Способ повторной обработки инструментов

Иллюстрации

Показать все

Изобретение относится к области повторной обработки, очистки, стерилизации и дезинфекции медицинских инструментов. Способ использования системы контроля для поддержания объема текучей среды для проведения повторной обработки инструментов в резервуаре содержит этапы, на которых подают количество текучей среды для проведения повторной обработки в резервуар; измеряют количество текучей среды в резервуаре; определяют, является ли количество текучей среды меньшим, чем заданное количество; эксплуатируют заполняющий поршневой насос для подачи текучей среды в резервуар, если ее количество меньше заданного; контролируют количество текучей среды по мере работы заполняющего поршневого насоса; определяют, увеличилось ли количество текучей среды на объем подпитки; передают сигнал, если количество текучей среды соответственно не увеличилось. Изобретение обеспечивает повышение эффективности поддержания количества текучей среды в резервуаре на заданном уровне. 6 з.п. ф-лы, 17 ил.

Реферат

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

i. Область применения изобретения

]Настоящее изобретение по существу относится к повторной обработке, очистке, стерилизации и/или дезинфекции медицинских инструментов.

ii. Описание смежной области

В различных случаях эндоскоп может включать в себя удлиненную часть (или трубку), имеющую дистальный конец, который может быть выполнен с возможностью введения в тело пациента, а также дополнительно множество проходящих через удлиненную часть каналов, которые могут быть выполнены с возможностью направления воды, воздуха и/или любой другой подходящей текучей среды к операционному полю. В некоторых случаях один или более каналов в эндоскопе могут быть выполнены с возможностью направления хирургического инструмента в операционное поле. В любом случае эндоскоп может дополнительно включать в себя проксимальный конец, имеющий входные отверстия, сообщающиеся по текучей среде с каналами, и головку управления, имеющую один или более клапанов и/или переключателей, выполненных с возможностью управления потоком текучей среды через каналы. По меньшей мере в одном случае эндоскоп может включать в себя канал для воздуха, канал для воды и один или более клапанов в головке управления, выполненных с возможностью управления потоками воздуха и воды через каналы.

Для повторной обработки бывших в употреблении медицинских устройств, таких как эндоскопы, можно применять системы дезинфекции, например, для повторного использования таких медицинских устройств. Существует множество систем дезинфекции, предназначенных для повторной обработки эндоскопов. По существу такие системы могут включать в себя по меньшей мере один промывочный резервуар, в который можно поместить требующий очистки и/или дезинфекции эндоскоп. Промывочный резервуар, как правило, размещается в корпусе, который поддерживает систему циркуляции линий, насосов и клапанов для направления чистящего и/или дезинфицирующего агента в эндоскоп, помещенный в промывочный резервуар, и/или из него. В процессе дезинфекции можно выполнить осмотр каналов внутри эндоскопа для проверки проходимости каналов. В различных вариантах осуществления система циркуляции может быть соединена по текучей среде с каналами эндоскопа при помощи соединителей, которые разъемно зацепляются за порты, способные образовывать концы каналов. Такие соединители, когда они прикреплены к эндоскопу, могут обеспечивать герметичное уплотнение, и в то же время их можно легко отсоединять по завершении процесса дезинфекции.

Указанное выше описание не следует рассматривать как ограничение объема формулы изобретения.

ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

По меньшей мере в одной форме устройство повторной обработки инструментов для очистки медицинского инструмента может содержать камеру, выполненную с возможностью принимать медицинский инструмент, источник текучей среды для проведения повторной обработки, подающий насос, сообщающийся по текучей среде с источником текучей среды для проведения повторной обработки, причем подающий насос представляет собой поршневой насос прямого вытеснения, и резервуар, сообщающийся по текучей среде с подающим насосом, причем резервуар имеет верх и низ, и причем расстояние между верхом и низом промывочного резервуара составляет уровень текучей среды для проведения повторной обработки. Устройство повторной обработки инструментов может дополнительно содержать линейный датчик, проходящий между верхом резервуара и низом резервуара, причем линейный датчик выполнен с возможностью обнаружения уровня текучей среды для проведения повторной обработки, и, кроме того, процессор, находящийся в связи с линейным датчиком для передачи сигналов, причем процессор выполнен с возможностью управления подающим насосом, когда уровень текучей среды для проведения повторной обработки находится ниже заданного уровня, причем заданный уровень находится между верхом резервуара и низом резервуара. Устройство повторной обработки инструментов может дополнительно содержать дозирующий насос, сообщающийся по текучей среде с низом резервуара и камерой, причем дозирующий насос представляет собой поршневой насос прямого вытеснения, и причем процессор выполнен с возможностью управления дозирующим насосом.

По меньшей мере в одной форме способ управления потоком текучей среды для проведения повторной обработки через инструмент, имеющий по меньшей мере первый канал и второй канал, может содержать этапы управления насосом, сообщающимся по текучей среде с источником текучей среды для проведения повторной обработки, прокачки текучей среды для проведения повторной обработки через первый жидкостный контур, содержащий первый клапан и первый датчик перепада давления, причем первый жидкостный контур сообщается по текучей среде с насосом и первым каналом, и прокачки текучей среды для проведения повторной обработки через второй жидкостный контур, содержащий второй клапан и второй датчик перепада давления, причем второй жидкостный контур сообщается по текучей среде с насосом и вторым каналом. Способ может дополнительно содержать этапы обнаружения первого перепада давления в текучей среде для проведения повторной обработки, втекающей в первый клапан, с использованием первого датчика перепада давления, обнаружения второго перепада давления в текучей среде для проведения повторной обработки, втекающей во второй клапан, с использованием второго датчика перепада давления, регулирования первого клапана для управления первой скоростью потока текучей среды для проведения повторной обработки через первый канал с использованием выходного сигнала первого датчика перепада давления и регулирования второго клапана для управления скоростью потока текучей среды для проведения повторной обработки через второй канал с использованием выходного сигнала второго датчика перепада давления.

По меньшей мере в одной форме устройство повторной обработки инструментов для очистки медицинского инструмента, включающее в себя канал, может содержать камеру, выполненную с возможностью принимать медицинский инструмент, соединитель системы подачи, выполненный с возможностью соединения по текучей среде с каналом, насос, выполненный с возможностью повышать давление текучей среды для проведения повторной обработки и подавать текучую среду для проведения повторной обработки в соединитель системы подачи, причем насос имеет входное отверстие и выходное отверстие, и датчик манометрического давления, расположенный таким образом, чтобы измерять манометрическое давление текучей среды для проведения повторной обработки, вытекающей из выходного отверстия насоса. Устройство повторной обработки инструментов может дополнительно содержать систему управления потоком, включающую в себя клапан, сообщающийся по текучей среде с соединителем системы подачи, причем клапан выполнен с возможностью управлять скоростью потока текучей среды для проведения повторной обработки через канал, и причем клапан содержит входное отверстие и выходное отверстие. Устройство повторной обработки инструментов может дополнительно включать в себя датчик перепада давления, выполненный с возможностью измерения падения давления текучей среды для проведения повторной обработки на противоположных сторонах фиксированного прохода, причем датчик перепада давления расположен после датчика манометрического давления и до выходного отверстия клапана, и процессор, находящийся в связи с датчиком перепада давления для передачи сигналов, причем процессор выполнен с возможностью определять скорость потока на основе падения давления и подавать клапану команду для по меньшей мере одного из по меньшей мере частичного закрытия и по меньшей мере частичного открытия.

По меньшей мере в одной форме способ применения системы контроля для поддержания объема текучей среды для проведения повторной обработки в резервуаре для подачи текучей среды для системы циркуляции текучей среды в устройстве повторной обработки инструментов может содержать этапы подачи количества текучей среды для проведения повторной обработки в резервуар для подачи текучей среды из источника текучей среды для проведения повторной обработки, измерения количества текучей среды для проведения повторной обработки в резервуаре для подачи текучей среды и определения того, превышает ли количество текучей среды для проведения повторной обработки в резервуаре для подачи текучей среды заданное количество. Способ может дополнительно содержать этапы эксплуатации заполняющего поршневого насоса прямого вытеснения для подачи текучей среды для проведения повторной обработки в резервуар для подачи текучей среды, если количество текучей среды для проведения повторной обработки в резервуаре для подачи текучей среды меньше заданного количества, причем заполняющий поршневой насос прямого вытеснения выполнен с возможностью подачи фиксированного объема текучей среды для проведения повторной обработки за один рабочий такт, контроля количества текучей среды для проведения повторной обработки в резервуаре для подачи текучей среды по мере работы заполняющего поршневого насоса прямого вытеснения, определения того, увеличилось ли количество текучей среды для проведения повторной обработки в резервуаре для подачи текучей среды на объем подпитки, равный произведению объема, вытесняемого за один рабочий такт, на число тактов заполняющего поршневого насоса прямого вытеснения, и передачи предупреждающего сигнала, если количество текучей среды для проведения повторной обработки в резервуаре для подачи текучей среды не увеличилось на объем подпитки.

По меньшей мере в одной форме способ управления потоком текучей среды для проведения повторной обработки через инструмент, содержащий канал, может содержать этапы эксплуатации насоса, сообщающегося по текучей среде с источником текучей среды для проведения повторной обработки, измерения манометрического давления текучей среды для проведения повторной обработки, протекающей через насос, корректировки потока текучей среды для проведения повторной обработки для корректировки манометрического давления текучей среды для проведения повторной обработки, и прокачки текучей среды для проведения повторной обработки через жидкостный контур, содержащий клапан и датчик перепада давления, причем жидкостный контур сообщается по текучей среде с насосом и каналом. Способ может дополнительно содержать этапы обнаружения перепада давления текучей среды для проведения повторной обработки, протекающей через клапан, с использованием датчика перепада давления и регулирования клапана для управления скоростью потока текучей среды для проведения повторной обработки через канал с использованием выходного сигнала датчика перепада давления.

По меньшей мере в одной форме способ управления потоком текучей среды для проведения повторной обработки через инструмент, имеющий по меньшей мере первый канал и второй канал, причем первый канал задается первым значением параметра, и второй канал задается вторым значением параметра, может содержать этапы запуска насоса, сообщающегося по текучей среде с источником текучей среды для проведения повторной обработки, для начала рабочего цикла, подачи текучей среды для проведения повторной обработки в первый жидкостный контур, содержащий первый клапан, причем первый жидкостный контур сообщается по текучей среде с насосом и первым каналом, и подачи текучей среды для проведения повторной обработки во второй жидкостный контур, содержащий второй клапан, причем второй жидкостный контур сообщается по текучей среде с насосом и вторым каналом. Способ может дополнительно содержать этап регулирования первого клапана для ограничения потока текучей среды для проведения повторной обработки через первый канал, причем поток текучей среды для проведения повторной обработки ограничивается количеством, определяемым на основе различия между первым значением параметра и вторым значением параметра, причем текучая среда для проведения повторной обработки протекает через первый канал и второй канал при запуске насоса.

Задачей настоящего изобретения является обеспечение нахождения количества текучей среды в резервуаре для подачи текучей среды на заданном уровне. Техническим результатом настоящего изобретения является повышение эффективности поддержания количества текучей среды в резервуаре для подачи текучей среды на заданном уровне. Решение указанной задачи и достижение указанного технического результата обеспечиваются настоящим изобретением согласно вышеуказанным аспектам и последующему подробному описанию изобретения

Указанное выше описание не следует рассматривать как ограничение объема формулы изобретения.

ОПИСАНИЕ ЧЕРТЕЖЕЙ

Особенности и преимущества настоящего изобретения, а также способ их достижения станут более очевидны, а само настоящее изобретение станет более понятным после ознакомления со следующим описанием вариантов осуществления настоящего изобретения в совокупности с сопроводительными чертежами.

На ФИГ. 1 представлен вид в перспективе устройства для повторной обработки эндоскопа в соответствии с по меньшей мере одним вариантом осуществления, содержащего два промывочныхрезервуара.

На ФИГ. 2 представлен вид в перспективе промывочных резервуаров устройства для повторной обработки эндоскопа, показанного на ФИГ. 1.

На ФИГ. 3 представлена схема подсистемы потока по каналу устройства для повторной обработки эндоскопа, показанного на ФИГ. 1.

На ФИГ. 3A представлена схема подсистемы потока по каналу для управления давлением протекающей через нее текучей среды.

На ФИГ. 4 представлен вид в перспективе узла коллектора, включающего в себя множество блоков управления потоком.

На ФИГ. 5 представлен вид в перспективе коллектора узла коллектора, показанного на ФИГ. 4.

На ФИГ. 6 представлен вид в перспективе блока управления потоком, выполненного с возможностью управления потоком текучей среды через линию подачи по каналу эндоскопа.

На ФИГ. 7 представлен вид в перспективе пропорционального клапана блока управления потоком, показанного на ФИГ. 6.

На ФИГ. 8 представлен вид в перспективе блока управления потоком, показанного на ФИГ. 6, без пропорционального клапана, показанного на ФИГ. 7.

На ФИГ. 9 представлен вид в перспективе подузла блока управления, показанного на ФИГ. 6, включающего в себя узел печатной платы, датчик манометрического давления и два датчика перепада давления.

На ФИГ. 10 представлен вид в перспективе датчика перепада давления блока управления, показанного на ФИГ. 9.

На ФИГ. 11 представлен вид в перспективе датчика манометрического давления блока управления, показанного на ФИГ. 9.

На ФИГ. 12 представлен вид в перспективе системы подачи текучей среды.

На ФИГ. 13 представлен вид сверху системы подачи текучей среды, показанной на ФИГ. 12.

На ФИГ. 14 представлен вид в сечении в вертикальной проекции системы подачи текучей среды, показанной на ФИГ. 12.

На ФИГ. 15 представлен вид в вертикальной проекции системы подачи текучей среды, показанной на ФИГ. 12.

На ФИГ. 16 представлено схематическое изображение системы подачи текучей среды, показанной на ФИГ. 12.

На ФИГ. 17 представлен эндоскоп, расположенный в держателе эндоскопа в промывочном резервуаре, показанном на ФИГ. 2.

Соответствующие элементы на разных видах обозначаются соответствующими условными обозначениями. Представленные в настоящем документе иллюстративные примеры предназначены для иллюстрации определенных вариантов осуществления настоящего изобретения в одной форме, и такие иллюстративные примеры ни в коей мере не призваны каким-либо образом ограничивать объем настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Для более полного понимания конструкции, принципов работы, производства и применения устройств и способов, описанных в настоящем документе, ниже приводится описание определенных примеров осуществления. Один или более примеров данных вариантов осуществления проиллюстрированы сопроводительными чертежами. Специалистам в данной области будет понятно, что устройства и способы, подробно описанные в настоящем документе и проиллюстрированные сопроводительными чертежами, представляют собой не имеющие ограничительного характера примеры осуществления и что объем различных вариантов осуществления настоящего изобретения определяется только формулой изобретения. Элементы, проиллюстрированные или описанные применительно к одному варианту осуществления, можно комбинировать с элементами других вариантов осуществления. Предполагается, что объем настоящего изобретения охватывает такие модификации и вариации.

В настоящем описании ссылка на «различные варианты осуществления», «некоторые варианты осуществления», «один вариант осуществления», «вариант осуществления» или т.п. означает, что конкретный элемент, конструкция или характеристика, описанные в связи с вариантом осуществления, включены по меньшей мере в один вариант осуществления. Таким образом, фразы «в различных вариантах осуществления», «в некоторых вариантах осуществления», «в одном варианте осуществления», «в варианте осуществления» или т.п., используемые в настоящем описании, не обязательно относятся к одному и тому же варианту осуществления. Более того, конкретные элементы, конструкции или характеристики можно комбинировать любым подходящим способом в одном или более вариантах осуществления. Таким образом, конкретные элементы, конструкции или характеристики, проиллюстрированные или описанные в связи с одним вариантом осуществления, можно без ограничений полностью или частично комбинировать с элементами, конструкциями или характеристиками одного или более других вариантов осуществления. Предполагается, что объем настоящего изобретения охватывает такие модификации и вариации.

В настоящем документе термины «проксимальный» и «дистальный» используются в отношении хирургического инструмента. Термин «проксимальный» относится к части, размещенной ближе всего к врачу, а термин «дистальный» относится к части, размещенной на удалении от врача. Следует также понимать, что для удобства и ясности в настоящем документе в отношении фигур могут применяться пространственные термины, такие как «вертикальный», «горизонтальный», «верх» и «низ». Однако в некоторых случаях раскрываемые в настоящем документе устройства можно использовать во множестве ориентаций и положений, и данные термины не считаются ограничивающими и/или абсолютными.

Как описано выше и показано на ФИГ. 1, устройство повторной обработки медицинских инструментов, такое как, например, устройство повторной обработки эндоскопа 100, может быть выполнено с возможностью очистки одного или более эндоскопов. В определенных вариантах осуществления устройство повторной обработки эндоскопа может быть выполнено с возможностью дезинфекции и/или стерилизации эндоскопа. В различных вариантах осуществления устройство повторной обработки эндоскопа может содержать по меньшей мере один промывочный резервуар 110, причем каждый промывочный резервуар 110 может быть выполнен с возможностью принимать в себя эндоскоп. Хотя устройство повторной обработки эндоскопа 100 содержит два промывочных резервуара, например, предусмотрены различные альтернативные варианты осуществления, которые содержат любое подходящее количество промывочных резервуаров 110. В различных вариантах осуществления устройство повторной обработки 100 может дополнительно включать в себя один или более держателей эндоскопа 120, выполненных с возможностью поддерживать внутри себя эндоскоп, которые можно помещать в каждый промывочный резервуар 110. При использовании врач может поместить эндоскоп в держатель эндоскопа 120 и затем поместить держатель эндоскопа 120 внутрь промывочного резервуара 110. В альтернативном варианте осуществления медработник может поместить держатель 120 в промывочный резервуар 110 и затем поместить эндоскоп в держатель 120. В любом случае после соответствующего размещения эндоскопа внутри промывочного резервуара 110 можно закрыть складную дверцу 130, которая закреплена и/или герметично уплотнена на раме устройства повторной обработки 140, чтобы закрыть эндоскоп внутри промывочного резервуара 110. Затем врач может управлять устройством повторной обработки эндоскопа 100, например, через панель управления 150. Примеры осуществления промывочного резервуара 110, держателя 120 и складной дверцы 130 описаны в одновременно поданной заявке на патент США тех же авторов под названием «УСТРОЙСТВА, СИСТЕМЫ И СПОСОБЫ ПОВТОРНОЙ ОБРАБОТКИ ИНСТРУМЕНТОВ», досье патентного поверенного № 110515, содержание которой полностью включено в настоящий документ путем ссылки. На ФИГ. 17 представлен эндоскоп 101, расположенный внутри держателя 120, который расположен в промывочном резервуаре 110. В различных вариантах осуществления эндоскоп 101 может содержать различные части 102, 103 и/или 104, которые могут поддерживаться в держателе 120.

В различных вариантах осуществления, в дополнение к описанному выше, устройство повторной обработки эндоскопа 100 может включать в себя систему циркуляции, по которой может циркулировать одна или более текучих сред для проведения повторной обработки, таких как моющее средство, стерилизующее средство, дезинфицирующее вещество, вода, спирт и/или любая другая подходящая текучая среда, которые, например, проходят через эндоскоп и/или распыляются на эндоскоп. Система циркуляции может содержать источник текучей среды и циркуляционный насос, причем циркуляционный насос может быть соединен по текучей среде с источником текучей среды таким образом, что текучую среду можно засасывать из источника текучей среды в систему циркуляции. В определенных вариантах осуществления система циркуляции может включать в себя смесительную камеру, в которой одну текучую среду можно смешивать с другой текучей средой, например, такой как вода, причем смесительная камера может сообщаться по текучей среде с циркуляционным насосом. В любом случае, как показано на ФИГ. 2, каждый промывочный резервуар 110 может содержать одну или более распыляющих форсунок 112, которые могут сообщаться по текучей среде с циркуляционным насосом таким образом, что нагнетаемая циркуляционным насосом текучая среда может выбрасываться из системы циркуляции через форсунки 112 и поступать на эндоскоп. По меньшей мере в одном таком варианте осуществления каждый промывочный резервуар 110 может включать в себя множество форсунок 112, расположенных по его периметру, и одну или более форсунок 112, которые могут распылять текучую среду вверх со дна промывочного резервуара 111 или выполнять обратное распыление. Определенные примеры осуществления более подробно описаны в одновременно поданной заявке на патент США тех же авторов под названием «УСТРОЙСТВА, СИСТЕМЫ И СПОСОБЫ ПОВТОРНОЙ ОБРАБОТКИ ИНСТРУМЕНТОВ», досье патентного поверенного № 110515, содержание которой полностью включено в настоящий документ путем ссылки.

В различных вариантах осуществления, в дополнение к описанному выше, каждый промывочный резервуар 110 может быть выполнен с возможностью направлять распыляемую внутри него текучую среду вниз к находящемуся в его нижней части сливному отверстию 116, через которое текучая среда может снова попасть в систему циркуляции. Для очистки, дезинфекции и/или стерилизации внутренних каналов внутри эндоскопа устройство повторной обработки эндоскопа 100 может включать в себя одну или более линий подачи текучей среды, сообщающихся по текучей среде с насосом системы циркуляции, который может сообщаться по текучей среде с внутренними каналами эндоскопа. В различных вариантах осуществления, как показано на ФИГ. 2, каждый промывочный резервуар 110 может включать в себя один или более портов 114, которые могут представлять собой концы линий подачи текучей среды. В показанном варианте осуществления каждый промывочный резервуар 110 имеет набор из четырех портов 114, расположенных на его противоположных сторонах, хотя предусмотрены и другие альтернативные варианты осуществления, в которых можно использовать любое подходящее количество и расположение портов 114. В определенных вариантах осуществления устройство повторной обработки эндоскопа 110 может дополнительно содержать один или более гибких шлангов, которые можно соединить с портами 114 и/или герметично зафиксировать на них, и образованные в эндоскопе каналы, так что находящаяся под давлением текучая среда из системы циркуляции может протекать через порты 114, гибкие шланги и затем поступать в эндоскоп. Гибкие шланги и соединители, используемые для герметичного соединения гибких шлангов с эндоскопом, описаны в заявке на патент США № 12/998,459, озаглавленной «ЖИДКОСТНЫЙ СОЕДИНИТЕЛЬ ДЛЯ СИСТЕМЫ ПОВТОРНОЙ ОБРАБОТКИ ЭНДОСКОПА», поданной 29 августа 2011 г., и заявке на патент США № 12/998,458, озаглавленной «БЫСТРОСЪЕМНЫЙ ЖИДКОСТНЫЙ СОЕДИНИТЕЛЬ», также поданной 29 августа 2011 г., содержание которых полностью включено в настоящий документ путем ссылки.

В различных случаях, в дополнение к описанному выше, образованные в эндоскопе каналы могут забиваться или блокироваться, например, остатками органических веществ, что может препятствовать надлежащей очистке, дезинфекции и/или стерилизации эндоскопа. В некоторых случаях находящиеся внутри канала эндоскопа остатки органических веществ могут по меньшей мере частично блокировать проходящий через него поток текучей среды, тем самым снижая скорость, с которой текучая среда может протекать через канал. В настоящем документе предусмотрены различные варианты осуществления устройства повторной обработки эндоскопа, в которых скорость потока текучей среды через канал эндоскопа можно контролировать для оценки загрязненности канала. В таких вариантах осуществления система контроля может измерять реальную скорость потока текучей среды и сравнивать ее со скоростью потока текучей среды, которую можно было бы ожидать на основе давления, под которым циркуляционный насос подает текучую среду. Определенные системы контроля могут также оценивать, например, степень герметичности соединения гибких шлангов с каналом эндоскопа и/или портами промывочного резервуара 114. В таких системах система контроля может, например, обнаруживать превышение скорости потока текучей среды относительно ожидаемого значения скорости потока. Полное содержание патента США № 7,879,289, озаглавленного «РАЗЪЕМ ДЛЯ САМОДЕЗИНФЕКЦИИ АВТОМАТИЗИРОВАННОГО УСТРОЙСТВА ПОВТОРНОЙ ОБРАБОТКИ ЭНДОСКОПА», выданного 1 февраля 2011 г., включено в настоящий документ путем ссылки.

Как показано на схеме, представленной на ФИГ. 3, устройство повторной обработки эндоскопа может содержать подсистему потока по каналу 160, включая коллектор 166, сообщающийся по текучей среде с насосом системы циркуляции, указанным как насос 162, который может быть выполнен с возможностью распределять находящуюся под давлением текучую среду в линии подачи по каналу устройства повторной обработки эндоскопа и затем в каналы эндоскопа. На схеме, показанной на ФИГ. 3, такие линии подачи по каналу устройства повторной обработки эндоскопа показаны как линии подачи 164. В различных вариантах осуществления каждая линия подачи 164 устройства повторной обработки эндоскопа может включать в себя по меньшей мере один датчик перепада давления 172, по меньшей мере один пропорциональный клапан 174 и по меньшей мере один датчик манометрического давления 176. В определенных вариантах осуществления, как показано на ФИГ. 6 и 9, каждая линия подачи по каналу 164 устройства повторной обработки может включать в себя узел блока управления 170, содержащий корпус 171, датчик перепада давления 172, пропорциональный клапан 174 и датчик манометрического давления 176. По меньшей мере в одном таком варианте осуществления каждый корпус 171 может включать в себя входное отверстие 168 и внутренний канал, который может быть выполнен с возможностью направлять поток текучей среды через входное отверстие 173a и затем выходное отверстие 173b датчика перепада давления 172. Между входным отверстием 173a и выходным отверстием 173b датчика перепада давления 172 может находиться проход 175 (ФИГ. 10) с фиксированным диаметром. По меньшей мере в одном таком варианте осуществления диаметр прохода 175 может быть постоянным по всей его длине. Такой проход можно создать, например, в процессе сверления. В других различных вариантах осуществления диаметр прохода 175 может быть непостоянным по всей его длине. В любом случае такие проходы могут быть фиксированными в том смысле, что они не изменяются или по меньшей мере по существу не изменяются со временем. Как более подробно описано ниже и как показано на ФИГ. 9 и 10, датчик перепада давления 172 может дополнительно содержать множество электрических контактов 177, которые могут обеспечивать связь для передачи сигнала между датчиком перепада давления 172 и узлом печатной платы 179 узла блока управления 170. Электрические контакты 177 также могут быть выполнены с возможностью обеспечения датчика перепада давления 172 электропитанием. Различные датчики перепада давления доступны в продаже и поставляются, например, компанией Honeywell.

Как указано выше, датчик перепада давления 172 может быть электрически соединен и/или обмениваться сигналами с узлом печатной платы 179. Более конкретно, узел печатной платы 179 может включать в себя, среди прочего, например, микропроцессор и/или любой подходящий компьютер, причем датчик перепада давления 172 может быть выполнен с возможностью генерировать электрический потенциал, который затем передается микропроцессору узла печатной платы 179. По меньшей мере в одном таком варианте осуществления микропроцессор узла печатной платы 179 может быть выполнен с возможностью преобразовывать потенциал, поступающий с датчика перепада давления 172, и рассчитывать скорость потока текучей среды, протекающей через датчик перепада давления 172.

В определенных вариантах осуществления, в дополнение к описанному выше, множество значения скорости потока текучей среды можно хранить в просмотровой таблице, созданной, например, в программируемой памяти узла печатной платы 179. В различных вариантах осуществления значения ожидаемых скоростей потока текучей среды в просмотровой таблице часто можно предсказать теоретически, хотя в некоторых вариантах осуществления значения можно определить эмпирически и затем сохранить в программируемой памяти. В любом случае скорость потока текучей среды можно определить как функцию манометрического давления текучей среды, подаваемой циркуляционным насосом 162 и поступающей в коллектор 166. По меньшей мере в одном таком варианте осуществления, датчик манометрического давления, такой как, например, датчик манометрического давления 159 (ФИГ. 3), можно разместить после выходного отверстия циркуляционного насоса 162 таким образом, чтобы можно было измерять манометрическое давление текучей среды, подаваемой в каждую из линий подачи по каналу 164 устройства повторной обработки. В таких вариантах осуществления датчик манометрического давления 159 может быть электрически соединен и/или может обмениваться сигналами с узлом печатной платы 179 блоков управления потоком 170 таким образом, что манометрическое давление текучей среды можно передавать микропроцессору каждого узла печатной платы 179 в форме электрического потенциала. После передачи величины манометрического давления текучей среды в узел печатной платы 179 в различных вариантах осуществления микропроцессор может определить скорость потока текучей среды из просмотровой таблицы и сравнить величину скорости потока текучей среды с целевой скоростью потока текучей среды. Часто реальная скорость потока не будет полностью совпадать с целевой скоростью потока, и, таким образом, приемлемым может быть диапазон значений реальной скорости потока от минимального целевого значения до максимального целевого значения.

В различных вариантах осуществления, в дополнение к описанному выше, скорость потока текучей среды через линию подачи по каналу 164 устройства повторной обработки можно определить как функцию двух переменных - величины манометрического давления от датчика манометрического давления 159, как описано выше, и, кроме того, величины перепада давления от датчика перепада давления 172 соответствующего устройства управления потоком 170. Такая система может использовать множество просмотровых таблиц для определения скорости потока текучей среды. Например, для каждого возможного значения манометрического давления текучей среды, подаваемой в коллектор 166, такого как, например, 241 кПа (35 фунтов/кв. дюйм), в каждом узле печатной платы 179 может храниться таблица, устанавливающая соответствие между показаниями датчика перепада давления 172 и ожидаемой скоростью потока. В таких вариантах осуществления может возникать потребность в использовании большого диапазона манометрических давлений, и, таким образом, может требоваться большое количество просмотровых таблиц. В других различных вариантах осуществления давление текучей среды, подаваемой в линии подачи 164 устройства повторной обработки, может быть ограничено конкретным давлением или ограниченным диапазоном давлений. По меньшей мере в одном таком варианте осуществления, как показано на ФИГ. 3A, система циркуляции текучей среды в устройстве повторной обработки инструментов 100 может включать в себя клапан ограничения давления, такой как, например, пропорциональный клапан 158, который может сообщаться по текучей среде с выходным отверстием циркуляционного насоса 162 и контуром обратной связи по текучей среде 157. По меньшей мере в одном таком варианте осуществления пропорциональный клапан 158 может быть выполнен с возможностью перенаправления части текучей среды, подаваемой насосом 162, и возврата перенаправленной текучей среды в систему циркуляции через входное отверстие, расположенное, например, до насоса 162, так что давление текучей среды, подаваемой в коллектор 166, поддерживается на постоянном или по меньшей мере по существу постоянном уровне, таком как, например 241 кПа (35 фунтов/кв. дюйм изб.). По меньшей мере в одном таком варианте осуществления можно использовать узел печатной платы, включающий в себя, например, микропроцессор и/или любой подходящий компьютер, который электрически соединен и/или может сообщаться для передачи сигналов с датчиком манометрического давления 159 и пропорциональным клапаном 158. В процессе применения, когда манометрическое давление текучей среды превышает, например, 241 кПа (35 фунтов/кв. дюйм изб.), узел печатной платы может подать пропорциональному клапану 158 команду открыться на определенную величину или на дополнительную величину, чтобы позволить текучей среде или большему количеству текучей среды протекать через контур обратной связи по текучей среде 157. В таких случаях такие действия могут снизить давление текучей среды, протекающей к коллектору 166. Если давление текучей среды остается выше 241 кПа (35 фунтов/кв. дюйм изб.), узел печатной платы может подать пропорциональному клапану 158 команду открыться на дополнительную величину. Такие этапы можно повторять любое подходящее число раз до достижения необходимого давления текучей среды. Соответственно, когда манометрического давление текучей среды оказывается ниже, например, 241 кПа (35 фунтов/кв. дюйм изб.), узел печатной платы может подать пропорциональному клапану 158 команду закрыться на определенную величину для уменьшения скорости потока текучей среды, протекающей через контур обратной связи по текучей среде 157. В таких случаях такие действия могут поднять давление текучей среды, протекающей к коллектору 166. Если давление текучей среды остается ниже 241 кПа (35 фунтов/кв. дюйм изб.), узел печатной платы может подать пропорциональному клапану 158 команду закрыться на дополнительную величину. Такие этапы можно повторять любое подходящее число раз до достижения необходимого давления текучей среды.

С учетом описанного выше в различных вариантах осуществления манометрическо