Аудиокодер и декодер для кодирования по форме волны с перемежением

Иллюстрации

Показать все

Изобретение относится к кодированию и декодированию и предназначено для осуществления высокочастотной реконструкции аудиосигнала. Технический результат – обеспечение улучшенной реконструкции переходных процессов и тональных компонентов в высокочастотных полосах. Данные способы и устройства для декодирования и кодирования аудиосигналов, в частности, способ декодирования включает в себя прием кодированного по форме волны сигнала, имеющего спектральный состав, соответствующий поднабору диапазона частот выше частоты перехода. Кодированный по форме волны сигнал перемежается с параметрической высокочастотной реконструкцией аудиосигнала выше частоты перехода, таким образом, достигается улучшенная реконструкция высокочастотных полос аудиосигнала. 6 н. и 19 з.п. ф-лы, 9 ил.

Реферат

Область техники, к которой относится изобретение

Раскрытое здесь изобретение, в целом, относится к кодированию и декодированию аудиосигнала. В частности, оно относится к аудиокодеру и аудиодекодеру, предназначенным для осуществления высокочастотной реконструкции аудиосигналов.

Уровень техники

В системах аудиокодирования используются разные методологии для кодирования аудиосигнала, например, собственно кодирование по форме волны, параметрическое пространственное кодирование и алгоритмы высокочастотной реконструкции, в том числе алгоритм копирования спектральной полосы (SBR). Стандарт MPEG-4 объединяет кодирование по форме волны и SBR аудиосигналов. Точнее говоря, кодер может осуществлять кодирование по форме волны аудиосигнала для спектральных полос до частоты перехода и кодировать спектральные полосы выше частоты перехода с использованием кодирования SBR. Затем кодированная по форме волны часть аудиосигнала передается на декодер совместно с параметрами SBR, определенными при кодировании SBR. На основании кодированной по форме волны части аудиосигнала и параметров SBR, декодер затем реконструирует аудиосигнал в спектральных полосах выше частоты перехода, что рассмотрено в обзорной статье Brinker et al., An overview of the Coding Standard MPEG-4 Audio Amendments 1 and 2: HE-AAC, SSC, and HE-AAC v2, EURASIP Journal on Audio, Speech, and Music Processing, Volume 2009, Article ID 468971.

Одна проблема этого подхода состоит в том, что сильные тональные компоненты, т.е. сильные гармонические компоненты, или любой компонент в высоких спектральных полосах, которые плохо реконструируются алгоритмом SBR, пропадают в выходном сигнале.

По этой причине, алгоритм SBR осуществляет процедуру обнаружения пропавших гармоник. Тональные компоненты, которые не удается надлежащим образом восстановить посредством высокочастотной реконструкции SBR, идентифицируются на стороне кодера. Информация о частотном положении этих сильных тональных компонентов передается на декодер, где спектральные составы в спектральных полосах, где располагаются пропавшие тональные компоненты, заменяются синусоидами, генерируемыми на декодере.

Преимущество обнаружения пропавших гармоник, обеспеченного в алгоритме SBR, состоит в том, что оно является решением очень низкой битовой скорости, поскольку, несколько упрощая, на декодер необходимо передавать только частотное положение тонального компонента и его уровень амплитуды.

Недостаток обнаружения пропавших гармоник алгоритма SBR состоит в том, что это очень грубая модель. Другой недостаток состоит в том, что при низкой скорости передачи, т.е. когда количество битов, которые могут передаваться в секунду невелико, и, в результате, спектральные полосы широки, большой диапазон частот будет заменен синусоидой.

Еще один недостаток алгоритма SBR состоит в том, что он имеет тенденцию размывать переходные процессы, происходящие в аудиосигнале. Обычно возникает опережающее эхо и запаздывающее эхо переходного процесса в аудиосигнале, реконструированном методом SBR. Таким образом, остается простор для усовершенствований.

Краткое описание чертежей

В дальнейшем, иллюстративные варианты осуществления будут описано более подробно и со ссылкой на прилагаемые чертежи, в которых:

фиг. 1 - схема декодера согласно иллюстративным вариантам осуществления;

фиг. 2 - схема декодера согласно иллюстративным вариантам осуществления;

фиг. 3 - блок-схема операций способа декодирования согласно иллюстративным вариантам осуществления;

фиг. 4 - схема декодера согласно иллюстративным вариантам осуществления;

фиг. 5 - схема кодера согласно иллюстративным вариантам осуществления;

фиг. 6 - блок-схема операций способа кодирования согласно иллюстративным вариантам осуществления;

фиг. 7 - диаграмма схемы сигнализации согласно иллюстративным вариантам осуществления; и

фиг. 8a-b - схематическая иллюстрация блока перемежения согласно иллюстративным вариантам осуществления.

Все фигуры являются упрощенными и, в целом, демонстрируют лишь части, которые необходимы для пояснения изобретения, тогда как другие части можно исключить или считать необязательными. Если не указано обратное, аналогичные ссылочные позиции относятся к аналогичным частям на разных фигурах.

Подробное описание изобретения

Ввиду вышеизложенного, задачей является обеспечение кодера и декодера и соответствующих способов, которые обеспечивают улучшенную реконструкцию переходных процессов и тональных компонентов в высокочастотных полосах.

I. Обзор - декодер

Используемый здесь термин "аудиосигнал" может означать собственно аудиосигнал, аудио-часть аудиовизуального сигнала или мультимедийного сигнала или любой из них совместно с метаданными.

Согласно первому аспекту, иллюстративные варианты осуществления предусматривают способы декодирования, устройства декодирования и компьютерные программные продукты для декодирования. Предложенные способы, устройства и компьютерные программные продукты, в целом, могут иметь одни и те же признаки и преимущества.

Согласно иллюстративным вариантам осуществления, предусмотрен способ декодирования в системе обработки аудиосигнала, содержащий: прием первого кодированного по форме волны сигнала, имеющего спектральный состав до первой частоты перехода; прием второго кодированного по форме волны сигнала, имеющего спектральный состав, соответствующий поднабору диапазона частот выше первой частоты перехода; прием параметров высокочастотной реконструкции; осуществление высокочастотная реконструкция с использованием первого кодированного по форме волны сигнала и параметров высокочастотной реконструкции для генерации расширенного по частоте сигнала, имеющего спектральный состав выше первой частоты перехода; и перемежение расширенного по частоте сигнала со вторым кодированным по форме волны сигналом.

Используемый здесь термин "кодированный по форме волны сигнал" следует интерпретировать как сигнал, кодированный путем прямого квантования представления формы волны; наиболее предпочтительно, квантования линий частотного преобразования сигнала входной формы волны. В этом состоит отличие от параметрического кодирования, где сигнал представляется вариациями обобщенной модели атрибута сигнала.

Таким образом, способ декодирования предусматривает использование кодированных по форме волны данных в поднаборе диапазона частот выше первой частоты перехода и их перемежение с реконструированным по высокой частоте сигналом. Таким образом, важные части сигнала в полосе частот выше первой частоты перехода, например, тональные компоненты или переходные процессы, которые обычно плохо реконструируются параметрическими алгоритмами высокочастотной реконструкции, можно кодировать по форме волны. В результате, реконструкция этих важных частей сигнала в полосе частот выше первой частоты перехода улучшается.

Согласно иллюстративным вариантам осуществления, поднабор диапазона частот выше первой частоты перехода является разреженным поднабором. Например, он может содержать множество изолированных частотных интервалов. Это имеет преимущество в том, что для кодирования второго кодированного по форме волны сигнала используется малое количество битов. Тем не менее, благодаря наличию множества изолированных частотных интервалов, тональные компоненты, например единичные гармоники, аудиосигнала могут хорошо захватываться вторым кодированным по форме волны сигналом. В результате, улучшение реконструкции тональных компонентов для высокочастотных полос достигается при низком расходовании битов.

Используемый здесь термин "пропавшие гармоники" или "единичные гармоники" означает любую произвольную сильную тональную часть спектра. В частности, следует понимать, что понятие "пропавшие гармоники" или "единичные гармоники" не ограничивается гармониками гармонического ряда.

Согласно иллюстративным вариантам осуществления, второй кодированный по форме волны сигнал может представлять переходный процесс в аудиосигнале, подлежащем реконструкции. Переходный процесс обычно ограничен коротким временным диапазоном, например, приблизительно сотней временных выборок при частоте дискретизации 48 кГц, например, временным диапазоном порядка 5 - 10 миллисекунд, но может иметь широкий диапазон частот. Поэтому для захвата переходного процесса поднабор диапазона частот выше первой частоты перехода может содержать частотный интервал, проходящий между первой частотой перехода и второй частотой перехода. Это имеет преимущество в том, что можно добиться улучшенной реконструкции переходных процессов.

Согласно иллюстративным вариантам осуществления, вторая частота перехода изменяется как функция времени. Например, вторая частота перехода может изменяться во временном кадре, установленном системой обработки аудиосигнала. Таким образом, можно вычислять короткий временной диапазон переходных процессов.

Согласно иллюстративным вариантам осуществления, этап осуществления высокочастотной реконструкции содержит осуществление копирования спектральной полосы, SBR. Высокочастотная реконструкция обычно осуществляется в частотной области, например, в области псевдоквадратурных зеркальных фильтров, QMF, состоящей, например, из 64 подполос.

Согласно иллюстративным вариантам осуществления, этап перемежения расширенного по частоте сигнала со вторым кодированным по форме волны сигналом осуществляется в частотной области, например, в области QMF. Обычно, для упрощения реализации и улучшения контроля временных и частотных характеристик двух сигналов, перемежение осуществляется в той же частотной области, что и высокочастотная реконструкция.

Согласно иллюстративным вариантам осуществления, первый и второй кодированные по форме волны сигналы, будучи приняты, кодируются с использованием одного и того же модифицированного дискретного косинусного преобразования, MDCT.

Согласно иллюстративным вариантам осуществления, способ декодирования может содержать регулировку спектрального состава расширенного по частоте сигнала в соответствии с параметрами высокочастотной реконструкции для регулировки спектральной огибающей расширенного по частоте сигнала.

Согласно иллюстративным вариантам осуществления, перемежение может содержать суммирование второго кодированного по форме волны сигнала с расширенным по частоте сигналом. Этот вариант предпочтителен, если второй кодированный по форме волны сигнал представляет тональные компоненты, например, когда поднабор диапазона частот выше первой частоты перехода содержит множество изолированных частотных интервалов. Суммирование второго кодированного по форме волны сигнала с расширенным по частоте сигналом имитирует параметрическое суммирование гармоник, известное из SBR, и позволяет SBR копировать сигнал, подлежащий использованию, во избежание замены больших диапазонов частот единичным тональным компонентом путем его примешивания на подходящем уровне.

Согласно иллюстративным вариантам осуществления, перемежение содержит замену спектрального состава расширенного по частоте сигнала спектральным составом второго кодированного по форме волны сигнала в поднаборе диапазона частот выше первой частоты перехода, который соответствует спектральному составу второго кодированного по форме волны сигнала. Этот вариант предпочтителен, когда второй кодированный по форме волны сигнал представляет переходный процесс, например, когда поднабор диапазона частот выше первой частоты перехода может, таким образом, содержать частотный интервал, проходящий между первой частотой перехода и второй частотой перехода. Замена обычно осуществляется только для временного диапазона, покрытого вторым кодированным по форме волны сигналом. Таким образом, можно заменять как можно меньше, но все же достаточно для замены переходного процесса и потенциального временного размывания, присутствующего в расширенном по частоте сигнале, и перемежение, таким образом, не ограничивается отрезком времени, указанным временной сеткой огибающей SBR.

Согласно иллюстративным вариантам осуществления, первый и второй кодированные по форме волны сигналы могут быть отдельными сигналами, в том смысле, что они кодировались по отдельности. Альтернативно, первый кодированный по форме волны сигнал и второй кодированный по форме волны сигнал образуют первый и второй сигнальные участки общего, совместно кодированного сигнала. Последняя альтернатива более привлекательна с точки зрения реализации.

Согласно иллюстративным вариантам осуществления, способ декодирования может содержать прием сигнала управления, содержащего данные, относящиеся к одному или более временным диапазонам и одному или более диапазонам частот выше первой частоты перехода, для которых доступен второй кодированный по форме волны сигнал, причем этап перемежения расширенного по частоте сигнала со вторым кодированным по форме волны сигналом базируется на сигнале управления. Это имеет преимущество в том, что обеспечивает эффективное управление перемежением.

Согласно иллюстративным вариантам осуществления, сигнал управления содержит, по меньшей мере, один из второго вектора, указывающего один или более диапазонов частот выше первой частоты перехода, для которых доступен второй кодированный по форме волны сигнал для перемежения с расширенным по частоте сигналом, и третьего вектора, указывающего один или более временных диапазонов, для которых доступен второй кодированный по форме волны сигнал для перемежения с расширенным по частоте сигналом. Это позволяет удобно реализовать сигнал управления.

Согласно иллюстративным вариантам осуществления, сигнал управления содержит первый вектор, указывающий один или более диапазонов частот выше первой частоты перехода, подлежащих параметрической реконструкции на основании параметров высокочастотной реконструкции. Таким образом, расширенному по частоте сигналу можно отдавать приоритет над вторым кодированным по форме волны сигналом для определенных полос частот.

Согласно иллюстративным вариантам осуществления, также предусмотрен компьютерный программный продукт, содержащий считываемый компьютером носитель с инструкциями для осуществления любого способа декодирования первого аспекта.

Согласно иллюстративным вариантам осуществления, также предусмотрен декодер для системы обработки аудиосигнала, содержащий: блок приема, выполненный с возможностью приема первого кодированного по форме волны сигнала, имеющего спектральный состав до первой частоты перехода, второго кодированного по форме волны сигнала, имеющего спектральный состав, соответствующий поднабору диапазона частот выше первой частоты перехода, и параметров высокочастотной реконструкции; блок высокочастотной реконструкции, выполненный с возможностью приема первого декодированного по форме волны сигнала и параметров высокочастотной реконструкции от блока приема и осуществления высокочастотной реконструкции с использованием первого кодированного по форме волны сигнала и параметров высокочастотной реконструкции для генерации расширенного по частоте сигнала, имеющего спектральный состав выше первой частоты перехода; и блок перемежения, выполненный с возможностью приема расширенного по частоте сигнала от блока высокочастотной реконструкции и второго кодированного по форме волны сигнала от блока приема и перемежения расширенного по частоте сигнала со вторым кодированным по форме волны сигналом.

Согласно иллюстративным вариантам осуществления, декодер может быть выполнен с возможностью осуществления любого раскрытого здесь способа декодирования.

II. Обзор - кодер

Согласно второму аспекту, иллюстративные варианты осуществления предусматривают способы кодирования, устройства кодирования и компьютерные программные продукты для кодирования. Предложенные способы, устройства и компьютерные программные продукты, в целом, могут иметь одни и те же признаки и преимущества.

Преимущества, касающиеся признаков и настроек, представленных в вышеприведенном обзоре декодера, в целом, могут быть пригодны для соответствующих признаков и настроек для кодера.

Согласно иллюстративным вариантам осуществления, предусмотрен способ кодирования в системе обработки аудиосигнала, содержащий следующие этапы: прием аудиосигнала, подлежащего кодированию; вычисление, на основании принятого аудиосигнала, параметров высокочастотной реконструкции, допускающих высокочастотную реконструкцию принятого аудиосигнала выше первой частоты перехода; идентификацию, на основании принятого аудиосигнала, поднабора диапазона частот выше первой частоты перехода, для которого спектральный состав принятого аудиосигнала подлежит кодированию по форме волны, и затем, на декодере, перемежению с высокочастотной реконструкцией аудиосигнала; генерацию первого кодированного по форме волны сигнала путем кодирования по форме волны принятого аудиосигнала для спектральных полос до первой частоты перехода; и второго кодированного по форме волны сигнала путем кодирования по форме волны принятого аудиосигнала для спектральных полос, соответствующих идентифицированному поднабору диапазона частот выше первой частоты перехода.

Согласно иллюстративным вариантам осуществления, поднабор диапазона частот выше первой частоты перехода может содержать множество изолированных частотных интервалов.

Согласно иллюстративным вариантам осуществления, поднабор диапазона частот выше первой частоты перехода может содержать частотный интервал, проходящий между первой частотой перехода и второй частотой перехода.

Согласно иллюстративным вариантам осуществления, вторая частота перехода может изменяться как функция времени.

Согласно иллюстративным вариантам осуществления, параметры высокочастотной реконструкции вычисляются с использованием кодирования с копированием спектральной полосы, SBR.

Согласно иллюстративным вариантам осуществления, способ кодирования может дополнительно содержать регулировку уровней спектральной огибающей, содержащихся в параметрах высокочастотной реконструкции, для компенсации суммирования высокочастотной реконструкции принятого аудиосигнала со вторым кодированным по форме волны сигналом на декодере. Поскольку второй кодированный по форме волны сигнал суммируется с реконструированным по высокой частоте сигналом на декодере, уровни спектральной огибающей комбинированного сигнала отличаются от уровней спектральной огибающей реконструированного по высокой частоте сигнала. Это изменение уровней спектральной огибающей можно вычислять на кодере, благодаря чему, комбинированный сигнал на декодере получает целевую спектральную огибающую. Благодаря осуществлению регулировки на стороне кодера, можно сократить потребность в интеллекте на стороне декодера, иными словами; необходимость в задании на декодере конкретных правил по обработке ситуации устраняется за счет конкретной сигнализации от кодера к декодеру. Это позволяет в будущем оптимизировать систему будущими оптимизациями кодера без необходимости в обновлении потенциально широко распространенных декодеров.

Согласно иллюстративным вариантам осуществления, этап регулировки параметров высокочастотной реконструкции может содержать: измерение энергии второго кодированного по форме волны сигнала; и регулировку уровней спектральной огибающей, предназначенных для управления спектральной огибающей реконструированного по высокой частоте сигнала, путем вычитания измеренной энергии второго кодированного по форме волны сигнала из уровней спектральной огибающей для спектральных полос, соответствующих спектральным составам второго кодированного по форме волны сигнала.

Согласно иллюстративным вариантам осуществления, также предусмотрен компьютерный программный продукт, содержащий считываемый компьютером носитель с инструкциями для осуществления любого способа кодирования второго аспекта.

Согласно иллюстративным вариантам осуществления, предусмотрен и кодер для системы обработки аудиосигнала, содержащий: блок приема, выполненный с возможностью приема аудиосигнала, подлежащего кодированию; блок высокочастотного кодирования, выполненный с возможностью приема аудиосигнала от блока приема и вычисления, на основании принятого аудиосигнала, параметров высокочастотной реконструкции, допускающих высокочастотную реконструкцию принятого аудиосигнала выше первой частоты перехода; блок обнаружения кодирования с перемежением, выполненный с возможностью идентификации, на основании принятого аудиосигнала, поднабора диапазона частот выше первой частоты перехода, для которого спектральный состав принятого аудиосигнала подлежит кодированию по форме волны, и затем, на декодере, перемежению с высокочастотной реконструкцией аудиосигнала; и блок кодирования по форме волны, выполненный с возможностью приема аудиосигнала от блока приема и генерации первого кодированного по форме волны сигнала путем кодирования по форме волны принятого аудиосигнала для спектральных полос до первой частоты перехода; и приема идентифицированного поднабора диапазона частот выше первой частоты перехода от блока обнаружения кодирования с перемежением и генерации второго кодированного по форме волны сигнала путем кодирования по форме волны принятого аудиосигнала для спектральных полос, соответствующих принятому идентифицированному поднабору диапазона частот.

Согласно иллюстративным вариантам осуществления, кодер может дополнительно содержать блок регулировки огибающей, выполненный с возможностью приема параметров высокочастотной реконструкции от блока высокочастотного кодирования и идентифицированного поднабора диапазона частот выше первой частоты перехода от блока обнаружения кодирования с перемежением, и, на основании принятых данных, регулировки параметров высокочастотной реконструкции для компенсации последующего перемежения высокочастотной реконструкции принятого аудиосигнала со вторым кодированным по форме волны сигналом на декодере.

Согласно иллюстративным вариантам осуществления, декодер может быть выполнен с возможностью осуществления любого раскрытого здесь способа декодирования.

III. Иллюстративные варианты осуществления - декодер

Фиг. 1 демонстрирует иллюстративный вариант осуществления декодера 100. Декодер содержит блок 110 приема, блок 120 высокочастотной реконструкции и блок 130 перемежения.

Работа декодера 100 будет объяснена более подробно со ссылкой на иллюстративный вариант осуществления, представленный на фиг. 2, демонстрирующую декодер 200, и блок-схему операций, изображенная на фиг. 3. Целью декодера 200 является обеспечение улучшенной реконструкции сигнала для высоких частот при наличии сильных тональных компонентов в высокочастотных полосах аудиосигнала, подлежащего реконструкции. Блок 110 приема принимает, на этапе D02, первый кодированный по форме волны сигнал 201. Первый кодированный по форме волны сигнал 201 имеет спектральный состав до первой частоты fc перехода, т.е. первый кодированный по форме волны сигнал 201 является сигналом низкой полосы, который ограничен диапазоном частот ниже первой частоты fc перехода.

Блок 110 приема принимает, на этапе D04, второй кодированный по форме волны сигнал 202. Второй кодированный по форме волны сигнал 202 имеет спектральный состав, который соответствует поднабору диапазона частот выше первой частоты fc перехода. В примере, приведенном на фиг. 2, второй кодированный по форме волны сигнал 202 имеет спектральный состав, соответствующий множеству изолированных частотных интервалов 202a и 202b. Таким образом, второй кодированный по форме волны сигнал 202 можно рассматривать как состоящий из множества сигналов ограниченной полосы, причем каждый сигнал ограниченной полосы соответствует одному из изолированных частотных интервалов 202a и 202b. На фиг. 2 показаны только два частотных интервала 202a и 202b. В целом, спектральный состав второго кодированного по форме волны сигнала может соответствовать любому количеству частотных интервалов переменной ширины.

Блок 110 приема может принимать первый и второй кодированные по форме волны сигналы 201 и 202 как два отдельных сигнала. Альтернативно, первый и второй кодированные по форме волны сигналы 201 и 202 могут образовывать первый и второй сигнальные участки общего сигнала, принятого блоком 110 приема. Другими словами, первый и второй кодированные по форме волны сигналы могут совместно кодироваться, например с использованием одного и того же преобразования MDCT.

Обычно, первый кодированный по форме волны сигнал 201 и второй кодированный по форме волны сигнал 202, принятые блоком 110 приема, кодируются с использованием преобразования на основе перекрывающихся окон, например, преобразования MDCT. Блок приема может содержать блок 240 декодирования формы волны выполненный с возможностью преобразования первого и второго кодированных по форме волны сигналов 201 и 202 во временную область. Блок 240 декодирования формы волны обычно содержит набор фильтров MDCT, выполненный с возможностью осуществления обратное преобразование MDCT первого и второго кодированных по форме волны сигналов 201 и 202.

Блок 110 приема дополнительно принимает, на этапе D06, параметры высокочастотной реконструкции, которые используются блоком 120 высокочастотной реконструкции, что будет раскрыто ниже.

Первый кодированный по форме волны сигнал 201 и высокочастотные параметры, принятые блоком 110 приема, затем поступают на блок 120 высокочастотной реконструкции. Блок 120 высокочастотной реконструкции обычно действует на сигналах в частотной области, предпочтительно, в области QMF. Поэтому, до поступления на блок 120 высокочастотной реконструкции, первый кодированный по форме волны сигнал 201 предпочтительно преобразовывать в частотную область, предпочтительно, область QMF, блоком 250 анализа QMF. Блок 250 анализа QMF обычно содержит набор фильтров QMF, выполненный с возможностью осуществления преобразования QMF первого кодированного по форме волны сигнала 201.

На основании первого кодированного по форме волны сигнала 201 и параметров высокочастотной реконструкции, блок 120 высокочастотной реконструкции, на этапе D08, расширяет первый кодированный по форме волны сигнал 201 на частоты выше первой частоты fc перехода. В частности, блок 120 высокочастотной реконструкции генерирует расширенный по частоте сигнал 203, который имеет спектральный состав выше первой частоты fc перехода. Расширенный по частоте сигнал 203, таким образом, является сигналом высокой полосы.

Блок 120 высокочастотной реконструкции может действовать согласно любому известному алгоритму для осуществления высокочастотной реконструкции. В частности, блок 120 высокочастотной реконструкции может быть выполнен с возможностью осуществления SBR что раскрыто в обзорной статье Brinker et al., An overview of the Coding Standard MPEG-4 Audio Amendments 1 and 2: HE-AAC, SSC, and HE-AAC v2, EURASIP Journal on Audio, Speech, and Music Processing, Volume 2009, Article ID 468971. Таким образом, блок высокочастотной реконструкции может содержать несколько подкаскадов, выполненных с возможностью генерации расширенного по частоте сигнала 203 на нескольких этапах. Например, блок 120 высокочастотной реконструкции может содержать блок 221 высокочастотной генерации, блок 222 суммирования параметрических высокочастотных компонентов и блок 223 регулировки огибающей.

Короче говоря, блок 221 высокочастотной генерации, на первом подэтапе D08a, расширяет первый кодированный по форме волны сигнал 201 до диапазона частот выше частоты fc перехода для генерации расширенного по частоте сигнала 203. Генерация осуществляется путем выбора участков подполосы первого кодированного по форме волны сигнала 201 и согласно конкретным правилам, в соответствии с параметрами высокочастотной реконструкции, дублирования или копирования выбранных участков подполосы первого кодированного по форме волны сигнала 201 в выбранные участки подполосы диапазона частот выше первой частоты fc перехода.

Параметры высокочастотной реконструкции могут дополнительно содержать параметры пропавших гармоник для добавления пропавших гармоник в расширенный по частоте сигнал 203. Как рассмотрено выше, пропавшие гармоники следует интерпретировать как любую произвольную сильную тональную часть спектра. Например, параметры пропавших гармоник могут содержать параметры, указывающие частоту и амплитуду пропавших гармоник. На основании параметров пропавших гармоник, блок 222 суммирования параметрических высокочастотных компонентов генерирует, на подэтапе D08b, синусоидальные компоненты и добавляет синусоидальные компоненты в расширенный по частоте сигнал 203.

Параметры высокочастотной реконструкции могут дополнительно содержать параметры спектральной огибающей, описывающие целевые уровни энергии расширенного по частоте сигнала 203. На основании параметров спектральной огибающей, на подэтапе D08c блок 223 регулировки огибающей может регулировать спектральный состав расширенного по частоте сигнала 203, т.е. спектральные коэффициенты расширенного по частоте сигнала 203, благодаря чему, уровни энергии расширенного по частоте сигнала 203 соответствуют целевым уровням энергии, описанным параметрами спектральной огибающей.

Затем расширенный по частоте сигнал 203 от блока 120 высокочастотной реконструкции и второй кодированный по форме волны сигнал от блока 110 приема поступают на блок 130 перемежения. Блок 130 перемежения обычно действует в той же частотной области, предпочтительно, области QMF, что и блок 120 высокочастотной реконструкции. Таким образом, второй кодированный по форме волны сигнал 202 обычно поступает на блок перемежения через блок 250 анализа QMF. Дополнительно, второй кодированный по форме волны сигнал 202 обычно задерживается, блоком 260 задержки, для компенсации времени, необходимого блоку 120 высокочастотной реконструкции для осуществления высокочастотной реконструкции. Таким образом, второй кодированный по форме волны сигнал 202 и расширенный по частоте сигнал 203 будут синхронизироваться, благодаря чему, блок 130 перемежения действует на сигналах, соответствующих одному и тому же временному кадру.

Затем блок 130 перемежения, на этапе D10, перемежает, т.е. объединяет второй кодированный по форме волны сигнал 202 с расширенным по частоте сигналом 203 для генерации перемеженного сигнала 204. Для перемежения второго кодированного по форме волны сигнала 202 с расширенным по частоте сигналом 203 можно использовать разные подходы.

Согласно одному иллюстративному варианту осуществления, блок 130 перемежения перемежает расширенный по частоте сигнал 203 со вторым кодированным по форме волны сигналом 202 путем суммирования расширенного по частоте сигнала 203 и второго кодированного по форме волны сигнала 202. Спектральные составы второго кодированного по форме волны сигнала 202 перекрываются со спектральными составами расширенного по частоте сигнала 203 в поднаборе диапазона частот, соответствующем спектральным составам второго кодированного по форме волны сигнала 202. Благодаря суммированию расширенного по частоте сигнала 203 и второго кодированного по форме волны сигнала 202, перемеженный сигнал 204 таким образом содержит спектральные составы расширенного по частоте сигнала 203, а также спектральные составы второго кодированного по форме волны сигнала 202 для перекрывающихся частот. В результате суммирования, уровни спектральной огибающей перемеженного сигнала 204 возрастают для перекрывающихся частот. Предпочтительно, что будет раскрыто ниже, увеличение уровней спектральной огибающей благодаря суммированию вычисляется на стороне кодера при определении уровней энергетической огибающей, содержащихся в параметрах высокочастотной реконструкции. Например, уровни спектральной огибающей для перекрывающихся частот могут уменьшаться на стороне кодера на величину, соответствующую увеличению уровней спектральной огибающей благодаря перемежению на стороне декодера.

Альтернативно, увеличение уровней спектральной огибающей вследствие суммирования можно вычислять на стороне декодера. Например, можно предусмотреть блок измерения энергии, который измеряет энергию второго кодированного по форме волны сигнала 202, сравнивает измеренную энергию с целевыми уровнями энергии, описанными параметрами спектральной огибающей, и регулирует расширенный по частоте сигнал 203 таким образом, чтобы уровни спектральной огибающей для перемеженного сигнала 204 были равны целевым уровням энергии.

Согласно другому иллюстративному варианту осуществления, блок 130 перемежения перемежает расширенный по частоте сигнал 203 со вторым кодированным по форме волны сигналом 202 путем замены спектральных составов расширенного по частоте сигнала 203 спектральными составами второго кодированного по форме волны сигнала 202 для тех частот, где расширенный по частоте сигнал 203 и второй кодированный по форме волны сигнал 202 перекрывается. В иллюстративных вариантах осуществления, где расширенный по частоте сигнал 203 заменяется вторым кодированным по форме волны сигналом 202, не требуется регулировать уровни спектральной огибающей для компенсации перемежения расширенного по частоте сигнала 203 и второго кодированного по форме волны сигнала 202.

Блок 120 высокочастотной реконструкции, предпочтительно, действует на частоте дискретизации, которая равна частоте дискретизации базового кодера более низкого уровня, который использовался для кодирования первого кодированного по форме волны сигнала 201. Таким образом, для кодирования второго кодированного по форме волны сигнала 202 можно использовать то же преобразование на основе перекрывающихся окон, например, то же MDCT, которое использовалось для кодирования первого кодированного по форме волны сигнала 202.

Блок 130 перемежения дополнительно может быть выполнен с возможностью приема первого кодированного по форме волны сигнала 201 от блока приема, предпочтительно через блок 240 декодирования формы волны, блок 250 анализа QMF и блок 260 задержки, и для объединения перемеженного сигнала 204 с первым кодированным по форме волны сигналом 201 для генерации комбинированного сигнала 205, имеющего спектральный состав для частот ниже, а также выше первой частоты перехода.

Затем выходной сигнал блока 130 перемежения, т.е. перемеженный сигнал 204 или комбинированный сигнал 205, с помощью блока 270 синтеза QMF, можно преобразовывать обратно во временную область.

Предпочтительно, блок 250 анализа QMF и блок 270 синтеза QMF имеют одинаковое количество подполос, в том смысле, что частота дискретизации сигнала, поступающего на блок 250 анализа QMF, равна частоте дискретизации сигнала, выводимого из блока 270 синтеза QMF. В результате, кодер формы волны (использующий MDCT), который использовался для кодирования по форме волны первого и второго кодированных по форме волны сигналов, может действовать на той же частоте дискретизации, что и выходной сигнал. Таким образом, первый и второй кодированные по форме волны сигналы можно эффективно и структурно просто кодировать с использованием одного и того же преобразования MDCT. В этом состоит отличие от уровня техники, где частота дискретизации кодера формы волны обычно ограничена половиной частоты дискретизации выходного сигнала, и последующий модуль высокочастотной реконструкции выполняет повышающую дискретизацию, а также высокочастотную реконструкцию. Это ограничивает способность кодировать по форме волны частоты, охватывающие весь выходной диапазон частот.

Фиг. 4 демонстрирует иллюстративный вариант осуществления декодера 400. Декодер 400 предназначен обеспечивать улучшенную реконструкцию сигнала для высоких частот при наличии переходных процессов во входном аудиосигнале, подлежащем реконструкции. Главное различие между примером, приведенным на фиг. 4, и примером, приведенным на фиг. 2, состоит в форме спектрального состава и длительности второго кодированного по форме волны сигнала.

Фиг. 4 демонстрирует работу декодера 400 на протяжении множества последовательных временных участк