Обратная связь в реальном времени для предотвращения геометрических позиций высокой дозы с-дуги

Иллюстрации

Показать все

Изобретение относится к устройству для оказания помощи в работе интервенционного формирователя рентгеновского изображения при получении изображения, к способу обеспечения помощи в работе формирователя рентгеновского изображения и к интервенционному формирователю рентгеновского изображения. Устройство содержит формирователь изображения, способный изменять дозировки рентгеновского излучения в зависимости от различий в уровнях ослабления рентгеновского излучения при прохождении через объект, представляющий интерес, подлежащий изображению. Причем формирователь изображения дополнительно способен допускать любое из множества геометрических позиций формирования изображения при получении изображения. Кроме того, устройство содержит: блок (201) ввода, выполненный с возможностью приема запроса на изменение текущей геометрической позиции формирования изображения для обновленной геометрической позиции формирования изображения для использования при получении изображения; блок (205) памяти, выполненный с возможностью сохранения функционального соотношения между геометрическими позициями формирования изображения и дозировками рентгеновского излучения, причем функциональное соотношение опирается на ожидаемые уровни ослабления рентгеновского излучения в объекте, представляющем интерес; блок (210) вывода, выполненный с возможностью использования сохраненного функционального соотношения для обеспечения оператору-человеку интервенционного формирователя рентгеновского изображения индикации изменения в дозировке рентгеновского излучения, необходимой в обновленной геометрической позиции формирования изображения, относительно дозировки рентгеновского излучения, необходимой в опорной позиции. 4 н. и 18 з.п. ф-лы, 7 ил.

Реферат

Настоящее изобретение относится к устройству для оказания помощи в работе интервенционного формирователя рентгеновского изображения при получении изображения, к способу обеспечения помощи в работе формирователя рентгеновского изображения, к интервенционному формирователю рентгеновского изображения, к элементу компьютерной программы и к машиночитаемому носителю.

Уровень техники

Оборудование формирования рентгеновского изображения широко используется медицинским персоналом для получения ключей о состоянии пациента или в ходе медицинских вмешательств. В WO 2011/042834 раскрыто оборудование формирования рентгеновского изображения.

При использовании рентгеновского оборудования, пациент неизбежно подвергается воздействию некоторого рентгеновского излучения, что угрожает здоровью. Современное рентгеновское оборудование позволяет оператору изменять дозировку рентгеновского излучения согласно имеющимся медицинским показаниям. Однако эта свобода может обернуться нагрузкой на медицинский персонал, желающий найти правильный баланс между используемым уровнем рентгеновской экспозиции пациента в данной процедуре получения изображения и медицинской релевантностью материала изображения, полученного в ходе этого получения.

Сущность изобретения

Таким образом, практикующие врачи могут нуждаться в поддержке при работе с формирователями рентгеновского изображения.

Задача настоящего изобретения решается посредством предмета независимых пунктов формулы изобретения, причем дополнительные варианты осуществления включены в зависимые пункты формулы изобретения.

Следует отметить, что описанные ниже аспекты изобретения в равной степени применимы к способу обеспечения помощи в работе интервенционного формирователя рентгеновского изображения при получении изображения, к формирователю рентгеновского изображения, к элементу компьютерной программы и к машиночитаемому носителю.

Согласно одному аспекту изобретения, предусмотрено устройство для оказания помощи в работе формирователя рентгеновского изображения в ходе процедуры получения изображения.

Формирователь рентгеновского изображения способен изменять дозировки рентгеновского излучения в зависимости от различий в уровнях ослабления рентгеновского излучения при прохождении через объект, представляющий интерес, подлежащий изображению и способен допускать любое из множества геометрических позиций формирования изображения при получении изображения.

Устройство содержит:

блок ввода, выполненный с возможностью приема запроса на изменение текущей геометрической позиции формирования изображения для обновленной геометрической позиции формирования изображения для использования при получении изображения;

блок памяти, выполненный с возможностью сохранения функционального соотношения между геометрическими позициями формирования изображения и дозировками рентгеновского излучения, причем функциональное соотношение опирается на ожидаемые уровни ослабления рентгеновского излучения в объекте, представляющем интерес;

- блок вывода, выполненный с возможностью использования сохраненного функционального соотношения для обеспечения оператору-человеку интервенционного формирователя рентгеновского изображения индикации изменения в дозировке рентгеновского излучения, необходимой в обновленной геометрической позиции формирования изображения, относительно дозировки рентгеновского излучения, необходимой в опорной позиции.

Процедура получения изображения включает в себя один или более "проходов", в каждом из которых соответствующая геометрическая позиция формирования изображения используется для экспозиции или для "съемки" или получения, например, проекционного рентгеновского изображения.

Согласно одному варианту осуществления, формирователь рентгеновского изображения относится к интервенционному типу C-дуги с возможностью ручного управления для изменения геометрических позиций формирования изображения. Геометрические позиции формирования изображения представляют собой координаты или другие параметры настройки для одной или более подвижных частей формирователя изображения. Взаимное пространственное соотношение между этими частями совместно с позицией изображаемого объекта задают угол падения, используемый для получения изображения. Формирователь изображения включает в себя источник рентгеновского излучения и детектор для детектирования рентгеновского излучения, излучаемого источником и ослабляемого изображаемым объектом. Угол падения "клинического вида" или вида в проекции задает угол в 3D пространстве, под которым рентгеновское излучение падает на объект.

Согласно одному варианту осуществления, геометрическая позиция формирования изображения задается параметром, содержащим любой один или более из угла поворота и угла ангуляции C-дуги и выбираемое расстояние от источника рентгеновского излучения до детектора изображения (SID).

При интервенционном формировании рентгеновского изображения с помощью C-дуги, некоторые геометрические позиции или углы формирования изображения значительно благоприятнее для пациента в отношении дозировки рентгеновского излучения, чем другие, в связи с чем, требуется меньшая дозировка. Эта дозировка, необходимая для поддержания желаемого качества изображения, непосредственно коррелирует с расстоянием, пройденным рентгеновским излучением в ткани. Например, применительно к исследованию сердца, вид паука "большого угла" требует до 6 раз большей дозы рентгеновского излучения, чем для формирования нормального фронтального (AP - переднезаднего) изображения. Устройство использует тот факт, что относительно небольшие изменения геометрического угла оказывают слабое влияние на видимость анатомии, но могут оказывать значительное влияние на дозу в направлении ее снижения.

Оптимальный с клинической точки зрения вид может потребовать относительно высокой дозировки, но угол, немного отличающийся от этого оптимального вида, может быть столь же хорош в отношении качества изображения и анатомического вида, но все же требовать значительно более низкой дозировки рентгеновского излучения.

Согласно одному варианту осуществления, качество изображения, которое нужно поддерживать между разными позициями, является переменным. Затем значения данных, хранящиеся в памяти, повторно вычисляются. Это дает клиницисту больше возможностей управления при выборе подходящего вида.

Функциональное соотношение это набор значений данных, описывающих, как изменяется необходимая дозировка с изменением геометрических позиций формирования изображения. Значения описывают это изменение относительно необходимой дозировки рентгеновского излучения в выбираемой опорной геометрической позиции формирования изображения. Каждая координата возможной геометрической позиции формирования изображения связана с отношением,, описывающим относительное изменение в необходимой дозировке в позиции с этой координатой. В одном варианте осуществления, выбирается только подмножество всевозможных координат геометрической позиции формирования изображения ("фазового пространства"), которым назначены эти отношения. Затем отношения для промежуточных позиций можно вырабатывать по мере необходимости посредством процедуры интерполяции.

Устройство помогает врачу выбрать наилучший компромисс между углом наблюдения и дозой, вводимой пациенту. Врачи, не знающие ни текущего геометрического угла, ни настройки SID, может использовать более высокий угол/SID для наблюдения, чем необходимо. Это особенно справедливо, когда оператор передерживает желаемую геометрическую позицию при использовании ручной регулировки геометрической позиции формирования изображения формирователя изображения и не исправляют эту ошибку.

Сигнал индикации, генерируемый устройством (в реальном времени), интуитивно ясен, чтобы клиницист мог, даже в очень напряженной обстановке, например в ходе вмешательства, быстро определить, как изменится требование к дозировке при изменении геометрической позиции формирования изображения. Он может быстро сказать, является ли необходимая дозировка в предусмотренной позиции высокой дозировкой или нет, и как дозировка изменяется в окрестности этой предусмотренной позиции, чтобы найти позицию, достаточно близкую, но с как можно более низкими требованиями к дозировке.

Согласно одному варианту осуществления индикация визуализируется и отображается на экране в качестве графического отображения, при этом графическое отображение, отображаемое таким образом, включает в себя множество индикаторных элементов геометрической позиции относительно дозировки рентгеновского излучения, при этом каждый индикаторный элемент представляет одну из геометрических позиций и относительное изменение дозировки рентгеновского излучения, необходимой в этой геометрической позиции формирования изображения.

Согласно одному варианту осуществления, изменение в дозировке рентгеновского излучения кодируется цветом с помощью индикаторных элементов, причем цветовое кодирование непосредственно изменяется с относительными изменениями в требованиях к дозировке рентгеновского излучения между индикаторными элементами.

Согласно одному варианту осуществления, индикаторные элементы образуют точки одной из множества контурных линий сохраненного функционального соотношения между геометрическими позициями формирования изображения и дозировками рентгеновского излучения. С интуитивной точки зрения, ГИП контурных линий формирует "виртуальный ландшафт" функционального соотношения между необходимыми уровнями дозировки и геометрическими позициями формирования изображения.

Согласно одному варианту осуществления, графическое отображение является графическим пользовательским интерфейсом, включающим в себя курсор, причем позиция курсора в графическом отображении представляет текущую геометрическую позицию формирования изображения, причем позиция курсора изменяется с переходом формирователя рентгеновского изображения из текущей позиции в обновленную геометрическую позицию формирования изображения.

Управление геометрической позицией остается с оператором, но устройство повышает и поддерживает осведомленность об этом компромиссе вида и дозировки и обеспечивает интуитивный визуальный ключ посредством ГИП для улучшения навигации по "виртуальному ландшафту" этого функционального соотношения. Таким образом, предписания ALRA можно наблюдать даже в ходе напряженных вмешательств.

Согласно одному варианту осуществления индикация визуализируется и отображается на экране в качестве графического отображения, при этом графическое отображение, отображаемое таким образом, включает в себя сетчатую структуру с разными индикаторами позиции в сетке, представляющими разные геометрические позиции формирования изображения. Индикаторы позиции в сетке визуально кодируются, причем кодирование изменяется между индикаторами позиции в сетке при изменении в необходимой дозировке рентгеновского излучения, при этом упомянутое изменение выражается в отношении ожидаемого уровня ослабления рентгеновского излучения при использовании соответствующей геометрии формирования изображения для получения изображения объекта. Графическое отображение дополнительно включает в себя, по меньшей мере, один индикатор использования дозировки, имеющий размер, и располагается в любой из точек сетки. Упомянутый размер изменяется с дозировкой рентгеновского излучения, используемой в текущей процедуре формирования изображения или в ряде предыдущих процедур формирования изображения в соответствующей геометрической позиции формирования изображения.

Согласно одному варианту осуществления, графическое отображение включает в себя дополнительный индикатор использования дозировки, имеющий размер, блок вывода, выполненный с возможностью масштабирования двух размеров относительно друг друга таким образом, чтобы больший из двух размеров не превышал заранее заданный максимальный размер, причем максимальный размер заранее установлен по отношению к размеру отображаемой сетки. Это не позволяет размеру индикаторов использования дозировки выходить за пределы пропорции относительно других индикаторов, которые, в противном случае, могут заслонять вид на сетке. Это особенно полезно, когда одна конкретная геометрическая позиция используется непропорционально чаще других.

Согласно одному варианту осуществления уровень ослабления визуализируется в отношении любой из i) средней толщины пациента, приведенной к воде, ii) средней или пиковой мощности кермы в воздухе, или iii) эффективной дозировки для объекта. Согласно одному варианту осуществления, величина или уровень ослабления в теле пациента с использованием данной геометрии формирования изображения отображается в шкалу длины пути в ткани, приведенной к воде. Для кости, например, 1 см кости даст несколько см толщины пациента, приведенной к воде.

Генерируемое графическое отображение позволяет представить трудно визуализируемую 4-мерную информацию на 2D экране с использованием, в одном варианте осуществления, цветового кодирования и индикаторных символов разных размеров. ГИП позволяет одновременно отображать как использование в исследовании (количество кадров, количество проходов, время прохода или дозу/AK), так и среднюю толщину пациента или относительную дозу как функцию ангуляции и поворота C-дуги в системе формирователя изображения. Благодаря одновременному отображению толщины пациента и использования дозировки в исследовании, оператор имеет возможность поддерживать полный обзор, как дозировка использовалась, либо в текущем исследовании, либо в ряде предыдущих исследований, осуществляемых на объекте. Эта графическая информация извлекаема и наблюдаема в автономном окружении после фактической процедуры формирования изображения и может использоваться для обучения и образования операторов формирователей рентгеновского изображения для достижения углубленного понимания использования дозировки, выраженного в отношении различных величин и параметров.

Согласно одному варианту осуществления индикация визуализируется и отображается на экране в качестве графического отображения, причем объект располагается на столе в ходе получения изображения, при этом графическое отображение, отображаемое таким образом, включает в себя кодированный цветом индикатор расстояния от источника до изображения или высоты стола, причем цветовое кодирование указывает относительное изменение в дозировке рентгеновского излучения, необходимой для соответствующего расстояния от источника до изображения или высоты стола.

Согласно одному варианту осуществления индикация визуализируется и отображается на экране в качестве графического отображения, при этом графическое отображение, отображаемое таким образом, включает в себя визуально кодированный индикатор для дозировки рентгеновского излучения, используемой для выбираемого пользователем размера детектора в процедуре формирования изображения, и индикатор использования коллимации, указывающий использование коллиматора для упомянутого выбранного размера поверхности детектора.

Генерируемая таким образом графическая информация о дозировке рентгеновского излучения также может использоваться инструментами формирования отчета для улучшения просмотра истории исследований для конкретного пациента и/или оператора или может подаваться "онлайн" и соответственно обновляться по ходу процедуры формирования изображения.

Согласно одному варианту осуществления, индикация обеспечивается посредством акустического сигнала, имеющего тон, изменяющийся прямо пропорционально относительному изменению в требованиях к дозировке рентгеновского излучения по множеству геометрических позиций формирования изображения, причем тон изменяется таким образом с изменением геометрической позиции формирования изображения от текущей геометрической позиции формирования изображения до обновленной геометрической позиции формирования изображения.

В одном варианте осуществления сигнал индикации обеспечивается как сигнал отрицательной обратной связи оператору формирователя изображения типа C-дуги при управлении позицией с использованием джойстика.

Механизм отрицательной обратной связи геометрических средств управления перемещением благоприятствует углам низкой дозы и препятствует оператору в использовании углы высокой дозы, направляя его от углов высокой дозы к углам низкой дозы.

Согласно одному варианту осуществления сигнал индикации отрицательной обратной связи (в реальном времени) действует на механическое управляющее устройство, например, джойстик, используемый оператором для запрашивания изменения в геометрической позиции формирования изображения.

Согласно одному варианту осуществления, отрицательная обратная связь осуществляется посредством вибраций, сообщаемых механическому управляющему устройству.

Глубина отрицательной обратной связи или частота вибраций изменяется прямо пропорционально относительному изменению в требованиях к дозировке рентгеновского излучения на и по множеству геометрических позиций формирования изображения. Глубина обратной связи, например частота, изменяется с изменением геометрической позиции формирования изображения от текущей позиции к обновленной геометрической позиции формирования изображения. Согласно варианту осуществления, частота вибрации джойстика увеличивается по мере того, как формировать изображения типа С-дуги перемещается из позиции в позицию с более высокой необходимой дозировкой рентгеновского излучения.

Согласно одному варианту осуществления, отрицательная обратная связь осуществляется путем адаптации скорости, с которой C-дуга перемещается между разными геометрическими позициями формирования изображения. Движения в сторону углов высокой дозировки замедляются, тогда как движения в сторону углов низкой дозировки ускоряются, подталкивая оператора к выбору углов низкой дозировки.

Устройство доставляет отрицательную обратную связь в том смысле, что области низкой дозировки в фазовом пространстве, образованном всевозможными геометрическими позициями формирования изображения, считаются "устойчивыми состояниями", тогда как области высокой дозировки управляющая схема устройства рассматривает как "возмущенные состояния". Устройство действует на управляющее устройство, препятствуя удалению геометрической позиции формирования изображения от устойчивых состояний и способствуя приближению к устойчивым состояниям.

Устройство можно использовать с любым формирователем рентгеновского изображения с геометрическими средствами ручного управления перемещением. Устройство может быть встроено как дополнение в существующую систему геометрического перемещения формирователя изображения. В одном варианте осуществления она образует расширение подсистемы предотвращения столкновений, которая не позволяет подвижным деталям ударять по объектам, оказавшимся на их пути. Графический пользовательский интерфейс можно представлять на "родных" мониторах, используемых в существующем формирователе рентгеновского изображения.

Краткое описание чертежей

Иллюстративные варианты осуществления изобретения будет описано ниже со ссылкой на следующие чертежи, в которых:

фиг. 1 демонстрирует упрощенную блок-схему формирователя рентгеновского изображения совместно с устройством для оказания помощи в работе формирователя рентгеновского изображения;

фиг. 2 схематически демонстрирует вид спереди формирователя изображения, показанного на фиг. 1, при получении изображения;

фиг. 3 демонстрирует один вариант осуществления графического пользовательского интерфейса, генерируемого устройством, показанным на фиг. 1;

фиг. 4 демонстрирует второй вариант осуществления геометрической позиции формирования изображения для обновленной

графического пользовательского интерфейса, генерируемого устройством, показанным на фиг. 1;

фиг. 5 демонстрирует блок-схему операций способа обеспечения помощи в работе формирователя рентгеновского изображения.

Фиг. 6 демонстрирует третий вариант осуществления графического пользовательского интерфейса, генерируемого устройством, показанным на фиг. 1;

фиг. 7A-C демонстрируют дополнительные варианты осуществления графического пользовательского интерфейса, генерируемого устройством, показанным на фиг. 1.

Подробное описание вариантов осуществления

На фиг. 1 показано интервенционное оборудование 100 формирования рентгеновского изображения (формирователь рентгеновского изображения) типа C-дуги. К одному из концов дуги 105 или рамы в форме буквы "C" присоединен источник 120 рентгеновского излучения, а на другом ее конце располагается детектор 110 выполненный с возможностью детектирования рентгеновского излучения, излучаемого упомянутым источником 120 рентгеновского излучения.

Жесткая C-дуга 105 соединена с валом посредством сочленения. Вал опирается на подшипник 130, что позволяет поворачивать дугу 105, несущую на себе агрегат источника 120 рентгеновского излучения и детектора 105 ("агрегат источника и детектора"). Подшипник 130 включает в себя компоновку контактного кольца, которая обеспечивает возможность обмена электронными сигналами между агрегатом источника и детектора и операторским пультом 180 через подходящую сеть связи.

Стол или носилки 125 для пациента располагается центрально между окружностью, описываемой источником 120 рентгеновского излучения, и детектором 105 при вращении дуги 105. Пациент 115 располагается на стол 125 таким образом, что анатомический объект, представляющий интерес, располагается, по существу, в центре упомянутой окружности. Объектом, представляющим интерес, может быть сердце пациента в ходе вмешательства в работу сердца, поддерживаемого формирователем рентгеновского изображения, например, при размещении катетера в сердечном сосуде.

В ходе прохода получения изображения, пациент 115 лежит на столе 125, при этом голова пациента ориентирована в краниальном направлении, а стопы пациента - в каудальном направлении как указано на фиг. 1. C-дуга 105 вращается вокруг пациента 115, и, таким образом, сердце 116 занимает конкретную угловую позицию β, для обеспечения желаемого вида в проекции сердца 116, в котором нужно получить рентгеновское изображение.

Затем источник 120 рентгеновского излучения испускает рентгеновское излучение, облучающее сердце 116 пациента. Рентгеновское излучение проходит от источника 120 через сердце 116 и затем попадает на детектор 110. Каждый рентгеновский фотон p падает на детектор 120 и генерирует сигнал, который преобразуется системой 135 получения данных в информацию пиксельного изображения. Рентгеновское излучение p ослабляется при прохождении через ткань сердца 116. Степень или уровень ослабления регистрируется и кодируется в виде соответствующего значения серого, связанного с этим пикселем.

Поскольку C-дуга 105 вращается вокруг сердца 116 и продольной оси пациента 115, оператор. формирователя 100 изображения, при желании, может получить множество проекционных изображений ("видов") под несколькими разными углами проекции -β или +β бета.

Формирователь 100 изображения обеспечивает дополнительную степень свободы, а именно, поворот ("ангуляцию") вокруг сочленения 132 и оси, перпендикулярной продольной оси. Поэтому плоскость окружности, описываемой поворотным агрегатом источника и детектора, поддерживаемым C-дугой 105, может наклоняться вокруг сочленения 132 под желаемым углом ангуляции -α/+α относительно опорного направления 0°. При ангуляции 0° линия источник-детектор приблизительно нормальна к грудной клетке пациента. Ангуляция под углом +α приводит такому наклону дуги 105, при котором детектор 110 перемещается в каудальном направлении, тогда как ангуляция под углом -α приводит такому наклону дуги 105, при котором детектор 110 перемещается в краниальном направлении.

Множество проекционных изображений, полученных при разных комбинациях углов ангуляции и поворота, затем передаются из DAS 135 в базу 160 данных, где проекционные изображения сохраняются в подходящем формате, например DICOM. Управление работой формирователя 100 рентгеновского изображения осуществляется с пульта 180 управления. Пульт 180 управления осуществляет связь с экраном 190, где можно наблюдать полученные проекционные изображения.

В формирователе 100 рентгеновского изображения, угол проекции (угол падения) или "клинический" вид задается парой углов поворота и ангуляции (α, β) и выбирается оператором в зависимости от медицинской диагностики или поставленной задачи интервенции.

Еще одна степень свободы обеспечивается за счет радиальной подвижности детектора 110, которая указана вертикальной двойной стрелкой на фиг. 1. Детектор 110 может перемещаться к пациенту 115 или от него. Это позволяет управлять рассеянием, когда облучающее рентгеновское излучение покидает ткань тела.

Формирователь 100 рентгеновского изображения также может включать в себя блок цикла автоматического управления дозировкой рентгеновского излучения (не показан) позволяющий наблюдать заранее заданный максимум допустимой дозировка рентгеновского излучения для пациента 115.

Контроллер дозировки рентгеновского излучения также управляет входом дозировки рентгеновского излучения, излучаемого источником 120 рентгеновского излучения, для управления качеством изображения (IQ), которое допускает количественное выражение, и выходом в качестве количественного отношения с помощью надлежащим образом сконфигурированной схемы контрастность-шум (CNR) после считывания пиксельной информации в проекционном изображении. IQ изменяется непосредственно с дозировкой рентгеновского излучения таким образом, что получение изображения с использованием более высокой дозировки рентгеновского излучения приводит к увеличению IQ этого изображения.

Таким образом, двумя аспектами операций получения рентгеновского изображения являются (i) угол проекции, который определяет, какая часть анатомии, в принципе, может быть представлена' в изображении, и (ii) дозировка рентгеновского излучения, используемая для получения, которая определяет качество изображения, в которых представлена анатомия.

Существует функциональное соотношение между углом проекции и необходимой дозировкой рентгеновского излучения, и физическое обоснование этого функционального соотношения будет объяснено со ссылкой на фиг. 2, где показан вид спереди формирователя 100 изображения.

Представление C-дуги 105 сплошной вертикальной линией показано в позиции 0°, когда линия датчик-детектор примерно перпендикулярна грудной клетке пациента 115. Представление пунктирной линией демонстрирует C-дугу 105 при угле поворота +β>0°.

В обеих угловых позициях, рентгеновское излучение p, излучаемое источником 120 рентгеновского излучения, ослабляется при прохождении через сердце 116 пациента 115, и затем ослабленное рентгеновское излучение p детектируется детектором 110. Согласно анатомии сердца 116 и грудной клетки пациента 115, длина 10 пути в ткани при угле поворота 0° меньше длины пути в ткани lβ при угле поворота +β. Согласно примеру, приведенному на фиг. 2, изменение угла падения, в общем случае, сопровождается изменением длины пути в ткани, то есть, толщей ткани, которую должно преодолеть рентгеновское излучение при входе в ткань под этим углом падения. Закон Бугера-Ламберта-Бера утверждает, что падение интенсивности рентгеновского излучения, регистрируемое детектором 110, экспоненциально пропорционально длине пути в ткани. Другими словами, входная доза рентгеновского излучения (дозировка, необходимая до того, как рентгеновское излучение проникнет в ткань), необходимая для угла поворота +β ("большой угол") экспоненциально больше входной дозировки рентгеновского излучения, необходимой при угле поворота 0° для переднезаднего (AP) изображения, при условии, что в обоих случаях для поддержания заранее заданного IQ требуется одна и та же выходная дозировка рентгеновского излучения (дозировка, детектируемая детектором 110). Аналогичное наблюдение справедливо по аналогии с углами ангуляции α.

Закон обратных квадратов для распространения излучения утверждает, что дозировка снижается обратно пропорционально квадрату полного расстояния, пройденного рентгеновским излучением, поэтому аналогичный анализ можно проводить при изменении расстояния между источником и изображением (SID).

Было установлено, что приблизительно для каждых 3 см дополнительной ткани (приведенной к эквивалентной толщине воды), входную дозировку рентгеновского излучения пациент потребуется увеличить с коэффициентом 2 для поддержания того же CNR, если же дозировку рентгеновского излучения оставить неизменной, CNR упадет с коэффициентом √2. На практике, вид "большого угла" потребует даже более чем 4-6-кратного увеличения дозировки для поддержания CNR, если же дозировку рентгеновского излучения оставить неизменной, CNR упадет с коэффициентом 2-3.

Угол проекции или вид (α, β), совместно с SID, заданным выбираемой радиальной позицией детектора 110, задают геометрическую позицию формирования изображения (α, β, SID). Геометрическая позиция формирования изображения определяет, какой анатомический признак или какая часть анатомии, представляющая интерес можно наблюдать в проекционном изображении.

Координаты геометрической позиции формирования изображения (α, β, SID) выбираются оператором на операторском пульте 180 с использованием механического управляющего устройства, например, джойстика 170. Например, перемещение джойстика влево или вправо приводит к изменению угла ангуляции α в краниальном направлении (-α) или в каудальном направлении (+α), соответственно. Аналогично, перемещение джойстик вверх или вниз приводит к изменению угла поворота β по часовой стрелке (+β) или против часовой стрелки (-β), соответственно. SID, которое является радиальной позицией детектора 110, можно регулировать, вытягивая или вдавливая джойстик 170.

Хотя изменение геометрической позиции формирования изображения (отличной от SID) в и его самого не приведет к изменению уровней дозировки, различия в уровнях ослабления, связанные с таким изменением геометрии, в общем случае, приведут. Как показано выше на фиг. 2, дело в том, что чем больше длина пути в ткани, тем более высокая дозировка рентгеновского излучения необходима для поддержания заранее заданного требуемого качества изображения.

Вернемся к фиг. 1, в нижнем правом углу которого показана упрощенная блок-схема устройства для оказания помощи в работе интервенционного формирователя 100 рентгеновского изображения.

Устройство 200, цифровой блок обработки, содержит блок 201 ввода, блок 205 памяти и блок 210 вывода.

Показано, что компоненты устройства включены в блок 200 обработки. Однако это сделано только для наглядности иллюстрации. Альтернативно, компоненты устройства, а именно, блок 201 ввода, блок 205 памяти и блок 210 вывода могут быть распределены и соединены друг с другом подходящей сетью связи. Согласно варианту осуществления, показанному на фиг. 1, компоненты 201, 201 и 205 выполняются как программные процедуры на блоке 200 обработки. Компоненты можно программировать в подходящей научной вычислительной платформе, например, Matlab® или Simulink® и затем транслировать в процедуры C++ или C, поддерживаемые в библиотеке и линковать при вызове блоком 200 обработки. В прочих вариантах осуществления, компоненты также можно реализовать в виде специализированных FPGA или в виде аппаратных самостоятельных микросхем.

В широком смысле, устройство 200 помогает практикующему врачу, проводящему процедуру вмешательства, находить компромисс между наилучшим клиническим видом сердца 116 и наименьшей возможной рентгеновской экспозицией для пациента 115. Как упомянуто ранее, клинический вид определяется выбранной геометрической позицией формирования изображения. Некоторые геометрические позиции (большие углы) обеспечивают, с клинической точки зрения, наилучший вид анатомии. Однако это может достигаться ценой введения пациенту высокой дозировки рентгеновского излучения. Используя геометрическую позицию формирования изображения, немного смещенную относительно этого "априори" наилучшего клинического вида можно обеспечить почти такой же клинический вид сердца 116, но при гораздо более низкой дозировке рентгеновского излучения. Устройство 200 помогает врачу в обработке изображения 100 за счет обеспечения индикации этого компромисса между дозировкой и геометрической позицией.

Индикация доставляется визуально посредством пользовательского интерфейса 195, отображаемого на экране 119 в ходе вмешательства или исследования или посредством других визуальных ключей, например, предупредительного светового индикатора 140, мигающего или изменяющего цвет, когда геометрическая позиция формирования изображения C-дуги достигает угла высокой дозировки. Альтернативно или дополнительно к визуальной индикации, громкоговоритель 150 может активироваться надлежащим образом сконфигурированной звуковой картой для испускания предупреждающего звукового сигнала, тон которого изменяется прямо пропорционально приближению C-дугы 105 к любым областям угла высокой дозировки в фазовом пространстве, образованном всевозможными геометрическими позициями изображения.

В другом варианте осуществления устройство 200 выполнено с возможностью доставки тактильной индикации в форме отрицательной обратной связи на джойстике 170, когда оператор использует его для изменения геометрических позиций формирования изображения C-дуги 105 и направляет к областям угла высокой дозировки.

В одном варианте осуществления, вибрация джойстика осуществляется надлежащим образом сконфигурированным приводом, когда геометрическая позиция формирования изображения C-дуги достигает угла высокой дозировки. Частота вибрации увеличивается по мере приближения к углу высокой дозировки, таким образом, соответственно, предупреждая оператора.

В другом варианте осуществления, если джойстиком 170 работают таким образом, что C-дуга 105 перемещается к углам высокой дозировки, подвижность джойстика автоматически подавляется, давая понять оператору, что не следует продолжать направлять его в сторону угловых областей высокой дозировки.

В любом из вышеприведенных примеров тактильной отрицательной обратной связи, джойстик выполнен по технологии силовой обратной связи. В корпусе джойстика располагается пара электродвигателей. Электродвигатели управляются встроенным в джойстик процессором, осуществляющим связь с устройством 200. В зависимости от необходимых в данный момент уровней дозировки рентгеновского излучения, устройство 200 подает команды управления на процессор джойстика. Электродвигатели выполнены с возможностью передавать усилие через зубчатую передачу на штоковую часть джойстика, проходящую в корпус, таким образом, приводя шток в движение. Электродвигатели развивают механический момент, чтобы все более противодействовать движению штока джойстика, сообщаемое пользователем, когда движение штока джойстика, сообщаемое пользователем приводит к тому, что C-дуга 105 занимает геометрическую позицию с увеличивающимися требованиями к дозировке рентгеновского излучения.

Принцип действия

Устройство 200 призвано прогнозировать, насколько будут возрастать или убывать уровни дозы при изменении геометрической позиции формирования изображения или настроек.

Ожидаемое изменение значений дозировки рентгеновского излучения в зависимости от геометрических позиций формирования изображения (относительно опорной геометрической позиции формирования изображения), заранее загружается (до исследования) в память 110 в виде подходящей структуры данных, например, двух или более-мерной(ого) матрицы или массива.

В одном варианте осуществления, средние значения, полученные из предыдущих вмешательств, используют