Аутентификация на основании произвольных бит в спутниковых навигационных сообщениях

Иллюстрации

Показать все

Изобретение относится к области радионавигации. Техническим результатом является обеспечение возможности аутентификации устройств клиента, расположенных в средах с низким соотношением сигнал-шум. Упомянутый технический результат достигается тем, что поднабор демодулируемых принимаемых сервером навигационных сигналов выбирают синхронизированным с битовыми кадрами клиента для обеспечения синхронизированных битовых кадров сервера, функцию синхронизированных битовых кадров сервера вычисляют для обеспечения набора сигнатур сервера, набор сигнатур клиента и набор сигнатур сервера сравнивают для обеспечения результата сравнения, а местоположение устройства клиента аутентифицируют на основании указанного результата сравнения. 2 н. и 14 з.п. ф-лы, 14 ил.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Варианты реализации настоящего изобретения относится в целом к системам навигации и радиосвязи. В частности, варианты реализации настоящего изобретения относятся к спутниковым системам для подтверждения местоположения.

УРОВЕНЬ ТЕХНИКИ

Значительная часть мощности в секретном сигнальном компоненте сигнала навигационного спутника, такого как сигнал глобальной навигационной спутниковой системы (GNSS), может быть потеряна, когда GNSS сигнал проходит через полосовые фильтры, используемые клиентским устройством GNSS (приемником). Потеря мощности ухудшает эксплуатационные показатели в средах с низким соотношением сигнал-шум (SNR). Ухудшение эксплуатационных показателей в средах с низким соотношением сигнал-шум (SNR) может предотвращать или минимизировать возможность подтверждения системой аутентификации того, что вычисление глобального положения или утверждение, основанное на глобальном положении, является истинным.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Предложены система и способы аутентификации местоположения. Поднабор демодулируемых принимаемых сервером навигационных сигналов синхронизирован с битовыми кадрами клиента для обеспечения синхронизированных битовых кадров сервера. Функцию битовых кадров клиента вычисляют для обеспечения набора сигнатур клиента. Функцию синхронизированных битовых кадров сервера вычисляют для обеспечения набора сигнатур сервера. Набор сигнатур клиента и набор сигнатур сервера сравнивают для обеспечения результата сравнения, а местоположение устройства клиента аутентифицируют на основании указанного результата сравнения.

Таким образом, варианты реализации настоящего изобретения обеспечивают систему аутентификации, которая обеспечивает возможность аутентификации устройств клиента, расположенных в средах с низким соотношением сигнал-шум (SNR), таких как помещения и центр города.

В определенном варианте реализации способ аутентификации местоположения выбирает поднабор демодулируемых принимаемых сервером навигационных сигналов, синхронизированных с битовыми кадрами клиента для обеспечения синхронизированных битовых кадров сервера. Способ дополнительно вычисляет функцию синхронизированных битовых кадров сервера для обеспечения набора сигнатур сервера. Способ дополнительно сравнивает набор сигнатур клиента и набор сигнатур сервера для обеспечения результата сравнения и аутентифицирует местоположение устройства клиента на основании указанного результата сравнения.

В другом варианте реализации система для аутентификации местоположения содержит модуль сервера для выбора кадров данных, модуль сервера для выполнения операций над данными, модуль сервера для коррелирования и модуль аутентификации. Модуль сервера для выбора кадров данных выбирает поднабор демодулируемых принимаемых сервером навигационных сигналов, синхронизированных с битовыми кадрами клиента для обеспечения битовых кадров сервера. Модуль сервера для выполнения операций над данными вычисляет функцию синхронизированных битовых кадров сервера для обеспечения набора сигнатур сервера. Модуль сервера для коррелирования сравнивает набор сигнатур клиента и набор сигнатур сервера для обеспечения результата сравнения. Модуль аутентификации аутентифицирует местоположение устройства клиента на основании результата сравнения.

Еще в одном варианте реализации машиночитаемый носитель данных для временного хранения данных содержит машиночитаемые инструкции для аутентификации местоположения. Машиночитаемые инструкции выбирают поднабор демодулируемых принимаемых клиентом навигационных сигналов для обеспечения битовых кадров клиента. Машиночитаемые инструкции дополнительно вычисляют функцию битовых кадров клиента для обеспечения набора сигнатур клиента. Машиночитаемые инструкции дополнительно передают набор сигнатур клиента на сервер аутентификации для аутентификации местоположения устройства клиента. Данный раздел приведен для введения выбора концепций в упрощенной форме, которые описаны более подробно в разделе «Осуществление изобретения». Данный раздел не предназначен для идентификации ключевых или основных признаков заявляемого объекта и не предназначен для использования для облегчения определения объема заявляемого объекта.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Более полное понимание вариантов реализации настоящего изобретения может быть получено по ссылке на раздел «Осуществление изобретения» и формулу изобретения при их рассмотрении вместе с приведенными далее чертежами, причем в настоящей заявке аналогичные ссылочные номера относятся к схожим элементам на всех чертежах. Чертежи приведены для облегчения понимания настоящего изобретения без выхода за пределы объема, сущности или применимости настоящего изобретения. Чертежи не обязательно выполнены в масштабе.

На фиг. 1 показана иллюстративная беспроводная среда связи для аутентификации предполагаемого местоположения на основании сигналов навигационных спутников согласно варианту реализации настоящего изобретения.

На фиг. 2 показана иллюстративная упрощенная функциональная структурная схема приемника навигационного спутника.

На фиг. 3 показана иллюстративная беспроводная среда связи, иллюстрирующая способы, согласно которым среды типа помещения и центр города могут ослаблять сигналы навигационных спутников.

На фиг. 4 показана иллюстративная схема, иллюстрирующая навигационное сообщение навигационного спутника.

На фиг. 5 показана иллюстративная схема, иллюстрирующая наложение навигационных сообщений от трех навигационных спутников.

На фиг. 6 показана иллюстративная схема, иллюстрирующая то, что навигационные сообщения от трех навигационных спутников, показанных на фиг. 5, дискретизированы в течение продолжительности одного бита, согласно варианту реализации настоящего изобретения.

На фиг. 7 показана иллюстративная схема, иллюстрирующая то, что навигационные сообщения от трех спутников, показанных на фиг. 5, дискретизированы в течение продолжительности нескольких бит согласно варианту реализации настоящего изобретения.

На фиг. 8 показана иллюстративная схема, иллюстрирующая определенное количество сигнатур местоположения, которые могут быть обеспечены согласно двум вариантам реализации настоящего изобретения.

На фиг. 9 показана иллюстративная функциональная структурная схема системы аутентификации согласно варианту реализации настоящего изобретения.

На фиг. 10 показана иллюстративная функциональная структурная схема системы аутентификации согласно варианту реализации настоящего изобретения.

На фиг. 11 показана иллюстративная функциональная структурная схема системы аутентификации согласно варианту реализации настоящего изобретения.

На фиг. 12 показана иллюстративная функциональная структурная схема системы аутентификации согласно варианту реализации настоящего изобретения.

На фиг. 13 показана иллюстративная блок-схема, иллюстрирующая процесс аутентификации согласно варианту реализации настоящего изобретения.

На фиг. 14 показана иллюстративная блок-схема, иллюстрирующая процесс аутентификации согласно варианту реализации настоящего изобретения.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Представленное далее подробное описание приведено по существу в качестве примера и не предназначено для ограничения изобретения или применения, и использует варианты реализации настоящего изобретения. Описание конкретных устройств, методик и применений приведено только в качестве примеров. Модификации для примеров, описанных в настоящей заявке, будут полностью очевидны специалистам в области техники, а общие принципы, определенные в настоящей заявке, могут быть применены к другим примерам и применениям без выхода за рамки сущности и объема настоящего изобретения. Кроме того, отсутствует какое-либо намерение связи с какой-либо выраженной или подразумеваемой теорией, представленной в приведенным выше разделах «Область изобретения», «Уровень техники», «Раскрытие изобретения» и приведенном далее подробном описании. Настоящее изобретение должно соответствовать объему согласно формуле изобретения и не должно быть ограничено примерами, описанными и показанными в настоящей заявке. Варианты реализации настоящего изобретения могут быть описаны в настоящей заявке в терминах функциональных и/или логический блочных компонентов и различных этапов обработки. Следует понимать, что такие блочные компоненты могут быть реализованы посредством любого количества аппаратного обеспечения, программного обеспечения и/или компонентов аппаратно-программного обеспечения, выполненных с возможностью выполнения конкретных функций. Для краткости, обычные методики и компоненты, относящиеся к системам связи, сетевым протоколам, глобальным системам определения положения и другим функциональным особенностям систем (и отдельным функциональным компонентам систем), могут быть подробно не описаны в настоящей заявке.

Варианты реализации настоящего изобретения описаны в настоящей заявке в контексте неограничивающего применения, а именно системы аутентификации для применения в мобильных телефонах. Варианты реализации настоящего изобретения, однако, не ограничены такими применениями для мобильных телефонов, а методики, описанные в настоящей заявке, могут быть также использованы в других применениях. Например, варианты реализации могут быть применены к настольному компьютеру, ноутбуку или карманному компьютеру, iPod™, iPod™, универсальному компьютеру коллективного пользования, серверу, клиенту или любому другому типу вычислительного устройства специального или общего назначения, которое может быть необходимо или предназначено для заданного применения или среды.

Как было бы очевидно специалисту в области техники после прочтения данного описания, далее приведены примеры и варианты реализации настоящего изобретения и они не ограничены функционированием в соответствии с этими примерами. Могут быть применены другие варианты реализации, а изменения могут быть выполнены без выхода за рамки объема иллюстративных вариантов реализации настоящего изобретения. Варианты реализации настоящего изобретения обеспечивают систему аутентификации, которая обеспечивает достаточную силу принимаемых сигналов для сигнала навигационных спутников, которые должны быть приняты в устройстве клиента (клиенте), расположенном в среде с низким соотношением сигнал-шум (SNR), такой как помещения в городском здании. На фиг. 1 показана иллюстративная беспроводная среда связи 100 (среда 100) для аутентификации предполагаемого местоположения на основании сигналов навигационных спутников согласно варианту реализации настоящего изобретения. Среда 100 может содержать навигационные спутники 102, 104 и 106, клиент 108, содержащий приемник 200 спутника (приемник 200 навигационного спутника), и сервер 112 аутентификации, содержащий приемник 200 спутника (приемник 200 навигационного спутника).

Каждый из навигационных спутников 102-106 может содержать спутник глобальной навигационной спутников системы (GNSS), спутник глобальной системы определения положения (GPS™), спутник системы ГЛОНАСС (GLONASS™), спутник навигационной системы BeiDou (COMPASS™), спутник Galileo™ или другой навигационный спутник.

Сигналы 116, 118 и 120 навигационных спутников, переданные соответственно от навигационных спутников 102, 104 и 106, могут быть обработаны в клиенте 108 для определения скорости, времени и местоположения 122 клиента 108. Однако в существующих системах сигналы навигационных спутников могут быть подделаны таким образом, что существующий клиент регистрирует и/или сообщает о ложном положении 124. Спуфинг становится всеобщей проблемой, поскольку навигационные спутники все в большей мере используют для обеспечения поддержки. Операции о местоположениях имеют финансовое значение или вовлечены в обеспечение безопасности жизни.

Каждый из сигналов 116-120 навигационных спутников содержит сигнал 130 на частоте (несущей частоте), такой как GPS LI частота, которую используют в качестве несущей (синфазной несущей 130) для модулирования сигнала данных, который модулирован с использованием кода расширения, такого как код для множественного доступа с разделением кода (DMA), обычно называемый "грубым" (С/А) кодом (код 132 расширения спектра). Что касается GPS системы, то С/А код может быть по-разному известен как "Coarse/Acquisition", "Clear/Access" и "Civil/Access". Каждый из навигационных спутников 102-106 передают по меньшей мере в одном другом сигнале, использующем несущую частоту, которая сдвинута на 90 градусов (квадратурный сигнал, не показан). По меньшей мере один другой сигнал (второй сигнал) модулируют посредством другого кода, известного как зашифрованный "P(Y)" код (не показан). P(Y) код представляет собой "точный" (Р) код, который является открытым, или зашифрованный "Y" код. Многие GNSS спутники используют Y код и, следовательно, результирующий передаваемый сигнал, который закодирован с использованием Y кода, может быть использован только тем, кто имеет алгоритм дешифровки и ключ для Y кода.

Кроме того, навигационное сообщение 134 модулирует (известный) Р код и (неизвестный) Y код, широковещаемые навигационными спутниками 102, 104 и 106.

Например, в коммерческих применениях С/А код является открытым и, соответственно, существующий приемник навигационного спутника может быть уязвим для спуфинга. В существующих системах враждебная сторона может генерировать копии одного или большего количества спутниковых сигналов, которые содержат неправильную информацию. Существующий приемник навигационного спутника в устройстве клиента, который принимает ложные сигналы, может быть подвергнут спуфингу для вычисления неправильного положения и может быть подвергнут спуфингу для вычисления положения, которое необходимо враждебной стороне, для получения вычисления от существующего приемника навигационного спутника. Спуфинг может быть неэффективен на тех, кто использует Y код, поскольку данный код не является открытым, так что враждебная сторона не должна иметь возможности создания сигнала, который кажется истинным.

Однако может быть потеряна значительная часть мощности сигнала в компоненте сигнала с (секретным) Y кодом, когда каждый из сигналов 116-120 навигационных спутников проходит через полосовой фильтр, используемый приемником 200 навигационного спутника в клиенте 108. Потеря мощности сигнала может ухудшать эксплуатационные показатели клиента 108 в средах с низким соотношением сигнал-шум (SNR). Ухудшение эксплуатационных показателей может уменьшить возможность сервера 112 аутентификации в обеспечении достоверности того, что вычисление глобального положения или утверждение, основанное на глобальном положении, является истинным. Варианты реализации настоящего изобретения обеспечивают средства для аутентификации положения 122 на основании случайной или псевдослучайной информации, содержащиеся в навигационном сообщении 134, широковещаемом навигационными спутниками 102, 104 и 106 или другими навигационными передатчиками. Таким образом, обеспечен улучшенных охват, причем сигналы 116-120 навигационных спутников могут быть заблокированы по сравнению с существующими способами.

Клиент 108 содержит приемник 200 навигационного спутника и выполнен с возможностью отслеживания и определения положения клиента 108 на основании приема навигационного сообщения 134 каждого из сигналов 116-120 навигационных спутников в принимаемых клиентом спутниковых навигационных сигналах 146 (принимаемых клиентом навигационных сигналах 146) посредством антенны 110 клиента. Клиент 108 выполнен с возможностью оценки бит 136 навигационных данных, содержащихся в навигационном сообщении 134 из множества принимаемых клиентом навигационных сигналов 146, для обеспечения битовых кадров 1030 клиента (включая навигационные сообщения 502/504/506, демодулируемые из принимаемых клиентом навигационных сигналов 146, на фиг. 10). В одном варианте реализации клиент 108 вычисляет функцию, такую как исключающее ИЛИ (XOR) 1008 (см. фиг. 10), по битовым кадрам 1030 клиента (например, от навигационных спутников 102, 104, 106) для обеспечения набора 138 сигнатур клиента предполагаемого местоположения клиента для местоположения 122, как пояснено более подробно далее.

Клиент 108 может поддерживать многие потребительские приложения. Например, многие финансовые транзакции используют сотовые телефоны в качестве клиента 108 в помещениях городских зданий. Клиент 108 может содержать, проводные или беспроводные устройства связи, такие как без ограничения, настольный компьютер, ноутбук или карманный компьютер, iPod, iPod, универсальный компьютер коллективного пользования, сервер или другой тип вычислительного устройства специального или общего назначения, которое содержит приемник, такой как приемник 200 навигационного спутника, выполненный с возможностью приема принимаемых клиентом навигационных сигналов 146, и как может быть необходимо или предназначено для заданного применения или среды.

Сервер 112 аутентификации выполнен с возможностью приема или оценки (вычисления) набора 138 сигнатур клиента для местоположения 122. Сервер 112 аутентификации может принимать набор 138 сигнатур клиента посредством проводной линии 126 связи, беспроводного канала 128 связи или их сочетания или может локально оценивать (вычислять) набор 138 сигнатур клиента в сервере 112 аутентификации. Сервер 112 аутентификации содержит приемник 200 навигационного спутника и также выполнен с возможностью приема навигационного сообщения 134 (навигационных сообщений) сигналов 116-120 навигационных спутников через принимаемые сервером навигационные сигналы 148 посредством антенны 114 сервера. Сервер 112 аутентификации также оценивает биты 136 навигационных данных, содержащиеся в навигационном сообщении 134 принимаемых сервером навигационных сигналов 148, синхронизированных с битовыми кадрами 1030 клиента для обеспечения синхронизированных битовых кадров 1032 сервера (см. фиг. 10). Сервер 112 аутентификации вычисляет функцию синхронизированных битовых кадров 1032 сервера для обеспечения набора 140 сигнатур сервера, как пояснено более подробно далее. В одном варианте реализации набор 138 сигнатур клиента и набор 140 сигнатур сервера сравнивают посредством модуля 142 сервера для коррелирования для генерирования сообщения 144 с решением по аутентификации. Сервер 112 аутентификации определяет достоверность предполагаемого местоположения для местоположения 122 клиента 108 на основании навигационного сообщения 134 и генерирует сообщение 144 с решением по аутентификации, характеризующее достоверность или недостоверность предполагаемого местоположения. Достоверность характеризует, что существует приемлемая точность и/или определенность того, что клиент 108 расположен в предполагаемом местоположении, а недостоверность характеризует то, что существует неприемлемая точность и/или определенность того, что клиент 108 расположен в предполагаемом местоположении.

Большинство финансовых транзакций применяют сотовые телефоны в качестве клиента 108 в среде типа "в помещении" или типа "в центре города", причем они возникают на платформах, которые являются низкозатратными и работают в средах с блокируемыми сигналами. Для проектирования такой рентабельной основанной на навигационном спутнике системы аутентификации могут быть важны два критерия. Во-первых, данные должны быть доступны из приемника 200 навигационного спутника, содержащегося в сотовом телефоне. Во-вторых, основанная на навигационном спутнике система аутентификации должна компенсировать принимаемые клиентом навигационные сигналы 146, которые ожидаются в местах, в которых собираются пользователи сотовых телефонов, например "в помещениях" и "центре города". Первый критерий отражен на фиг. 2, на которой показаны этапы обработки сигналов в приемнике 200 навигационного спутника. На фиг. 3 показан второй критерий, основанный на навигационном спутнике системы аутентификации. На фиг. 2 показана иллюстративная упрощенная функциональная структурная схема приемника 200 навигационного спутника, показанного на фиг. 1. Приемник 200 навигационного спутника может содержать, например, без ограничения, GPS приемник или другой приемник спутника. Как показано на фиг. 2, приемник 200 навигационного спутника принимает радиочастотные сигналы, такие как принимаемые клиентом спутниковые навигационные сигналы 146, в антенне 110 клиента. Приемник 200 навигационного спутника затем демодулирует принимаемые клиентом навигационные сигналы 146 из сигналов 116-120 навигационных спутников, принятых в клиенте 108 соответственно от навигационных спутников 102-108. Приемник 200 навигационного спутника демодулирует принимаемые клиентом навигационные сигналы 146 из сигналов 116-120 навигационных спутников, принятых в клиенте 108, путем преобразования с понижением частоты принимаемых клиентов навигационных сигналов 146 из радиочастоты (RF) в полосу частот посредством преобразователя 202 с понижением частоты и путем полосовой фильтрации преобразованных с понижением частоты принимаемых клиентом навигационных сигналов 218 посредством полосового фильтра 204.

Как указано выше, значительная часть мощности в компоненте сигнала с секретным Y кодом из сигналов 116-120 навигационных спутников или принимаемых клиентом навигационных сигналов 146 может быть потеряна, когда принимаемые клиентом навигационные сигналы 146 проходят через полосовой фильтр 204. Что касается GPS сигналов, то сигналы, модулируемые посредством сигналов с секретным Y кодом, имеют эквивалентную ширину шумовой полосы частот, составляющую 10 МГц, а эквивалентная ширина шумовой полосы частот гражданских сигналов с С/А кодом (С/А код) составляет приблизительно 1 МГц. Гражданские сигналы с С/А кодом применяют посредством приемника 200 навигационного спутника в клиенте 108, таком как сотовые телефоны, а не сигналы с Y кодом. Следовательно, полосовой фильтр 204 в сотовых телефонах в целом имеет ширину полосы частот, составляющую только несколько МГц, так что потеряна значительная часть мощности сигнала у сигналов, содержащих секретные Y коды. Потеря мощности сигнала ухудшает эксплуатационные показатели в средах с низким соотношением сигнал-шум (SNR). Ухудшенные эксплуатационные показатели могут предотвратить или минимизировать возможность сервера 112 аутентификации подтвердить то, что вычисление глобального положения или утверждение, основанное на глобальном положении, является истинным.

Приемник 200 навигационного спутника затем преобразовывает отфильтрованные полосовым фильтром принимаемые клиентом навигационные сигналы 220 из аналоговых сигналов в цифровые сигналы посредством аналого-цифрового преобразователя (АЦП) 206 для выдачи цифровых принимаемых клиентом навигационных сигналов 222. Приемник 200 навигационного спутника затем удаляет код 132 расширения спектра (С/А код) из цифровых принимаемых клиентом навигационных сигналов 222 посредством средств 210 для вытеснения кода. Приемник 200 навигационного спутника затем удаляет синфазную несущую 130 из цифровых принимаемых клиентом навигационных сигналов 222 посредством средств 212 для вытеснения несущей для выдачи чистых цифровых принимаемых клиентом навигационных сигналов 224.

Приемник 200 навигационного спутника затем коррелирует очищенные цифровые принимаемые клиентом навигационные сигналы 224 с копией чистых цифровых принимаемых клиентом навигационных сигналов 224 в клиенте 108 с использованием модуля 214 для коррелирования для оценки местоположения 122, скорости и временной компенсации клиента 108 на выходе 216 на основании пика 226 корреляции. Местоположение 122 может быть вычислено с использованием большего количества спутников, чем минимальное количество спутников (4 спутника для вычисления широты, долготы, возвышения и времени навигационного спутника и/или GPS).

На фиг. 3 показана иллюстративная беспроводная среда связи (среда 300), иллюстрирующая, что среды типа помещения или типа центра города могут ослаблять сигналы 116-120 навигационных спутников. Номинальная сила 304 принимаемого сигнала у принятого GPS сигнала составляет приблизительно -130 дБм (или 10Е-16 Вт). Приемник 200 навигационного спутника в клиенте 108 под открытым небом может быть настроен на номинальную силу 304 принимаемого сигнала. Однако, клиент 108, такой как сотовый телефон, может работать в помещениях в городском здании, причем сила 302 ослабляемого принимаемого сигнала падает до -140 дБм или -160 дБм или даже менее. Таким образом, сервер 112 аутентификации должен работать на этих низких уровнях силы 302 ослабляемого принимаемого сигнала. На фиг. 4 показана иллюстративная схема 400, иллюстрирующая структуру сигналов навигационных сообщений 134 навигационного спутника 102. Навигационные сообщения 134 модулирует известный (Р) код и неизвестный (Y) код (не показан), широковещаемые посредством, например, навигационного спутника 102, посредством сигнала 116 навигационного спутника. Варианты реализации настоящего изобретения основаны на случайной (псевдослучайной) информации, содержащейся в навигационных сообщениях 134, широковещаемых посредством навигационного спутника 102 или других навигационных передатчиков. Что касается GNSS, то навигационное сообщение или навигационные сообщения 134 являются широковещательными на 50-1000 бит в секунду (бит/с) и, поэтому, отличаются от кодов расширения спектра, таких как неизвестный (Y) код (не показан) и С/А код (код 132 расширения спектра), которые также модулируют сигналы 116 навигационных спутников от навигационного спутника 102. Навигационные сообщения 134 изменяются медленно на 50-1000 бит в секунду по сравнению с (основным) кодом 132 расширения спектра на 10,23 МГц (С/А код) или кодом расширения спектра на 10,23 МГц (Y код, не показан).

Навигационное сообщение или навигационные сообщения 134 для навигационного спутника 102 содержат информацию, такую как местоположение и время навигационного спутника 102, неточное местоположение навигационных спутников 104, 106, отличных от навигационного спутника 102, или другую информацию. В отличие от неизвестного или секретного кода (Y), навигационные сообщения 134 не ослабляются полосовым фильтром 204 (см. фиг. 2), а проходят через полосовой фильтр 204, когда сигнал 116 навигационного спутника проходит через полосовой фильтр 204. Таким образом, с использованием навигационных сообщений 134 в средах с низким соотношением сигнал-шум (SNR) обеспечивают достоверность подтверждения спутниковой системой аутентификации того, что вычисление глобального положения или утверждение, основанное на глобальном положении, является истинным.

По сравнению с существующими способами, варианты реализации настоящего изобретения обеспечивают лучший охват помещений и зданий в центре города, поскольку навигационное сообщение 134 наложено на гражданские С/А кода и секретные Y коды, широковещаемые посредством навигационных спутников 102. Как пояснено выше, значительная часть мощности в компоненте сигналов с секретным Y кодом может быть потеряна, когда сигнал 116 навигационного спутника проходит через полосовой фильтр 204. Что касается GPS, то сигналы, модулируемые посредством сигналов с секретным Y кодом, имеют эквивалентную ширину шумовой полосы частот, составляющую 10 МГц, а эквивалентная ширина шумовой полосы частот гражданских сигналов с С/А кодом составляет 1 МГц. Гражданские сигналы с С/А кодом применяют посредством приемника 200 навигационного спутника в клиенте 108, таком как сотовый телефон, а не сигналы с секретным Y кодом. Следовательно, полосовой фильтр 204 (например, сотового телефона) имеет ширину полосы частот, составляющую только несколько МГц, так что потеряна значительная часть мощности сигнала у сигналов с секретным Y кодом.

По сравнению с существующими способами, варианты реализации настоящего изобретения существенно улучшают покрытие в помещениях и центре города спутниковой аутентификации на основании приемника 200 навигационного спутника, содержащегося в клиенте 108, таком как мобильный телефон или другие относительно недорогие платформы.

Варианты реализации достигают данное улучшение путем использования произвольной (псевдо произвольной) природы битов 136 навигационных данных в навигационном сообщении или навигационных сообщениях 134, а не произвольной (псевдо произвольной) природы сигналов с Y кодом. Навигационное сообщение 134 модулирует гражданский С/А код и секретные Y коды, поэтому не возникают вышеуказанные потери от полосовой фильтрации. Данная экономия мощности может составлять приблизительно 6 дБ.

Кроме того, объем сообщения (например, количество бит данных), занятый сигнатурой местоположения (например, 138 на фиг. 1 и 606 на фиг. 6), основанной на гражданском С/А коде, приблизительно в 10 раз меньше, чем объем сообщения, занятый сигнатурой местоположения, которая обязательно должна содержать полосу пропускания сигналов с секретным Y кодом (Y код). Например, если сигнатура местоположения, содержащая ширину полосы частот сигналов с секретным Y кодом, занимает приблизительно 24 Кбайт, то набор 138/606 сигнатур местоположения клиента согласно вариантам реализации настоящего изобретения может занимать приблизительно 2,4 Кбайт. В альтернативном варианте варианты реализации могут заполнять сообщение объемом 24 Кбайт и могут использовать увеличенную длину бит данных для улучшения эксплуатационных показателей в средах с низким соотношением сигнал-шум (SNR).

Навигационные сообщения 134, которые модулируют код 132 расширения спектра, изменяются на 50-1000 бит в сек. Кроме того, большинство навигационных сообщений 134 могут быть предварительно спрогнозированы. Низкая скорость и прогнозируемость указывает на то, что поток данных навигационного сообщения 134 может представлять собой низкокачественный источник сигнатур аутентификации. Однако конкретные части навигационного сообщения 134 может быть сложно предсказать. Кроме того, варианты реализации получают сигнатуры аутентификации на основании наложения навигационного сообщения 134 для нескольких, предпочтительно многих, спутников, таких как навигационные спутники 102, 104 и 106.

На фиг. 5 показана иллюстративная схема 500, отображающая наложение навигационных сообщений 502, 504 и 506 соответственно от навигационных спутников 102, 104 и 106. Как показано на фиг. 5, такое наложение не имеет сложной структуры, поскольку границы 508, 510 и 512 навигационных битов каждого из навигационных битов 520, 522 и 524 в навигационных сообщениях 502, 504 и 506 сдвинуты во времени 514 от спутника к спутнику. Сдвиг во времени 514 от спутника к спутнику может возникать вследствие того, что, например, диапазон от каждого из навигационных спутников 102-106 до клиента 108 может существенно различаться. Временной сдвиг от спутника к спутнику, такой как временной сдвиг 516, может быть оценен с использованием различных методик. Продолжительность 518 навигационного бита у навигационных битов 520, 522 и 524 в навигационных сообщениях 502, 504 и 506 может содержать, например, 20 мс ~= 6000 км/скорость света.

На фиг. 6 показана иллюстративная схема 600, иллюстрирующая то, что навигационные сообщения 502-506 от навигационных спутников 102-106, показанных на фиг. 5, дискретизированы в течение немного большего времени, чем продолжительность 518 одного навигационного бита (например, 20 мс на фиг. 5) согласно варианту реализации настоящего изобретения. Стробирующий импульс 602, например, в 25 мс немного дольше, чем продолжительность 518 навигационного бита (например, составляющая 20 мс) для одного навигационного бита каждого из навигационных сообщений 502-506. Продолжительность стробирующего импульса 602, превышающая продолжительность 518 навигационного бита, может гарантировать, что стробирующий импульс 602 охватывает границу навигационного бита, такую как границы 508, 510 и 512 навигационных битов, показанных на фиг. 5. Например, четыре возможных последовательности могут существовать для каждого из навигационных спутников 102, 104 и 106, что отражает два навигационных бита в стробирующем импульсе 602 для каждого из навигационных спутников 102-106. Они отличаются двухбитными полярностями "+-;-","-+-","-;-" и "--". Если в пределах видимости существует К спутников, то затем количество элементов сигнатуры 606 местоположения, содержащее все спутниковые комбинации для одной охваченной границы навигационных бит, составляет 22K. Если стробирующий импульс 602 имеет большую продолжительность для охвата большего количества границ навигационных битов, то затем количество элементов набора 606 сигнатур местоположения быстро увеличивается (например, для 3 границ навигационных битов составляет 24K, для 4 границ навигационных битов составляет 25K и т.д.) В одном варианте реализации набор 606 сигнатур местоположения содержит исключающее ИЛИ (XOR) строк отсчетов в битах, таких как кадры 616, 618 и 620 отсчетов в битах, содержащие биты 136 навигационных данных (например, навигационные биты 520, 522 и 524) каждого из навигационных сообщений 502-506 соответственно от навигационных спутников 102-106. Например, столбцы 608, 610, 612 и 614 отсчетов в битах для кадров 616, 618 и 620 отсчетов в битах подвергнуты операции исключающего ИЛИ (XOR) для создания набора 606 сигнатур местоположения. Набор 606 сигнатур местоположения может быть создан посредством любой подходящей функции, такой как без ограничения, функция логического исключающего ИЛИ, функция логического ИЛИ, функция логического И или другая подходящая функция. Что касается клиента 108, то кадры 616, 618 и 620 отсчетов в битах содержат битовые кадры 1030 клиента (см. фиг. 10), а набор 606 сигнатур местоположения содержит набор 138 сигнатур клиента. Что касается сервера 112 аутентификации, то кадры 616, 618 и 620 отсчетов в битах содержат синхронизированные битовые кадры 1032 сервера (см. фиг. 10), а набор 606 сигнатур местоположения содержит набор 140 сигнатур сервера.

Таким образом, размер набора 606 сигнатур местоположения уменьшен от размера сочетания кадров 616, 618 и 620 отсчетов в битах. Если стробирующий импульс 602 выбран для охвата только одной границы навигационных бит, то затем набор 606 сигнатур местоположения, получаемых в результате исключающего ИЛИ (XOR), имеет количество элементов, составляющее 2K+1. Как показано в таблице 604 (N=K+1), количество элементов 2K+1 для исключающего ИЛИ (XOR) увеличивается намного более медленно, чем количество элементов 22K (то есть, 22K=4K) для всех сочетаний спутников для одной границы навигационных бит. Таким образом, количество элементов для исключающего ИЛИ (XOR) границ бит спутниковой навигации увеличивается намного более медленно, чем количество элементов для всех сочетаний границ бит спутниковой навигации.

На фиг. 7 показана иллюстративная схема 700, иллюстрирующая то, что навигационные сообщения 502-506 от навигационных спутников 102-106, показанных на фиг. 5, дискретизированы в течение нескольких продолжительностей бит согласно варианту реализации настоящего изобретения. В варианте реализации, показанном на фиг. 7, набор 706 сигнатур местоположения содержит исключающее ИЛИ (XOR) (например, вдоль столбца 708 отсчетов в битах) строк отсчетов в битах, таких как кадры 710, 712 и 714 отсчетов в битах, содержащие биты 136 навигационных данных (например, навигационные биты 520, 522 и 524) каждого из навигационных сообщений 502-506 от навигационных спутников 102-106.

Например, столбцы отсчетов в битах (например, столбец 708 отсчетов в битах) кадров 710, 712 и 714 отсчетов в битах подвергнуты операции исключающего ИЛИ (XOR) для создания набора 706 сигнатур местоположения. Набор 706 сигнатур местоположения может быть создан посредством любой подходящей функции, такой как, без ограничения, функция логического исключающего ИЛИ, функция логического ИЛИ, функция логического И или другая подходящая функция. Что касается клиента 108, то кадры 710, 712 и 714 отсчетов в битах содержат битовые кадры 1030 клиента (см. фиг. 10), а набор 706 сигнатур местоположения содержит набор 138 сигнатур клиента. Что касается сервера 112 аутентификации, то кадры 710, 712 и 714 отсчетов в битах содержат синхронизированные битовые кадры 1032 сервера (см. фиг. 10), а набор 706 сигнатур местоположения содержит набор 140 сигнатур сервера.

Стробирующий импульс 702, составляющий 65 мс, немного дольше, чем 60 мс (три навигационных бита по 20 мс каждый). В данном случае стробирующий импульс 702 охватывает по меньшей м