Деформируемый термически неупрочняемый сплав на основе алюминия

Иллюстрации

Показать все

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде листов, в качестве конструкционного материала. Деформируемый термически неупрочняемый сплав на основе алюминия содержит, мас.%: магний 5,3-6,3; марганец 0,3-0,6; цирконий 0,08-0,15; бериллий 0,0001-0,005; скандий 0,09-0,14; титан 0,01-0,03; гадолиний 0,06-0,10; железо 0,06-0,22; алюминий и неизбежные примеси - остальное, в том числе кремний не более 0,12, цинк не более 0,1 и медь не более 0,1, при их суммарном содержании не более 0,22, при этом отношение содержания гадолиния к содержанию скандия составляет от 0,5 до 0,9, а отношение содержания железа к содержанию кремния равно или больше единицы. Техническим результатом является повышение прочности и пластичности материала. 1 пр., 2 табл.

Реферат

Предлагаемое изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде листов, в качестве конструкционного материала в авиакосмической технике, судостроении, транспортном машиностроении и других отраслях промышленности.

Известен деформируемый термически неупрочняемый сплав на основе алюминия марки АМг61, применяемый в виде деформированных полуфабрикатов в качестве конструкционного материала, содержащий, мас. %:

Магний 5,5-6,5
Марганец 0,8-1,1
Цирконий 0,02-0,1
Бериллий 0,0001-0,005
Медь, не более 0,05
Цинк, не более 0,2
Железо, не более 0,2
Кремний, не более 0,2
Алюминий Остальное

(см. Алюминиевые сплавы. Промышленные деформируемые спеченные и литейные алюминиевые сплавы. Справочное руководство. М.: Металлургия. 1972. С. 44-45).

Однако существующий сплав имеет низкие прочностные свойства.

Известен деформируемый термически неупрочняемый сплав на основе алюминия, применяемый в виде деформированных полуфабрикатов в качестве конструкционного материала (см. патент RU 2081934, МПК С22С 21/06 - прототип), следующего химического состава, мас. %:

Магний 5,3-6,3
Марганец 0,2-0,7
Цирконий 0,02-0,15
Бериллий 0,0001-0,005
Скандий 0,17-0,35
По крайней мере
один металл из
группы, содержащей
титан и хром 0,01-0,25
Алюминий Остальное

Недостатком сплава-прототипа является недостаточно высокая прочность и низкая пластичность изготовленных из него листов, что утяжеляет конструкцию, изготовленную из листовых материалов, и снижает ее надежность. Также недостатком сплава-прототипа является довольно высокое содержание в нем дорогостоящего скандия, что удорожает сплав.

Предлагается деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, марганец, цирконий, бериллий, скандий и титан, который дополнительно содержит гадолиний, железо и неизбежные примеси, основными из которых являются кремний, цинк и медь, при следующем соотношении компонентов, мас. %:

Магний 5,3-6,3
Марганец 0,3-0,6
Цирконий 0,08-0,15
Бериллий 0,0001-0,005
Скандий 0,09-0,14
Титан 0,01-0,03
Гадолиний 0,06-0,10
Железо 0,06-0,22

Алюминий и неизбежные примеси, в том числе кремний в количестве не более 0,12 мас. %, цинк в количестве не более 0,1 мас. % и медь в количестве не более 0,1 мас. %, при суммарном содержании примесей кремния, цинка и меди не более 0,22 мас. % - остальное. При этом величина отношения содержания гадолиния к содержанию скандия должна быть от 0,5 до 0,9, а величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.

Предлагаемый сплав отличается от известного тем, что он дополнительно содержит гадолиний, железо и неизбежные примеси, основными из которых являются кремний, цинк и медь, при следующем соотношении компонентов, мас. %:

Магний 5,3-6,3
Марганец 0,3-0,6
Цирконий 0,08-0,15
Бериллий 0,0001-0,005
Скандий 0,09-0,14
Титан 0,01-0,03
Гадолиний 0,06-0,10
Железо 0,06-0,22

Алюминий и неизбежные примеси, в том числе кремний в количестве не более 0,12 мас. %, цинк в количестве не более 0,1 мас. % и медь в количестве не более 0,1 мас. %, при суммарном содержании примесей кремния, цинка и меди не более 0,22 мас. % - остальное. При этом величина отношения содержания гадолиния к содержанию скандия должна быть от 0,5 до 0,9, а величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.

Отличием предлагаемого сплава является также то, что соотношение между содержанием железа и неизбежной примеси кремния в сплаве должно быть не менее единицы. Кроме того, предлагаемый сплав имеет более низкое содержание скандия.

Технический результат - повышение прочности и пластичности, что позволяет снизить массу конструкции и повысить ее надежность, а также снижение стоимости сплава, что позволит снизить стоимость элементов конструкции, изготавливаемой из предлагаемого сплава, и конструкции в целом.

При предлагаемом содержании и соотношении компонентов в процессе кристаллизации слитка сплава предлагаемого состава образуется пересыщенный твердый раствор основных легирующих компонентов (Mg, Mn, Zr, Sc, Gd) в алюминии. При последующих неизбежных технологических нагревах слитка происходит распад пересыщенного твердого раствора, при этом продуктами распада являются дисперсные наноразмерные частицы фазы Al3 (Sc, Zr, Gd), оказывающие сильное упрочняющее действие как непосредственно, так и за счет формирования в деформированном полуфабрикате нерекристаллизованной (полигонизованной) структуры. При предлагаемом соотношении между содержанием скандия и гадолиния обеспечивается наиболее полное усвоение этих элементов расплавом, что обеспечивает максимальное упрочнение при последующем распаде твердого раствора. Основная часть магния и марганца остается в матрице сплава, обеспечивая твердорастворное упрочнение. Титан входит в состав упрочняющей фазы Al3 (Sc, Zr, Gd), растворяясь в ней и способствуя тем самым повышению прочности сплава. При предлагаемом содержании Sc, Zr и Gd в сплаве и предлагаемом соотношении между содержанием этих элементов образовавшаяся при распаде твердого раствора фаза Al3 (Sc, Zr, Gd) обладает высокой термической стабильностью, что позволяет повысить температуру технологических нагревов и предотвратить возможное разупрочнение материала вследствие коагуляции продуктов распада. Частицы фазы Al3 (Sc, Zr, Gd) обладают высокой устойчивостью против перерезания их дислокациями, что приводит к дополнительному упрочнению сплава за счет повышения плотности дислокаций. Добавка железа в сплав формирует частицы фазы Al (Fe, Mn) кристаллизационного происхождения, способствующие упрочнению сплава. Микродобавка бериллия предохраняет плавку от окисления и выгорания магния, что также способствует упрочнению сплава. При предлагаемом содержании Sc, Zr и Gd в сплаве и предлагаемом соотношении между содержанием этих компонентов снижается вероятность образования грубых первичных интерметаллидов Al3 (Sc, Zr, Gd), что способствует повышению пластичности сплава. Повышению пластичности сплава способствует также ограничение содержания неизбежных примесей кремния, цинка и меди. Предлагаемое соотношение между содержанием железа и кремния способствует улучшению литейных свойств сплава. Снижение содержания дорогостоящего скандия в предлагаемом сплаве и его частичная замена цирконием и гадолинием, стоимость которых на порядок ниже стоимости скандия, позволяет снизить стоимость предлагаемого сплава и изготавливаемых из него деформированных полуфабрикатов.

Пример

Получили предлагаемый сплав из шихты, состоящей из алюминия А7, магния Мг90 и двойных лигатур алюминий-марганец, алюминий-цирконий, алюминий-бериллий, алюминий-скандий, алюминий-титан, алюминий-гадолиний и алюминий-железо. Сплав готовили в электрической тигельной печи и отливали плоские слитки размером 16×160×200 мм. Химический состав сплава приведен в таблице 1.

Слитки гомогенизировали, затем механически обрабатывали до толщины 14 мм, после чего нагревали до 400°С и прокатывали вгорячую до толщины 6 мм, затем при 100°С - до толщины 2,8 мм. Полученные листы толщиной 2,8 мм отжигали при 320°С в течение 1 ч. Отожженные листы испытывали при комнатной температуре с определением предела прочности σВ и относительного удлинения δ на стандартных плоских образцах с шириной рабочей части 10 мм (ГОСТ 11701-84), вырезанных в долевом направлении. Также проводили испытания изготовленных тем же способом листов из сплава-прототипа, содержащего, мас. %: магний 5,8, марганец 0,41, цирконий 0,13, бериллий 0,001, скандий 0,19, титан 0,04, алюминий - остальное. Результаты испытаний листов приведены в таблице 2.

Таким образом, предлагаемый сплав имеет примерно на 5% более высокий предел прочности и примерно в 1,3 раза более высокое относительное удлинение, что позволит примерно на 5% снизить массу конструкции и соответственно повысить характеристики весовой отдачи, а также позволит повысить надежность конструкций, изготовленных из тонкого листа, например, топливных баков, что крайне важно для космической техники. Кроме того, за счет того, что предлагаемый сплав, содержит примерно на 47% меньше дорогостоящего скандия, его стоимость может быть уменьшена соответственно.

Деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, марганец, цирконий, бериллий, скандий, титан, алюминий и неизбежные примеси, отличающийся тем, что он дополнительно содержит гадолиний и железо при следующем соотношении компонентов, мас.%:

магний 5,3-6,3
марганец 0,3-0,6
цирконий 0,08-0,15
бериллий 0,0001-0,005
скандий 0,09-0,14
титан 0,01-0,03
гадолиний 0,06-0,10
железо 0,06-0,22

алюминий и неизбежные примеси, в том числе кремний не более 0,12, цинк не более 0,1, медь не более 0,1, при их суммарном содержании не более 0,22 - остальное,

при этом отношение содержания гадолиния к содержанию скандия составляет от 0,5 до 0,9, а отношение содержания железа к содержанию кремния равно или больше единицы.