Описание конфигурации устройства для съемки изображения - блока объектива
На фиг. 2 представлена блок-схема, иллюстрирующая примерную функциональную конфигурацию цифровой камеры в качестве примера устройства для съемки изображений согласно одному варианту осуществления. В настоящем варианте осуществления цифровая камера представляет собой зеркальную камеру с одним сменным объективом, которая содержит блок 100 объектива и корпус 120 камеры. Блок 100 объектива вмонтирован в корпус 120 камеры через держатель M, обозначенный пунктирной линией в центре фиг. 2.
Блок 100 объектива содержит оптическую систему (первая группа 101 линз, диафрагма 102, вторая группа 103 линз и группа (104) фокусирующих линз (называемая далее просто «фокусирующей линзой»), а также систему привода/управления. Таким образом, блок 100 объектива является объективом, формирующим изображение, который включает в себя фокусирующую линзу 104 и формирует оптическое изображение объекта.
Первая группа 101 линз скомпонована на конце блока 100 объектива и закреплена таким образом, что имеет возможность перемещения в направлении OA оптической оси. Диафрагма 102 предназначена для регулировки количества света во время формирования изображения, а также выполняет функцию механического затвора для управления периодом экспонирования при съемке неподвижного изображения. Диафрагма 102 и вторая группа 103 линз могут перемещаться как единое целое в направлении OA оптической оси и обеспечивать функцию зума посредством перемещения вместе с первой группой 101 линз. Фокусирующая линза 104 также может перемещаться в направлении OA оптической оси, причем расстояние до объекта (фокусное расстояние), при котором блок 100 объектива сфокусирован, изменяется в зависимости от позиции фокусирующей линзы 104. Регулировка фокуса, то есть, регулировка фокусного расстояния блока 100 объектива выполняется путем управления позицией фокусирующей линзы 104 в направлении OA оптической оси.
Система привода/управления содержит привод 111 зума, привод 112 диафрагмы, привод 113 фокуса, схему 114 управления приводом зума, схему 115 управления приводом диафрагмы, схему 116 управления приводом корпуса, микропроцессорный блок MPU 117 объектива и память 118 объектива.
Схема 114 управления приводом зума приводит в движение первую группу 101 линз и третью группу 103 линз в направлении OA оптической оси, используя привод 111 зума, и управляет углом обзора оптической системы блока 100 объектива. Схема 115 управления приводом диафрагмы приводит в движение диафрагму 102, используя привод 112 диафрагмы, и управляет апертурой и операциями открывания и закрывания диафрагмы 102. Схема 116 управления приводом фокуса приводит в движение фокусирующую линзу 104 в направлении OA оптической оси, используя привод 113 фокуса, и управляет фокусным расстоянием оптической системы блока 100 объектива. Схема 116 управления приводом фокуса определяет текущее позицию фокусирующей линзы 104, используя привод 113 фокуса.
Блок MPU (процессор) 117 линз выполняет все вычисления и управление, связанное с блоком 100 объектива, а также управляет схемой 114 управления зумом, схемой 115 управления приводом диафрагмы и схемой 116 управления приводом фокуса. MPU 117 объектива соединен с MPU 125 камеры через держатель M и осуществляет с ним обмен командами и данными. Например, MPU 117 объектива определяет позицию фокусирующей линзы 104 и уведомляет MPU 125 камеры о ее позиции в соответствии с запросом от MPU 125 камеры. Эта информация о позиции фокусирующей линзы содержит такую информацию, как позиция фокусирующей линзы 104 в направлении OA оптической оси, позиция в направлении OA оптической оси и диаметр выходного зрачка в состоянии, когда оптическая система не движется, а также позиция в направлении OA оптической оси и диаметр оправы объектива, которая ограничивает лучи света выходного зрачка. MPU 117 объектива также управляет схемой 114 управления приводом зума, схемой 115 управления приводом диафрагмы и схемой 116 управления приводом фокуса в соответствии с запросом от MPU 125 камеры. Оптическая информация, необходимая для автоматической фокусировки, записывается заранее в памяти 118 объектива. Блок MPU 125 камеры управляет операциями блока 100 объектива путем выполнения программы, хранящейся в энергонезависимой памяти, встроенной в MPU 125 камеры или память 118 объектива.
Описание конфигурации устройства для съемки изображения - корпус камеры
Корпус 120 камеры содержит оптическую систему (оптический фильтр 121 нижних частот и датчик 122 изображения) и систему привода/управления. Первая группа 101 линз, диафрагма 102, вторая группа 103 линз и фокусирующая линза 104 в блоке 100 объектива, а также оптический фильтр 21 нижних частот в корпусе 120 камеры образуют оптическую систему формирования изображения.
Оптический фильтр 21 нижних частот ослабляет псевдоцвета и муар в заснятом изображении. Датчик 122 изображения состоит из датчика изображения на основе КМОП-структуры и периферийной схемы и имеет m пикселей, скомпонованных в горизонтальном направлении и n пикселей, скомпонованных в вертикальном направлении (где m и n - целые числа, равные или превышающие 2). Датчик 122 изображения в настоящее варианте осуществления имеет функцию разделения зрачка и способен выполнять фазоразностную AF, используя данные изображения. Схема 124 обработки изображения создает (из данных изображения, выданных датчиком 122 изображения) данные для фазоразностной AF и данные изображения для отображения, записи и контрастной AF (TVAF).
Система привода/управления содержит схему 123 возбуждения датчика, схему 124 обработки изображения, MPU 125 камеры, дисплей 126, группу 127 операционных переключателей, память 128, блок 129 фазоразностной AF и блок 130 TVAF.
Схема 123 управления возбуждением датчика управляет операциями датчика 122 изображения, выполняет аналого-цифровое преобразование полученного сигнала изображения и передает преобразованный сигнал изображения в MPU 125 камеры. Схема 124 обработки изображения выполняет обработку изображения, которая обычно выполняется в цифровой камере, такую как Y преобразование, процесс балансировки белого, процесс цветовой интерполяции и процесс кодирования со сжатием на данных изображения, полученных датчиком 122 изображения. Схема 124 обработки изображения также создает сигнал для фазоразностной AF.
MPU (процессор) 125 камеры выполняет все вычисления и управление, относящееся к корпусу 120 камеры, а также управляет схемой 123 управления приводом датчика, схемой 124 обработки изображения, дисплеем 126, группой 127 операционных переключателей, памятью 128, блоком 129 фазоразностной AF и блоком 130 TVAF. Блок MPU 125 камеры подсоединен к MPU 117 объектива через сигнальную шину держателя M и осуществляет обмен командами и данными с MPU 117 объектива. Блок MPU 125 камеры выдает в MPU 117 объектива запрос на получение информации о позиции объектива, запрос на приведение в движение диафрагмы, фокусирующей линзы или на зуминг с заранее заданной величиной перемещения, запрос на получение оптической информации, уникальной для блока 100 объектива, и т.п. Блок MPU 125 камеры включает в себя ПЗУ 125а, где хранится программа для управления операциями камеры, ОЗУ (RAM) 125b, где хранятся переменные, и электрически стираемое программируемое ПЗУ (EEPROM) 125с, где хранятся различные параметры.
Дисплей 126 сформирован на основе жидкокристаллического дисплея (LCD) или т.п. и отображает информацию, относящуюся к режиму формирования изображений камеры, изображение для предварительного просмотра перед формированием изображения, изображение для проверки после формирования изображения, изображение в состоянии «в фокусе» в момент обнаружения фокуса и т.п. Группа 127 операционных переключателей состоит из выключателя питания, выключателя спуска (спусковой механизм запуска формирования изображения), выключателя операции зум, переключателя выбора режима формирования изображения и т.п. Память 128 в данном варианте осуществления представляет собой съемную флэш-память, в которую записываются полученные изображения.
Блок 129 фазоразностной AF выполняет процесс обнаружения фокуса с помощью метода фазоразностного определения с использованием данных для обнаружения фокуса, полученных схемой 124 обработки изображения. В частности, схема 124 обработки изображения создает в качестве данных для обнаружения фокуса данные пары изображений, сформированных световыми лучами, проходящими через пару областей зрачка в оптической системе формирования изображения, а блок 129 фазоразностной AF определяет величину смещения фокуса на основе величины смещения в данных указанной пары изображений. Таким образом, блок 129 фазоразностной AF в данном варианте осуществления выполняет фазоразностную AF (фазоразностная AF в плоскости формирования изображения) на основе выходного сигнала датчика 122 изображения без использования специального датчика AF. Операции, выполняемые блоком 129 фазоразностной AF, более подробно описываются ниже.
Блок 130 TVAF выполняет процесс обнаружения фокуса методом контрастного определения на основе оценочного значения для TVAF (информация о контрасте данных изображения), созданного схемой 124 обработки изображения. В процессе обнаружения фокуса методом контрастного определения фокусирующая линза 104 перемещается, и в качестве позиция «в фокусе» определяется позицию фокусирующей линзы, в котором упомянутое оценочное значение достигает максимального значения.
Таким образом, цифровая камера в настоящем варианте осуществления может выполнять как фазоразностную AF, так и TVAF, и может избирательно использовать их в зависимости от ситуации, либо может использовать их вместе.
Описание операции обнаружения фокуса: фазоразностная AF
Ниже дополнительно описываются операции блока 129 фазоразностной AF и блока 130 TVAF.
Сначала следует описание операций, выполняемых блоком 129 фазоразностной AF.
На фиг. 3А представлена схема, показывающая пиксельную матрицу в датчике 122 изображения согласно настоящему варианту осуществления, а также показывающая состояние области, покрывающей 6 (в направлении Y) линии в вертикальном направлении и 8 (в направлении Х) столбцов в горизонтальном направлении двумерного датчика на основе К-МОП структуры (вид со стороны блока 100 объектива). Датчик 122 изображения снабжен цветным фильтром с шаблоном Байера, где в линии с нечетным номером, зеленый (G) и красный (R) цветные фильтры расположены чередующимися в каждом пикселе слева, тогда как в линии с четным номером синий (B) и зеленый (G) цветные фильтры расположены чередующимися в каждом пикселе слева. В пикселе 211 окружность 211i представляет внутрикристальную микролинзу, а множество прямоугольников, а именно, прямоугольников 211а и 211b, скомпонованные в микролинзах, представляют собой блоки фотоэлектрического преобразования.
В датчике 122 изображения согласно настоящему варианту осуществления блок фотоэлектрического преобразования в каждом пикселе разделен на две части в направлении X, причем сигналы фотоэлектрического преобразования отдельных блоков фотоэлектрического преобразования и сумма сигналов фотоэлектрического преобразования могут считываться независимо. Путем вычитания сигнала фотоэлектрического преобразования одного из блоков фотоэлектрического преобразования из суммы сигналов фотоэлектрического преобразования можно получить сигнал, соответствующий сигналу фотоэлектрического преобразования другого блока фотоэлектрического преобразования. Сигналы фотоэлектрического преобразования отдельных блоков фотоэлектрического преобразования можно использовать в качестве данных для фазоразностной AF, а также для создания параллаксного изображения, образующего 3D (трехмерное) изображение. Упомянутую сумму сигналов фотоэлектрического преобразования можно использовать как обычные данные заснятого изображения.
Далее описывается пиксельный сигнал в случае выполнения фазоразностной AF. Как будет описано ниже, согласно настоящему варианту осуществления микролинза 211i и разделенные блоки 211а и 211b фотоэлектрического преобразования на фиг. 3А выполняют разделение зрачка на выходных световых лучах оптической системы формирования изображения. Что касается множества пикселей 211 в заранее заданной области, скомпонованной в одной и той же пиксельной линии, то изображение, сформированное путем объединения выходных сигналов блоков 211а фотоэлектрического преобразования, устанавливается в качестве изображения A автофокусировки AF, а изображение, сформированное путем объединения выходных сигналов блоков 211b фотоэлектрического преобразования, устанавливается в качестве изображения В автофокусировки AF. В выходных сигналах блоков 211а и 211b фотоэлектрического преобразования используется псевдояркостный (Y) сигнал, вычисленный путем суммирования выходных сигналов зеленого, красного, синего и зеленого, которые включены в единичную матрицу цветного фильтра. Однако изображения A и B автофокусировки AF могут быть сформированы для каждого из цветов: красного, синего и зеленого. Посредством обнаружения, с использованием вычисления корреляции, относительной величины смещения между изображениями А и В автофокусировки AF, созданными как было описано выше, можно определить величину смещения фокуса (величину дефокусировки) в заранее заданной области. В настоящем варианте осуществления с датчика 122 изображения считываются выходной сигнал одного из блоков фотоэлектрического преобразования в каждом пикселе и сумма выходных сигналов обоих блоков фотоэлектрического преобразования в пикселе. Например, в случае считывания выходного сигнала блока 211а фотоэлектрического преобразования и суммы выходных сигналов блоков 211а и 211b фотоэлектрического преобразования выходной сигнал блока 211b фотоэлектрического преобразования получают путем вычитания выходного сигнала блока 211а фотоэлектрического преобразования из упомянутой суммы. Таким образом, можно получить оба изображения А и В, выполнив тем самым фазоразностную AF. Поскольку датчик изображения указанного типа известен (раскрыт в выложенном патенте Японии №2004-134867), его подробное описание будет опущено.
На фиг. 3В представлена схема, показывающая примерную конфигурацию схемы считывания датчика 122 изображения согласно настоящему варианту осуществления. Ссылочная позиция 151 обозначает схему горизонтального сканирования, а ссылочная позиция 153 обозначает схему вертикального сканирования. Линии 152а и 152b горизонтального сканирования и линии 154а и 154b вертикального сканирования скомпонованы на граничных участках каждого пикселя, и сигнал каждого блока фотоэлектрического преобразования считывается вовне через эти линии сканирования.
Заметим, что датчик изображения согласно настоящему варианту осуществления имеет два вида режима считывания вдобавок к вышеописанному способу считывания каждого пикселя. Первый режим считывания называется «режимом считывания всех пикселей», и представляет режим для съемки неподвижного изображения с высоким разрешением. В этом случае считываются сигналы всех пикселей.
Второй режим считывания называется «режимом прореживающего считывания», который представляет собой режим, предназначенный только для записи движущихся изображений или отображения изображения для предварительного просмотра. Поскольку необходимые количества пикселей в этом случае меньше общего количества пикселей, считываются только пиксели в пиксельной группе, которые остались после прореживания при предварительно заданном соотношении в направлении Х и направлении Y. Режим прореживающего считывания также используют в случае, когда необходимо высокоскоростное считывание. При прореживании пикселей в направлении Х сигналы суммируются для улучшения отношения сигнал/шум, а при прореживании пикселей в направлении Y выходные сигналы в прореженных линиях игнорируются. Фазоразностная AF и контрастная AF также обычно выполняются на основе сигналов, считываемых во втором режиме считывания.
На фигурах 4А и 4В представлены схемы, иллюстрирующие сопряженную взаимосвязь между плоскостью выходного зрачка оптической системы формирования изображения и блоками фотоэлектрического преобразования в датчике изображения, скомпонованном на высоте 0 изображения, то есть, рядом с центром поверхности изображения в устройстве для съемки изображений согласно настоящему варианту осуществления. Блоки фотоэлектрического преобразования в датчике изображения и плоскость выходного зрачка оптической системы формирования изображения сконструированы таким образом, чтобы имела место сопряженная взаимосвязь через внутрикристальную микролинзу. В общем случае выходной зрачок оптической системы формирования изображения приблизительно совпадает с плоскостью, на которой расположена ирисовая диафрагма для регулировки количества света. С другой стороны, оптическая система формирования изображения согласно настоящему варианту осуществления представляет собой вариообъектив, имеющий функцию изменения увеличения. В зависимости от типа оптики расстояние выходного зрачка от поверхности изображения или размер выходного зрачка изменяется при выполнении операции изменения увеличения. На фигурах 4А и 4В показано состояние, когда фокусное расстояние блока 100 объектива находится в центре между одной крайней позицией «широкоугольная съемка» и другой крайней позицией «телефото». Оптимальный вариант формы микролинзы и параметр эксцентриситета, подходящий для высоты изображения (координаты Х и Y), достигается при использовании в этом состоянии расстояния Zep до плоскости изображения в качестве стандартного значения.
На фиг. 4А ссылочная позиция 101 обозначает первую группу линз, ссылочная позиция 101b обозначает бочкообразный элемент, который поддерживает первую группу линз, ссылочная позиция 105 обозначает третью группу линз, а ссылочная позиция 104b обозначает бочкообразный элемент, который поддерживает фокусирующую линзу 104. Ссылочная позиция 102 обозначает диафрагму, ссылочная позиция 102а обозначает апертурную пластину, которая определяет апертуру при открытой диафрагме, а ссылочная позиция 102b обозначает лепестки диафрагмы для регулировки апертуры при суженной диафрагме. Заметим, что ссылочные позиции 101b, 102а, 102b и 104b, которые играют роль ограничителей световых потоков, проходящих через оптическую систему формирования изображения, обозначают виртуальное оптическое изображение, наблюдаемое с поверхности изображения. Синтетическое отверстие рядом с диафрагмой 102 определено как выходной зрачок объектива, причем его расстояние от поверхности изображения равно Zep, как упоминалось выше.
Пиксель 211, скомпонованный вблизи центра поверхности изображения, далее называется «центральным пикселем» согласно настоящему варианту осуществления. Центральный пиксель 211 сформирован, начиная с самого низкого уровня, из блоков 211а и 211b фотоэлектрического преобразования, на уровнях 211е-211g из цветного фильтра 211h и микролинзы 211i. Два блока фотоэлектрического преобразования направлены к плоскости выходного зрачка оптической системы формирования изображения посредством внутрикристальной микролинзы 211i. Другими словами, выходной зрачок оптической системы формирования изображения направлен на поверхность блоков фотоэлектрического преобразования через внутрикристальную микролинзу 211i.
На фиг. 4В показаны спроецированные изображения блоков фотоэлектрического преобразования на плоскость выходного зрачка оптической системы формирования изображения, где эти спроецированные изображения, соответствующие блокам 211а и 211b фотоэлектрического преобразования, обозначены соответственно как EP1a и EP1b. В настоящем варианте осуществления датчик изображения имеет один пиксель, из которого можно получить выходной сигнал одного из двух блоков 211а и 211b фотоэлектрического преобразования и выходной сигнал суммы выходов обоих блоков фотоэлектрического преобразования. Выходной сигнал суммы выходов из обоих блоков фотоэлектрического преобразования получают путем выполнения фотоэлектрического преобразования на световых лучах, прошедших через обе области спроецированных изображений EP1a и EP1b, которые приблизительно покрывают всю область зрачка оптической системы формирования изображения.
На фиг. 4А, где знак L обозначает внешние участки световых лучей, проходящих через оптическую систему формирования изображения, световой луч L ограничен апертурной пластиной 102а диафрагмы, в связи с чем в спроецированных изображениях EP1a и EP1b фактически не создается виньетирование. На фиг. 4В световой луч L по фиг. 4А обозначен как TL. Можно прийти к выводу, что виньетирование фактически не возникает также из-за того обстоятельства, что большая часть спроецированных изображений EP1a и EP1b в блоках фотоэлектрического преобразования не выходит за границы окружности, обозначенной как TL. Поскольку световой луч L ограничен только апертурной пластиной 102а диафрагмы, луч TL может быть заменен на 102а. В это время состояния виньетирования спроецированных изображений EP1a и EP1b симметричны относительно оптической оси в центре поверхности изображения, и количество света, воспринимаемого блоками 211а и 211b фотоэлектрического преобразования, одинаковы для обоих блоков.
В случае выполнения фазоразностной AF процессор MPU 125 камеры управляет схемой 123 управления возбуждением датчика, чтобы обеспечить считывание вышеупомянутых двух типов выходного сигнала из датчика 122 изображения. Затем MPU 125 камеры предоставляет в схему 124 обработки изображения информацию об области обнаружения фокуса и выдает в схему 124 обработки изображения команду на создание данных изображений А и В автофокусировки AF из выходных сигналов пикселей, входящих в область обнаружения фокуса, и подает эти данные в блок 129 фазоразностной AF. Схема 124 обработки изображения создает данные изображений А и В автофокусировки AF и выводит эти данные в блок 129 фазоразностной AF согласно упомянутой команде. Схема 124 обработки изображения также выдает данные изображения в формате RAW в блок 130 TVAP.
Как было описано выше, датчик 122 изображения образует часть устройства обнаружения фокуса, использующего как фазоразностную AF, так и контрастную AF.
Заметим, что, хотя здесь была описана примерная конфигурация, в которой выходной зрачок разделен по горизонтали на две части, некоторые пиксели в датчике изображения могут иметь конфигурацию, в которой выходной зрачок разделен на две части по вертикали. Также возможна конфигурация, в которой выходной зрачок разделен как по вертикали, так и по горизонтали. В результате обеспечение пикселя, в котором выходной зрачок разделен по вертикали, фазоразностная AF позволяет оперировать как горизонтальным контрастом, так и вертикальным контрастом объекта.
(Описание операции обнаружения фокуса: контрастная AF)
Далее со ссылками на фиг. 5 описывается контрастная автофокусировка (TVAF). Контрастная AF обеспечивается MPU 125 камеры и блоком 130 TVAF, многократно выполняющими разделение фокусирующей линзы и вычисление оценочных значений во взаимосвязи друг с другом.
После ввода данных изображения в формате RAW из схемы 124 обработки изображения в блок 130 TVAF схема 401 обработки оценочного сигнала AF выделяет сигнал зеленого (G) из сигналов шаблона Байера и выполняет процесс гамма-коррекции для улучшения компонент низкой яркости и подавления компонент высокой яркости. Хотя настоящий вариант осуществления описывается для случая выполнения автофокусировки TVAF с использованием сигнала зеленого (G), могут быть использованы все сигналы красного (R), синего (B) и зеленого (G). Сигнал яркости (Y) может быть создан с использованием всех цветов RGB. В последующем описании выходной сигнал, созданный схемой 401 обработки оценочного сигнала AF, называется «сигналом Y яркости», независимо от типа используемого сигнала.
Заметим, что, как здесь предполагается, область обнаружения фокуса установлена в схеме 413 установки области блоком MPU 125 камеры. Схема 413 установки области создает селекторный сигнал для выбора сигнала внутри установленной области. Селекторный сигнал вводится в схему 402 обнаружения пикового значения, схему 403 горизонтальной интеграции, схему 404 обнаружения минимального значения в линии, схему 409 обнаружения пикового значения в строке, схемы 406 и 410 вертикальной интеграции и схемы 405, 407 и 411 обнаружения вертикального пикового значения. Временные характеристики сигнала Y яркости, вводимого в каждую схему управляются таким образом, чтобы каждое оценочное значение фокуса создавалось с сигналом Y яркости в рамках области обнаружения фокуса. Заметим, что в соответствии с данной областью обнаружения фокуса в схеме 413 установки области может быть установлено множество областей.
Далее описывается способ вычисления пикового оценочного значения Y. Сигнал Y яркости, который претерпел гамма-коррекцию, вводится в схему 402 обнаружения пикового значения в линии, и пиковое значение Y каждой горизонтальной линии получают в области обнаружения фокуса, установленной схемой 413 установки области. Пик выходного сигнала схемы 402 обнаружения пика линии поддерживается в вертикальном направлении в области обнаружения фокуса схемой 405 обнаружения вертикального пика, и создается оценочное значение пика Y. Оценочное значение пика Y является показателем, эффективным при определении объекта с высокой яркостью и объекта с низкой яркостью.
Далее описывается способ вычисления интегрального оценочного значения Y. Сигнал Y яркости, который претерпел гамма-коррекцию, вводится в схему 403 горизонтальной интеграции, после чего получают интегральное значение Y в каждой горизонтальной линии в области обнаружения фокуса. Кроме того, выход схемы 403 горизонтальной интеграции интегрируется в вертикальном направлении в области обнаружения фокуса схемой 406 вертикальной интеграции, после чего создается интегральное оценочное значение Y. Интегральное оценочное значение Y можно использовать в качестве показателя для определения яркости всей области обнаружения фокуса в целом.
Далее описывается способ вычисления максимального-минимального оценочного значения. Сигнал Y яркости, претерпевший гамма-коррекцию, вводится в схему 402 обнаружения пикового значения линии, после чего получают пиковое значение Y каждой горизонтальной линии в области обнаружения фокуса. Сигнал Y яркости, претерпевший гамму-коррекцию, также вводится в сему 404 обнаружения минимального значения в линии, и минимальное значение Y определяют в каждой горизонтальной линии в области обнаружения фокуса. Обнаруженное пиковое значение линии и минимальное значение Y в каждой горизонтальной линии вводят в вычитатель, и в схему 407 обнаружения вертикального пикового значения вводят (пиковое значение - минимальное значение линии). Схема 407 обнаружения вертикального пика сохраняет это пиковое значение в вертикальном направлении в области обнаружения фокуса и создает максимальное - минимальное оценочное значение. Максимальное -